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The theoretical description of compact structures that share some features with mass varying particles

allows for a simple analysis of the equilibrium and stability for massive stellar bodies. We investigate

static, spherically symmetric solutions of Einstein equations for a system composed by nonbaryonic

matter (neutrinos or dark matter) which forms stable structures through attractive forces mediated by a

background scalar field (dark energy). Assuming that the dark matter, or massive neutrinos, consists of a

gas of weakly interacting particles, the coupling with the scalar field is translated into an effective

dependence of the mass of the compounding particle on the radial coordinate of the curved spacetime. The

stability analysis reveals that these static solutions become dynamically unstable for different Buchdahl

limits of the ratio between the total mass energy and the stellar radius,M=R. We also find regular solutions

that for an external observer resemble Schwarzschild black holes. Our analysis leaves unanswered the

question whether such solutions, which are both regular and stable, do exist.
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I. INTRODUCTION

The search for the mechanism responsible for the onset
of the accelerating phase of the Universe continues to
stimulate interesting and fascinating discussions on many
key issues in astrophysics and cosmology [1–5]. In the
context that models account for the accelerated expansion
of the Universe, a nontrivial coupling between the non-
baryonic matter sector and the sector responsible for the
acceleration of the Universe has often been considered [6–
8]. A possible trigger for the acceleration arises through the
interaction of the quintessence field with a matter compo-
nent whose mass grows with time. This matter component
is sometimes identified with dark matter [9–11], neutrinos
[12–18], or is unified with dark energy as in the Chaplygin
gas model [19–24].

Generically speaking, nonbaryonic matter interacting
adiabatically with a background scalar field gives origin
to the so-called mass varying mechanism, originally con-
ceived to address the dark matter issue, and later reformu-
lated to study cosmological neutrinos [12,17]. In its
simplest realization, it consists in considering a scalar field
effective potential with an implicit dependence on the
neutrino mass. Because of the constraint imposed by the
scalar field, the mass eventually grows close to its present
value, when neutrinos form a nonrelativistic (NR) fluid and
the interaction with the scalar field locks the mass evolu-
tion. The potential energy of the dark energy component
then becomes the dominant contribution to the Universe’s

energy density and the cosmic acceleration ensues.
However, in models with increasing particle mass, the
homogeneous cosmological solution is usually unstable
to perturbations. In fact, several forms of the coupling of
mass varying particles to quintessence fields lead to insta-
bilities associated with an imaginary speed of sound for the
fluid in the NR regime. Such instabilities result in the
exponential growth of cosmological perturbations [25].
The Universe then becomes inhomogeneous and these
particle lumps form denser structures.
In this work, we quantify the equilibrium and stability

conditions for static, spherically symmetric objects that
share some features with cosmological scenarios with
mass varying particles. These exotic astrophysical objects
are compact lumps of nonbaryonic matter, held together by
gravity and the attractive force mediated by the back-
ground scalar field. The static mass varying behavior is
achieved from the dependence on the scalar field radial
coordinate. In our analysis, we shall consider that such
stellar structures are described by Schwarzschild’s solution
of a sphere with constant energy density, �, and pressure,
p, which drops from its central value to vanish at the
boundary. We shall determine the equilibrium conditions
between the total mass energy,M, and the spherical radius,
R. Actually, in our approach the variable mass behaves like
an additional extensive thermodynamic degree of freedom,
due to its dependence on the scalar field, being therefore
like a chemical potential from the thermodynamic point of
view. Under adiabatic conditions, the thermodynamic pres-
sure and its explicit dependence on r are given in terms of
�ðrÞ, and can be explicitly computed from the Tolman-
Oppenheimer-Volkoff (TOV) equations for the hydrostatic
equilibrium [26,27]. This approach justifies the assumption
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of a specific analytical dependence of the variable mass on
the radial coordinate of the massive object,mðrÞ, at a given
distance from the center. The stability analysis reveals that
our static solutions become dynamically unstable for dif-
ferent Buchdahl limits of the ratio between total mass
energy and stellar radius, M=R. Assuming that such com-
pact structures may describe massive neutrino lumps, we
also verify how the structure formation could eventually
modify the cosmological predictions for the neutrino
masses. In particular, we find that there are some physi-
cally acceptable solutions which give rise to stable lumps.
Our analysis leaves open the issue related with stable
regular solutions that closely reproduce the conditions for
the formation of Schwarzschild black holes.

