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We calculate numerically the emissivity and surface flux of electron-electron bremsstrahlung radiation

from the surface of a bare quark star. The restricted electronic phase space due to the presence of an

effective photon mass results in a strong suppression. The emissivity and surface flux are found to be

substantially smaller than those found in previous work, to the point where electron-positron pair

production would remain the dominant mechanism at all temperatures in the relativistic regime. As a

consequence, eþe� pair production remains a dominant process even at low surface temperatures T �
109 K as originally suggested by Usov [V. V. Usov, Phys. Rev. Lett. 80, 230 (1998).].
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I. INTRODUCTION

It has been suggested long ago that the ground state of
matter at large density could be the strange quark matter
rather than hadronic matter as we know it [1–3]. Strange
matter is a high-density phase of QCD consisting of up,
down, and strange quarks plus some electrons (to guarantee
charge neutrality). It is conjectured that it is the ground
state of matter [4,5] (for an overview see, e.g., [6,7]).
Strange matter, in principle, can exist in lumps of arbitrary
size ranging from the size of a nucleus to that of a star. In
particular, bare quark stars could be entirely made of
strange matter. Strange matter could also make up some
dark matter candidates [3,6] (see also a recent proposal
[8,9]). Strange matter could also exist in the cores of
neutron stars whose central densities are high enough to
support the high-density phase of QCD while their crusts
would consist of conventional matter [10–14].

So far definitive proof of the existence of quark stars has
proved elusive because many of their more measurable
parameters such as spin frequency and mass overlap with
neutron stars. The most striking feature that could distin-
guish between quark stars and neutron stars is that quark
stars have no minimum mass as mentioned above. Neutron
stars are gravitationally bound, meaning that gravity bal-
ances out the degeneracy pressure of the nucleons inside. A
consequence is that a stable neutron star must have a mass
above a certain value, otherwise it would blow itself apart.
Quark stars are bound by the strong QCD force, or so-
called ‘‘self-bound.’’ Gravity still plays an important role
in the interior details, especially for the heavier quark stars,
but it is no longer essential for stability [13]. The result is
that quark stars may have arbitrarily low masses. Indeed
‘‘strangelet’’ dark matter candidates are effectively very
small quark stars [6]. The observation of very low mass
pulsars would indicate the existence of quark stars [13,14].
Unfortunately such objects would be very dim and are
unlikely to be detected.

In an attempt to distinguish quark stars and neutron stars
using conventional astronomy (electromagnetic radiation)
in a manner that is less dependent on the details of the
quark matter, radiation from the electrosphere is a natural
field of interest. Two primary radiation mechanisms have
been studied so far. These are electron-positron pair
production [15–18] (eþe�) and electron-electron brems-
strahlung [19,20]. It has been argued [19,20] that brems-
strahlung emission is the dominant source of radiation
from the electrosphere for temperatures 108 K< T <
109 K, while eþe� pair production is subdominant in
this range.
The main goal of the present work is to reexamine the

radiation from the electron-electron bremsstrahlung pro-
cess using a full consideration of the phase-space con-
straints imposed by the degenerate system. The electrons
outside the bare surface of a quark star are highly degen-
erate (� � T). Degenerate electron gasses are filled with
electromagnetic waves in thermodynamic equilibrium. It
results in a large plasma frequency!p [see Eq. (12)] which

behaves as an effective photon mass [21]. This means that
real photons of energy !<!p cannot propagate. The

previous examination of electron-electron bremsstrahlung
by Jaikumar et al. only partially included this effect [19].
Namely the photon energies were restricted, but the addi-
tional restrictions on the electron energies and scattering
angles were neglected. We take into account these effects
and demonstrate that the bremsstrahlung emission is a
subdominant source of radiation even for 108 K< T <
109 K while eþe� pair production remains a dominant
process even for these low temperatures.
The paper is organized as follows. Section II is a short

review of the physical properties of quark stars which will
be essential for our analysis. In Sec. III we specifically
discuss the differences between our computations and the
analysis presented by Jaikumat et al. in Ref. [19]. In
Sec. IV we describe the approximations we have made,
and how the numerical computations are done. In Sec. V
we compute the emissivity while in Sec. VI we estimate the
surface flux. Section VII is our conclusion.*jfcaron@phas.ubc.ca
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II. BASIC PROPERTIES OF QUARK STARS