This work is organized as follows. In Sec. II, we review
well-known thermodynamic properties for neutral matter
in order to properly formulate a form of the first law of
thermodynamics that is consistent with the mass varying
mechanism. In Sec. III, we review the fundamental aspects
of the mass varying mechanism in the Friedman-
Robertson-Walker (FRW) cosmological scenario. In the
context of structure formation, we establish the connection
among the energy density �, the variable mass m, and the
particle density n, for an adiabatic system of mass varying
particles in a compact structure. The corresponding equi-
librium conditions and the mass defect are determined in
Sec. IV. In Sec. V, we perform the analysis of stability of
the equilibrium configurations and obtain the conditions
for neutrino lumping. We also verify how the cosmological
predictions for neutrino masses are modified. Finally, we
summarize our findings and discuss their implications in
Sec. VI.

II. GENERAL THERMODYNAMIC PROPERTIES
FOR NEUTRAL MATTER

In order to analyze the cosmological problem and the
theory of stellar evolution, it is necessary to get informa-
tion on the interactions among the particles which make up
the astrophysical bodies. Regardless of the specific nature
of these forces, a common property is the additivity of the
interaction energy for a macroscopic system: if the system
is divided into macroscopic parts, then the interaction
energy between these parts will be negligibly small, and
for short-range forces we can introduce the concept of
specific energy � ¼ E=N ¼ �=n, where � is the energy
density, the total energy, E, in a volume, V, and n is the
density of particles to which we relate the energy, and N is
the total number of particles, N ¼ nV.

Furthermore, the main manifestation of short-range in-
teractions in a macroscopic system is a nonvanishing pres-
sure p. The pressure is the quantity which allows for
defining the interaction force between two parts of a sys-
tem and depends only on the state of the matter, p ¼
pðn; sÞ, i.e., on the density of particles n and on the specific
entropy s ¼ S=N. Finally, we have to introduce two other

thermodynamic intensive variables: the temperature,
Tðn; sÞ, and the chemical potential, �ðn; sÞ.
The macroscopic version of the first law of thermody-

namics leads to the familiar expression which relates the
above mentioned quantities

dE ¼ �pðV; SÞdV þ TðV; SÞdSþX
j

�jdNj; (1)

where the indices j correspond to different types of parti-
cles. Equally fundamental is the conservation of the total
number of particles. Suppose a fluid element V whose
moving walls are attached to the fluid so that no particles
flow in or out. As the fluid element moves, its volume
changes, but the total number of enclosed particles remains
fixed,

d

�X
j

Nj

�
¼ 0; (2)

which can be expressed as

dN ¼ dðnVÞ ¼ 0; (3)

for neutral matter, i.e., for fluid made up by a single type of
particle. In this case, the volume occupied by a particle can
be expressed as V ¼ 1=n, the corresponding entropy by
S ¼ Ns ¼ nVs ¼ s, and the thermodynamic relation from
Eq. (1) reads

d� ¼ d

�
�

n

�
¼ �pðn; sÞd

�
1

n

�
þ Tðn; sÞds; (4)

which sets

d� ¼
�
@�

@n

�
s
dnþ

�
@�

@s

�
n
ds

¼ �ðn; sÞ þ pðn; sÞ
n

dnþ nTðn; sÞds: (5)

The analysis further simplifies the fluid, already assumed
to have the same composition, has the same entropy per
particle, s, and is in a state of adiabatic flow, so that
pressure and energy density are related by

n

�
@�

@n

�
s
¼ �ðn; sÞ þ pðn; sÞ: (6)

The influence of the interactions on the thermodynamics
and the assumptions about the spectrum of rest masses in
the context of neutral matter stellar structures have been
recurrently examined the literature. In the following analy-
sis, we shall consider neutral matter with no color, electro-
weak, and electric charges such as (cold) dark matter and
NR neutrinos. These considerations will allow us to de-
scribe interactions of neutral particles within stellar objects
whose evolution is driven by the coupling to the dark
energy scalar field.
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III. THE MASS VARYING MECHANISM

In the so-called mass varying mechanism [12–14,28] a
coupling between a relic particle and a light scalar field is
introduced. This fluid is identified with dark energy or dark
energy plus dark matter [15,16]. As a consequence of this
new interaction, the mass of the relic particle is generated
from the vacuum expectation value of the scalar field and
becomes linked to its dynamics, that is m � mð�Þ for such
a relic particle.

In the usual mass varying neutrino framework, neutrinos
are coupled to a light scalar field which is identified with
the dark sector. Presumably, the neutrino mass m� has its
origin on the vacuum expectation value of the scalar field
and, naturally, its behavior is governed by the dependence
of the scalar field on the scale factor. Given a particle

statistical distribution fðqÞ, where q � jpj
T0
, T0 being the

neutrino background temperature at present, in the flat
cosmological scenario, the corresponding energy density
and pressure can be expressed by

�ða;�Þ ¼ T4
�0

�2a4

Z 1

0
dqq2

�
q2 þm2ð�Þa2

T2
0

�
1=2

fðqÞ;

pða;�Þ ¼ T4
0

3�2a4

Z 1

0
dqq4

�
q2 þm2ð�Þa2

T2
�0

��1=2
fðqÞ;

(7)

where the subindex 0 denotes present-day values, such that
a0 ¼ 1. It can be easily shown that

mð�Þ @�ða;�Þ
@mð�Þ ¼ ð�ða;�Þ � 3pða;�ÞÞ: (8)

From the dependence of � on a, one can obtain the energy-
momentum conservation for the mass varying fluid,

_�ða;�Þ þ 3Hð�ða;�Þ þ pða;�ÞÞ ¼ _�
dmð�Þ
d�

@�ða;�Þ
@mð�Þ ;

(9)

where H ¼ _a=a is the expansion rate of the Universe and
the dot denotes differentiation with respect to cosmic time.
It is important to emphasize that the coupling between relic
particles and the scalar field as described by Eq. (8) is

restricted to times when they are NR, i.e., @�ða;�Þ
@mð�Þ ’ nðaÞ /

a�3 [12,14,28]. In opposition, as long as particles are
relativistic [TðaÞ ¼ T�0=a � mð�ðaÞÞ], the decoupled flu-
ids should evolve adiabatically since the strength of the
coupling is suppressed by the relativistic increase of the
pressure (�� 3p). The mass varying mechanism is essen-
tially driven by Eq. (8), which translates the dependence of
m on � into a dynamical behavior.

However, the mass varying mechanism can play a salient
role in the structure formation. It can be assumed that
cosmological neutrinos, dark matter, or some generic
form of nonbaryonic matter, compose a gas of weakly
interacting particles. The mass of these particles depends

on the value of a slowly varying classical scalar field. This
dynamics is similar to that of the so-called cosmon fields
which can lead to the formation of cosmon lumps [25,29].
Cosmon lumps are bound objects, for which the scalar

and gravitational fields combine to form nonlinear solu-
tions of their field equations. Such solutions have been
discussed in detail in Refs. [30–32] for situations where
the influence of the cosmon potential is negligible. Their
characteristic features are as follows: (i) lumps are desig-
nated by their mass and a suitably defined cosmon charge;
(ii) the black hole event horizon disappears for all solutions
with nonzero cosmon charge; (iii) for small cosmon charge,
the solutions closely resemble black hole solutions when
seen from the outside, and the horizon is replaced by a
sharp transition to a region of high red shift.
For classical particles, the action of the cosmon coupled

to mass varying particles (neutrinos or dark matter) can be
written as [31]

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

16�G
þ 1

2
g��@��@��þ Vð�Þ

þ �ð�Þ
�

(10)

where G is the Newton constant, R is the Ricci curvature,
and �ð�Þ is the corresponding mass varying particle
density. For static, spherically symmetric solutions, one
employs the Schwarzschild metric given by ds2 ¼
�BðrÞdt2 þ AðrÞdr2 þ r2ðd�2 þ sin2ð�Þd’2Þ, where A ¼
B�1 ¼ ð1� 2GM=rÞ�1, for which we set G ¼ 1, and r is
the radial coordinate. From the field equations we can write

d2�

dr2
þ

�
2

r
þ B0

2B
� A0

2A

�
d�

dr

¼ A

�
dVð�Þ
d�

þ @�ð�Þ
@�

�

¼ A

�
dVð�Þ
d�

þ d lnmð�Þ
d�

ð�� 3pÞ
�
; (11)

from which the explicit dependence of � on r is obtained.
Assuming the adiabatic approximation at cosmological

scales [25], the cosmological stationary condition [12–
14,16] can be applied to Eq. (11) in order to suppress its
right-hand side. The analytical dependence of the scalar
field on the radial coordinate effectively disappears for
large values. Faraway from the concentration of matter,
i.e., for r larger than the compact structure radius, one
recovers the background of a flat FRW universe. In this
case, considering back the usual cosmological time-
dependent terms, Eq. (11) should reduce to the energy
conservation equation,

€�þ 3H _�þ
�
dVð�Þ
d�

þ d lnmð�Þ
d�

ð�� 3pÞ
�
¼ 0; (12)

and the stationary condition could be equivalently assumed
for the static approach, i.e.,
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dVð�Þ
d�

þ d lnmð�Þ
d�

ð�� 3pÞ ¼ 0: (13)

This equation does not depend on the relation of � with
spacetime coordinates or metric components, that is, the
radial coordinate, r, of a curved region or the scale factor,
a. For this reason, the simplest scenario is obtained from
the extension of the cosmological stationary condition to a
static configuration in Eq. (11). The adiabatic regime de-
picted from the gradual change expressed by Eq. (13) can
be compared to the minimum of the effective potential of a
chameleon models [33,34], where the chameleon scalar
fields are modified through spatial variations in the interior
of massive bodies. In addition, the corresponding energy-
momentum conservation law is exactly what one encoun-
ters in the Einstein frame of a scalar-tensor gravity model
[35,36]. In Ref. [25], this adiabatic regime and its domain
of validity are reviewed in a general context.