The phase diagram of high-density QCD has been a very
active area of research in the last few years (for a recent
review see [7] and references therein). There are a number
of possible QCD phases (most of them are color super-
conductors) which describe high-density systems. In most
cases, the high-density phase has a net positive electro-
magnetic charge [6,7,14]. This charge attracts electrons to
maintain overall charge neutrality. The electrons are only
bound by electromagnetic interactions while the quarks are
bound by the much stronger QCD force. Consequently, the
electron cloud that permeates the quark matter also extends
past the edge of the star. The part of the electron cloud that
exists outside of the quark matter is called the electro-
sphere. A canonical electrosphere for a typical quark star
is around 1000 fm thick and contains mostly degenerate
ultrarelativistic electrons [14]. Near the edge of the electro-
sphere, the density has decreased enough that the electrons
are no longer degenerate. At this point the electrons are
also nonrelativistic. The structure of the electrosphere will
play a central role in our discussion because the emission
of radiation occurs exclusively from this region of the star.
The emission of electromagnetic radiation is also the pri-
mary cooling mechanism after the star has cooled suffi-
ciently to be opaque to neutrinos.

This canonical picture of the electrosphere described
above has been questioned recently [22]. Specifically the
authors consider the presence of electromagnetically sus-
pended quark nuggets in the electrosphere. Such nuggets
would weaken the electric field drastically, resulting in a
much less dense electrosphere which extends meters away
from the quark surface. However, more careful analysis
shows that these models are less likely to be realized in
nature than the canonical ones [23]. Therefore, for sim-
plicity, in what follows we assume the standard picture for
the electrosphere as described in the classic quark star
paper by Alcock, Farhi, and Olinto [14].

Whatever the model, quark matter at the densities con-
sidered is opaque to most electromagnetic radiation
[14,24]. Namely, the density is so high that radiation is
strongly attenuated before it can escape. The density pro-
file of the quark matter is thought to be almost discontinu-
ous at the boundary, so that there exists no ‘‘soft quark
matter’’ region which could emit radiation. The electrons
in the electrosphere also attenuate radiation, but because
the densities are much lower, radiation from this region is
not negligible. Detection of quark stars (if they exist) will
most likely be done via radiation coming from this region.

Quark stars may have a crust of normal matter at their
surface [14]. This crust is known to have a maximum mass
[25], but this is enough to completely obscure the quark
surface. In this case, radiation from quark stars would be
nearly indistinguishable from that of neutron stars. At
formation, quark stars are extremely hot with temperatures
on the order of 1011 K [26]. The high temperature allows

neutrinos to escape, blowing away much of the matter that
could form a crust [27], so most quark stars are expected to
be ‘‘bare.’’ There may be exceptions in cases where the
quark star is accreting matter from elsewhere [14], but
these will not be considered. We assume in what follows
that the stars are ‘‘bare quark stars.’’
The sharp boundary between the quark matter and the

electrosphere in bare quark stars results in an extreme
electric field [14]. At zero temperature, this electric field
is strongly screened by the presence of the degenerate
electrons in the electrosphere. At finite temperature how-
ever, the electric field can be above the critical field for the
Schwinger mechanism to spontaneously produce electron-
positron pairs from the vacuum [28]. This is the main idea
behind the result by Usov [15] where it was shown that
eþe� pair production will be the dominant process of
emission for hot quark stars. The produced positrons will
later annihilate with electrons from other pairs or in the
electrosphere. The resulting spectrum is different from that
seen in neutron stars, and could thus serve as a distinguish-
ing feature [16]. The eþe� pair emissivity calculation has
been improved by including effects due to the quark
boundary and magnetic fields [18]. The emissivity in this
case does not differ drastically from that presented in [16],
so its details will not be discussed further.
It is important to emphasize that the resulting radiation

is not constrained to be below the Eddington limit above
which radiation pressure would blow away gravitationally-
bound matter. This is because the quark stars are ‘‘self-
bound’’ objects in contrast with conventional neutron stars
which are bound due to gravity. Therefore, quark stars are
the only large astrophysical objects which can radiate
above the Eddington limit without shedding mass. Indeed
it has been estimated that radiation coming from electron-
positron pair production (mentioned above) in a hot quark
star can achieve luminosities well above the Eddington
limit for days [17].

III. BREMSSTRAHLUNG IN THE
ELECTROSPHERE

The main goal of this section is to describe the differ-
ences between the approach we are advocating in the
present work and the results of the previous work devoted
to the same subject [19]. The main motivation for both
calculations is of course the original observation that eþe�
pair production (and subsequent hard X-ray emission) will
be the dominant process of emission of hot quark stars at
temperatures 8� 108 K< T < 5� 1010 K while thermal
equilibrium radiation dominates at extremely high tem-
peratures T > 5� 1010 K [15]. This could serve as a dis-
tinguishing feature of quark stars. It was expected that at
lower temperatures T < 8� 108 K the eþe� pair produc-
tion along with conventional thermodynamical equilibrium
radiation will still be the dominant processes, though ex-
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plicit analytical computations suffer some uncertainties in
this region.