Introducing the above mentioned Schwarzschild expres-
sions for AðrÞ and BðrÞ, and assuming the stationary con-
dition, Eq. (11) can be simplified as

d2�

dr2
þ

�
2� 8ðM=RÞðr2=R2Þ
r� 2ðM=RÞðr3=R2Þ

�
d�

dr
¼ 0 ðr < RÞ;

d2�

dr2
þ

�
2ðr�MÞ
r� 2M

�
d�

dr
¼ 0 ðr > RÞ;

(14)

which yields the solution

�ðrÞ ¼�in
0 þ�in

1

2M
ln

�
1� 2M

r

�
ðr<RÞ;

�ðrÞ ¼�out
0 þ�out

1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M=R3Þ

q

�
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2M=R3Þp
r
� arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2M=R3Þ

q
rÞ
�

ðr>RÞ;

(15)

where �in;out
0;1 are constants to be adjusted in order to match

the boundary conditions. In the Newtonian limit where
AðrÞ � BðrÞ � 1, the constants match each other so that
�in

0;1 � �out
0;1 � �0;1 and the above solutions reduce to

�ðrÞ ¼ �0 þ�1

r
: (16)

Given that � depends on the radial coordinate for ge-
neric curved spaces, we quantify the changes due to our
approach through some mass dependencies on r as illus-
trated in Fig. 1. Clearly, the form of mð�Þ and of the
relation between pressure, pðrÞ, and density, �ðrÞ, may
lead to quite different scenarios.

In the pictorial representation of our results we denote
y ¼ r=R, where R is the radius of the spherical lump. Any
prescription for mðrÞ is model dependent, i.e., arbitrary
functions for mðrÞ are equivalent to arbitrary functions
for �ðrÞ and mð�Þ. In particular, the stationary condition

approximation justifies the analytical dependence given by
Eq. (18). However, other approximations could be adopted.
Let us now turn to scenarios involving neutrinos.

Despite its impressive phenomenological success, it is
widely believed that the standard model (SM) of particle
physics is actually only a low-energy approximation of an
underlying more fundamental theory. In this respect, the
interplay with the cosmology can be an important guide-
line to obtain insights on the nature of the more fundamen-
tal theory. Turning to the subject of neutrinos in the SM, the
most natural way to explain the smallness of their masses is
through the seesaw mechanism, according to which, the
tiny masses, m�, of the usual left-handed neutrinos are
obtained via a very massive, M, sterile right-handed neu-
trino. The Lagrangian density that describes the simplest
version of the seesaw mechanism through the Yukawa
coupling between a light scalar field and a single neutrino
flavor is given by

L ¼ mLR ��L�R þMð�Þ ��R�R þ H:c:; (17)

where it is shown that at scales well below the right-handed
neutrino mass, the following effective Lagrangian density
emerges [37]

L ¼ m2
LR

Mð�Þ ��L�R þ H:c: (18)

Phenomenological consistency with the SM implies that
logarithm corrections to the above terms are small.
Furthermore from solar, atmospheric, reactor, and accel-
erator neutrino oscillation experiments it is gathered that
neutrino masses given by m� �m2

LR=Mð�Þ lie in the sub-
eV range. It is also clear that promoting the scalar field �
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y2
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Exp(y-1)
Exp(y2-1)
1
Exp(1-y2)
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FIG. 1. Evolution for the variable mass dependence on the
radius r. Its dependence is supposed to be dictated by a spheri-
cally symmetric distribution of matter due to the coupling with a
background scalar field �ðrÞ.
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into a dynamical quantity leads to a mechanism in the
context of which neutrino masses are time dependent.
Associating the scalar field to the dark energy field allows
linking NR neutrino energy densities to late cosmological
times [12–16]. This scenario was implemented through the
adiabatic (stationary) approach via Eqs. (11)–(13). It is
evident that this approach is fairly general, and that the
same analysis can be performed in the framework of mass
varying particles coupled with cosmon fields in curved
spacetime. Analogously, an approximate solution for a
spherically symmetric compact object of radius R with
homogeneous density was already obtained in the quoted
chameleon framework [33].

To describe the connection among the extensive quanti-
ties �, m, and n in an adiabatic system of mass varying
particles in a star (or any stellar object), the relevant
thermodynamic equations are summarized by Eqs. (6)–
(8). In fact, in order to get a closed system of equations,
an equation of state that relates the pressure in terms of the
energy density and the specific entropy, p ¼ pð�; sÞ.
Moreover, due to the adiabatic conditions set up, the
pressure and its explicit dependence on the radial coordi-
nate, r, is simply given in terms of �ðrÞ, which can be
explicitly obtained from the TOV equations for the hydro-
static equilibrium.

By assuming that the hydrostatic pressure, p ¼ pð�ðrÞÞ,
leads to a univoquous dependence of � on the radial
coordinate for a symmetrically spherical distribution of
matter, we have to obtain a density �ðmðrÞ; nðrÞ; rÞ which
satisfies the system of partial differential equations given
by

d�

dr
¼ @�

@m

dm

dr
þ @�

@n

dn

dr
þ @�

@r
; (19)

and Eqs. (6)–(8). Eliminating p from Eqs. (6)–(8), we
obtain

4� ¼ m
@�

@m
þ 3n

@�

@n
; (20)

and consequently,

�ðm; nÞ ¼ �m1�3	n1þ	 (21)

is the solution of Eq. (19) once setting the dependence	 !
	ðrÞ. Using once again Eqs. (6)–(8), we obtain 	ðrÞ ¼
pðrÞ=�ðrÞ and hence the most general solution for the
problem is given by

� ¼ �ðmðrÞ; nðrÞ; rÞ ¼ m1�3ðp=�Þn1þðp=�Þ; (22)

where, for simplicity, we have omitted the explicit depen-
dence of m, n, p, and � on r, and we have adjusted the
arbitrary constant � in order to have � ¼ mn in the non-

relativistic limit, and � ¼ n4=3 in the ultrarelativistic limit.
For our purpose, a simple and realistic model for a

symmetrically spherical stellar object arises from the as-
sumption that the fluid is incompressible: the density �0 is
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0.2

0.3
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FIG. 2. Thermodynamic variables for a system composed by
mass varying particles, where the mass is assumed to be an
extensive thermodynamic degree of freedom. The plots depict
the case for which the mass of the particle is given by its
stationary observable value mðRÞ ¼ m0 on the surface boundary.
Notice that the increasing gray level corresponds to increasing
values of the thermodynamic variables, for which the boundary
values have been marked for M=R ¼ 5=18, the ‘‘soft’’
Buchdahl’s limit for which � ¼ 3p at R ¼ 0.
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a constant out to the surface of the star, r ¼ R, after which
it vanishes. Specifying �ðrÞ is equivalent to employ the
equation of state, since pðrÞ can be determined from the
hydrostatic equilibrium, i.e., from the TOVequations [26],

dpðrÞ
dr

¼ �ð�ðrÞ þ pðrÞÞ ðMðrÞ þ 4�r3pðrÞÞ
rðr� 2MÞ ; (23)

and

dM

dr
¼ 4�r2�ðrÞ; (24)

for which we have set Newton’s constant, G ¼ 1, andM is
the total mass of the stellar object.

Integrating Eq. (23) yields

pðrÞ
�ðrÞ ¼ ½1� 2ðM=RÞðr2=R2Þ�1=2 � ½1� 2ðM=RÞ�1=2

3½1� 2ðM=RÞ�1=2 � ½1� 2ðM=RÞðr2=R2Þ�1=2 :
(25)

Notice that the pressure increases near the core of the star,
as expected. Figures 2 and 3 illustrate the properties of the
relevant thermodynamic quantities for the case where their
behavior is constrained by Eq. (22) in the limiting case
where the mass of the particle is given by its observable
value mðRÞ ¼ m0. We compute the ratio between pressure
and energy density p=�, the density of particles n (dimen-
sionally normalized by m3

0), and the ratio ðpþ �Þ=n that

characterizes a pseudo chemical potential.

Indeed, for a star of fixed radius R, the central pressure
tends to infinity if the mass exceeds 4R=9, and exceeds the
radiation pressure (p ¼ �=3) if the mass exceeds 5R=18
(solid line in the Fig. 2).
If we try to squeeze a mass greater than the Buchdahl’s

limit 4R=9 within a radius R, general relativity admits no
static solutions [38]; a star shrinks to such size until it
eventually turns into a black hole. This scenario can be
modified for astrophysical bodies composed by particles
subject to the mass varying mechanism. Depending on the
analytical mass dependence on the cosmological back-
ground scalar field modified by the spacetime curvature,
the stability of equilibrium configurations can be drasti-
cally modified, as we shall discuss in the following section.

IV. EQUILIBRIUM AND MASS DEFECT

Among various types of equilibrium in stellar and cos-
mological scenarios, the simplest one is that in which all
processes of reciprocal transformation (creation/annihila-
tion) take place at a time scale much faster than the one
associated to the flux of external particles and the rate of
change of the relevant thermodynamic quantities. Such a
simplified version of thermodynamic equilibrium is con-
sistent with the stellar structure of our approach. The
conditions for lumping of such an exotic nonbaryonic
matter plus scalar field fluid is determined by the total
binding energy of the system.
The form of the Eq. (24) suggests that we interpretM as

the total (mass) energy inside a radius R, including the rest
mass energy M0, the internal energy of motion W and the
(negative) potential energy of self-gravitation U. In the
relativistic domain, we have

M ¼ M0 þMB ¼ 4�
Z R

0
r2�ðrÞdr; (26)

where

M0 ¼ 4�
Z R

0
r2mðrÞnðrÞ ffiffiffiffiffiffiffiffiffi

AðrÞp
dr: (27)

Following Eq. (8), M from Eq. (26) is reduced to M0 (no
binding energy and no motion) if p ¼ 0. The difference
between the total rest mass energy and the total energy
corresponds to the (positive) binding energy MB which
keeps the stellar structure stable,

MB ¼ M0 �M ¼ 4�
Z R

0
r2½�ðrÞ �mðrÞnðrÞ

ffiffiffiffiffiffiffiffiffi
AðrÞ

p
�dr:
(28)

Although it is useful to define M as the total energy, the
rest mass energy M0 is a fundamental quantity in the
stability analysis. In opposition, the internal energy of
motion, W, and the (negative) potential energy of self-
gravitation, U, are not particularly relevant, unless in the
Newtonian approximation where the relation MB � Uþ
W holds. The binding energy is sometimes referred to as
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FIG. 3. The ratio between pressure and energy density p=�,
the density of particles n (dimensionally normalized by m3
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the ratio ðpþ �Þ=n. We assume the soft Buchdahl’s limit for
which � ¼ 3p at R ¼ 0. This corresponds to the sections of
graphs marked on Fig. 2.
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mass defect and it corresponds to the energy which is
released during the formation of a star from an initially
rarefied matter: a typical mechanism for compact structure
formation. When particles are combined into a bound
system, an energy which equals the mass defect is emitted
in the form of photons, relativistic neutrinos, or gravita-
tional waves. For this reason, it follows from the physics of
this process that the condition for a stable static star
originating from diffuse matter distribution is expressed
as MB > 0.

In Fig. 4, we show how the mass varying mechanism
does modify the equilibrium condition based on the mass
defect criterium for relativistic stellar objects.

Two interesting effects can be described through the
mass varying mechanism depending on whether the parti-
cle mass increases or decreases inwards towards the center.
From the behavior of the mass defect for compact objects
composed by particles with their mass exponentially in-
creasing inwards to the center, we notice that stable con-
figurations are favored relatively to the other analytical
dependencies of mðrÞ. The resulting compact structure
has binding energy that increases to infinite as the ratio
M=R approaches to its Buchdahl’s limit. When these ob-
jects shrink to such a size they inevitably keep on shrinking
and eventually give origin to a black hole.

In the absence of the mass varying mechanism, the rest
mass energy M0 is written as M0 ¼ mN, where N is the
total number of particles within the radius R, that is

N ¼ 4�
Z R

0
r2nðrÞ

ffiffiffiffiffiffiffiffiffi
AðrÞ

p
dr: (29)

The stability curve for this case is described by the solid
line depicted in the Fig. 4, for which the binding energy has

an upper limit, M=R< 4=9, whether one assumes that the
pressure at the center cannot go to infinity. It is important to
realize that, in case of mass varying particles, the analysis
of the stability conditions in terms of N has to be rephrased
in terms of M0.
In this context, decreasing the mass inwards towards the

center can also give origin to stable structures up to certain
limiting values for M=R. In opposition to the previous
result, the equilibrium conditions are achieved for smaller
values of M=R, which restricts the existence of neutrino
lumps with arbitrarily small masses. The point here is that
the coupling with the background scalar field is crucial in
determining the stability conditions. In this situation, the
role of the scalar field potential on the mass varying
mechanism requires specific considerations, which not
only depend on the cosmological nature of the scalar field
(quintessence, cosmon, phanton, Chaplygin gas, etc.), but
also on the mass generation mechanism.

V. STABILITY OF EQUILIBRIUM
CONFIGURATIONS

The condition of the hydrostatic equilibrium is equiva-
lent to the condition of an extremum of the total energy of a
spherically symmetric stellar object for a given number of
conserved particles and a given specific entropy. In fact, the
relativistic theory of radial perturbations for nonrotating
equilibrium configurations is well understood. There are
two approaches to radial stability: a dynamical one, based
on the equations of motion and energy properties of radial
perturbations and a static one, based on mass-radius curves
for certain sequences of equilibrium configurations. From
the dynamical approach, we can find different ways for
studying the normal radial modes of a relativistic stellar
model. From the static approach, we obtain the minimum
energy corresponding to stable equilibrium, and a maxi-
mum to unstable equilibrium. In the static approach, the
study of stability does not require additional computations.
It clearly reveals that general relativity catalyzes radial
instability in stellar models.
The analysis of stability conditions from the static ap-

proach is similar to one when treating mass varying parti-
cle systems with thermodynamics governed by Eq. (22).
However the analysis has to be performed in terms of M0

and not in terms of N.
First, we consider how the mass of an equilibrium

configuration changes with the addition of particles,
brought from infinity, where the energy is M. In other
words, we derive the analytical correspondence between
M and M0 and, in particular, dM=dM0. The change in M
should not depend on the position in the equilibrium con-
figuration at which the particle is added up.
It can also be shown that for stable equilibrium configu-

rations, dM=dM0 < 1 [39,40]. This does not necessarily
imply that for equilibriumM<M0 for equilibrium, which
is an independent condition. In fact, the equilibrium solu-
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FIG. 4. Mass defect (binding energy) for several mass varying
particle functions for compact objects with uniform energy
density. Given that � depends on the radial coordinate r for
generic classes of curved spaces, we quantify the modifications
due to our approach by some mass dependencies on r as
illustrated in the box, where y ¼ r=R.
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tions with negative binding energy MB are unstable.
Moreover, the stability against small perturbations is lost
at the point of greatest (positive) binding energy, so that the
configurations of negative binding energy must lie deep
into the unstable region. It is important to realize that the
NR analysis, which is essentially qualitative, allows for
solutions of negative binding energy [39]. The stability
condition is reduced to dM=dN <m for the case where
the particle masses do not depend on the radial coordinate,
mðrÞ ¼ m ¼ m0. For this reason, the usual general relativ-
ity analysis of stability is performed in terms of M instead
of N. In the case of mass varying particle systems it
gives origin to significant deviations from the equilibrium
and stability scenarios described in terms of the condition
M<M0.

A. Stability of mass varying particle lumps

By considering the above discussed static approach for
the study of stability, let us describe the stability curves for
the considered mass varying particle analytical relation-
ships, and compare them with the analysis in terms of the
particle number N. In Fig. 5, we plot the stability curves,
i.e., the relationship between the total mass energy,M, and
the rest mass energy, M0, and its correspondence with
respect the analysis in terms of the total number of particles
contained within R.

In Fig. 6, we plot the stability conditions, i.e., dM=dM0

and dM=dN for the case where m is given in units of m0.
The stable equilibrium configurations are achieved if

dM=dM0 < 1, and not if dM=dN < 1.

B. Neutrino lumps

Neutrinos coupled to the dark energy, an ultralight scalar
field lead, in its simplest formulation, to a number of
significant phenomenological implications. Under general
conditions, they materialize in a rather model independent
way [12,18]. The neutrino mass m� is presumably gener-
ated from the vacuum expectation value of the scalar field
� whose dynamics is governed by the Universe scale
factor a, � � �ðaÞ, which turns the neutrino mass into a
dynamical quantity.
In most of the scenarios, the neutrinos remain essentially

massless until recent times. Their mass eventually in-
creases close to its present value and their interaction
with the background scalar field almost ceases [15,16].
The energy of the scalar field becomes the dominant con-
tribution to the energy density of the Universe and the
cosmological acceleration ensues. For the coupled
neutrino-scalar field fluid the squared sound speed may
become negative—a signal of instability [25]. The natural
interpretation of this instability is that the Universe be-
comes inhomogeneous due to nonlinear fluctuations of
neutrinos, which eventually collapse into lumps [41].
The question here is if the fraction corresponding to the

neutrino energy contribution is due to an isotropic and
homogenous NR (p� 0) distribution of particles, i.e.,
M0, or if it is due to a gas of weakly interacting particles
(p > 0) which lump in an expanding universe, that is M.
The rates given by M0=M for different scenarios of the
mass varying mechanism leads to a reasonable estimative
for the corrections on the absolute values of the cosmo-
logical neutrino masses.
So far, the known cosmological neutrino mass predic-

tions are performed for an isotropic and homogenous NR
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distribution of particles [42–45], which in the absence of
internal interactions and gravitational forces yield a total
energy (per equivalent lump) equal to M0. It would be
interesting to quantify the contribution of neutrino lumps
in the scenarios of cosmological neutrino masses.

For the case where the total neutrino number N is
assumed to be conserved (clearly an approximation), one
can define the apparent (measured) value for neutrino
masses as h�i ¼ M=N and the realistic (expected) corre-
sponding value as hmi ¼ M0=N so that

hmi
h�i ¼ M0

M
: (30)

Astrophysical objects composed by neutrinos with similar
features have also been studied in Refs. [32,46,47].

Let us then consider that the energy density of the
Universe involves weakly interacting neutrinos described
by the previously discussed static, spherically symmetric
solution of the Einstein equation with constant energy
density. The neutrino mass depends on the value of a
slowly varying scalar field, mð�ðrÞÞ �mðrÞ, which is re-
sponsible for the attractive force responsible for the lump-
ing. Independent of the analytical expression of the mass
varying mechanism, we assume that the neutrino mass is
equal tom0 at R, that is on the surface of the spherical lump
where p ¼ 0.

In Fig. 7, we represent the rate hmi=h�i for different
mass varying scenarios aiming to obtain realistic values for
the neutrino masses. We observe a clear correspondence
with the stability curves of Fig. 4.

Naturally, the smaller one is the spherical radius, the
more isotropic and homogeneous one is the cosmological
neutrino distribution. For lumps in which the neutrino mass
decreases from the boundary to the center, we have a lower
limit for the rate hmi=h�i, which coincides with the upper

limit for the radius of stable equilibrium configurations.
For the other cases, that is, for static or increasing neutrino
masses from the surface to the interior, we get stable
equilibrium configurations for which the rate hmi=h�i
decreases until vanishing at R. From the analysis of equi-
librium and stability, we notice that an unlimited quantity
of mass energy M can be squeezed into a lump when the
particle mass increases inwards towards the center of the
star, which is a preliminary condition to form a black hole
late configuration. A crude interpretation of this is that the
apparent neutrino mass parameter, hmi, assumes smaller
values in the Schwarzchild exterior solution. Since the
analytical dependence of the scalar field on r is suppressed,
the value of hmi can be interpreted as the cosmological
neutrino mass. Although somewhat paradoxical, this is a
natural consequence of the mass varying mechanism.
Actually, for these lumps, most of the mass is concentrated
at the center. Assuming that predictions for the neutrino
energy density and for the corresponding particle number
density are unaltered by the lumping scenarios, the neu-
trino mass value vanishes at the boundary (r ¼ R) of this
object if the ratio M=R reaches the Buchdahl’s limit. The
neutrino masses in this cases are expected to vanish.
On general terms, all stable scenarios of compact lumps

lead to a shift towards smaller values for the neutrino
masses. Comparing two possible scenarios for cosmologi-
cal neutrinos subject to a coupling to the background scalar
field, one with an isotropic and homogenous energy distri-
bution, vis-à-vis another whose perturbations result in
stable neutrino lumps, the latter correspond to lower
masses at present, that is, & 0:07 eV.

VI. CONCLUSIONS

In this work, we have shown that the presence of an
interaction between nonbaryonic matter, either neutrinos
or dark matter, to a cosmological background scalar field
associated to dark energy, has interesting implications,
besides the changes on the evolution of energy density
components of the Universe.
In our approach, we have assumed that any kind of

dynamical mass behaves like an additional extensive ther-
modynamic degree of freedom, depending on the back-
ground scalar field. Under adiabatic conditions, the
thermodynamic pressure and its explicit dependence on
the curved space radial coordinate could be expressed as
�ðrÞ, and could be computed from the TOV equations for
the hydrostatic equilibrium [26,27]. This justifies the as-
sumption of an explicit analytical dependence of the vari-
able mass, mðrÞ. Consequently, a connection among the
energy density, the particle variable mass, and the particle
density is established. Furthermore, the analysis provides
the necessary conditions to examine the equilibrium
and stability of static, spherically symmetric compact
structures.
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For cosmological scenarios which admit some kind of
mass varying mechanism, the instabilities associated with
an imaginary speed of sound in the NR regime do play a
role in the structure formation. Effectively, the scalar field
mediates an attractive force between the nonbaryonic par-
ticles and may lead to the formation of matter lumps.
Actually, this would induce the combined fluid to form
compact structures which would behave like cold dark
matter. The detection of these compact objects could be
made through their gravitational potential, or through their
effect on baryons. Therefore, the existence of nonbaryonic
matter lumps coupled with baryonic structures like stars or
cold matter should not be discarded [48].

We have also established a direct connection between
the size of neutrino lumps and the neutrino masses.

One interesting property of our solutions is that small
modifications on the potential of the scalar field do not
affect significantly the analysis of equilibrium and stability
conditions.
Our results reinforce the argument that the Higgs [49]

and the neutrino [50] sectors are possibly the only ones
where one can couple a new SM singlet without upsetting
the known phenomenology. We believe that our proposal is
a further concrete step in this respect.
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[24] O. Bertolami and J. Páramos, Phys. Rev. D 72, 123512
(2005).

[25] R. Bean, E. E. Flanagan, and M. Trodden, Phys. Rev. D 78,
023009 (2008).

[26] R. C. Tolman, Phys. Rev. 55, 364 (1939).
[27] J. R. Oppenheimer and G.M. Volkoff, Phys. Rev. 55, 374

(1939).
[28] R. D. Peccei, Phys. Rev. D 71, 023527 (2005).
[29] C. Wetterich, Astron. Astrophys. 301, 321 (1995).
[30] C. Wetterich, Phys. Rev. D 65, 123512 (2002).
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