This result was questioned by Jaikumar et al. [19], who
argued that at temperatures T < 109 K the radiation from
electron-electron bremsstrahlung in the electrosphere ex-
ceeds that of eþe� pair production, drastically changing
the radiation spectrum. It was argued that bremsstrahlung
becomes the dominant process in this range of tempera-
tures. Unfortunately the authors failed to consider all the
implications of the strong electron degeneracy, which led
to an overestimate of the importance of this radiation
mechanism.

In what follows, we qualitatively describe two crucial
elements which eventually lead to different conclusions
from that presented in [19].

A. Restrictions due to !p � 0

The presence of a plasma frequency !p � 0 leads to

suppression of radiation. This is because of phase volume
constraints on the incoming electrons. In order to emit a
photon with energy !>!p, the incoming electrons must

have at least !p of ‘‘excess’’ energy above their chemical

potential, otherwise the final electrons will not find avail-
able energy states since their energies will be below the
chemical potential. The resulting suppression is exponen-
tial with the form expð�!p=TÞ. Typically !p � T for the

regions considered, so the suppression is severe. To illus-
trate the emergence of the suppression, consider an integral
over some restricted one-particle phase volume

Z 1

0

d3p

ð2�Þ3
2

eð���Þ=T þ 1
�ð����!pÞ: (1)

Changing variables to a dimensionless excitation energy
parameter x ¼ ð���Þ=T and taking the ultrarelativistic
and degenerate approximation j ~pj ¼ � ¼ � for the poly-
nomial p2 term, we obtain

�2T

�2

Z 1

!p=T

dx

ex þ 1
: (2)

Since !p > T, we have ex � 1 for all x in the integration

region. The result is

�2T

�2
e�!p=T; (3)

whereas the result without !p is

�2T

�2
ln2: (4)

This one-particle phase volume example illustrates how the
suppression comes about. In this work the calculation is
done numerically so a similar analytical expression for the
suppression of bremsstrahlung when multiple particles
participate cannot be given. However, it is quite obvious
that such an exponential suppression will be always present

when the restriction !>!p is imposed. This generic

suppression factor must be compared with the final result
for the emissivity from Jaikumar et al. when m2=2�e �
T � �e [see Eq. (40) from [19] ]. They obtain for the
emissivity Q� ðN ðT;�eÞÞ2IðT;�eÞ where N ðT;�eÞ �
�3

e while IðT;�eÞ � T=�2
e. Such a nonsuppressed behav-

ior from [19] is in accordance with Eq. (4) when no
restriction is imposed. However, it should be contrasted
with the correct expression given by Eq. (3) when the phase
volume is constrained by !>!p.

A suppression factor for our numeric calculation cannot
be given in analytical form, however the phase volume
constraints imposed by !p � 0 can be stated simply.

Because of the strong degeneracy, only electrons near the
Fermi surface will participate in a given process. This is
taken into account by integrating incoming electron ener-
gies over Fermi distributions nFð�Þ. The outgoing electron
energies must be integrated over ~nFð�Þ � ð1� nFð�ÞÞ.
The additional presence of a plasma frequency compli-

cates things as illustrated above. Not only are the photon
energies restricted to those higher than !p, but the elec-

trons, already hard-pressed to interact due to the lack of
available energy states, must have extra high energy in
order to create the photon. Specifically, the total energy
of the incoming electrons in the lab frame must be suffi-
cient to place the outgoing electrons in empty states and to
create a photon of high enough energy.
The effect is that instead of a naive integration over all

electron energies, the energies are constrained to a certain
region in the �1 � �2 phase space:

ð�1�2 þ�Þj ~p1j2j ~p2j2; (5)

where � ¼ m2 � 1
2 ð!p þ 2�þ 2mÞ2 is a negative

quantity.
Additionally, the angle between incoming electrons is

restricted because electrons which are moving in the same
direction, even at high energies, cannot emit a photon of
high enough energy without violating energy or momen-
tum conservation:

1> cos�12 >
��� �1�2
j ~p1jj ~p2j : (6)

B. Soft photon approximation versus exact
bremsstrahlung

The second difference between the present analysis and
[19] is numerically far less important than the difference
discussed above, but still deserves mention. In the calcu-
lation by Jaikumar et al. of electron-electron bremsstrah-
lung, Low’s theorem [29] for emission of soft photons was
used to simplify calculations and to obtain analytic results.
In this work, the nontrivial restrictions on the phase volume
of the scattering electrons (described above) force us to use
numeric techniques. Therefore, we are able to use an exact
formula for the cross section of the emission of a brems-
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strahlung photon [30] without much complication. The
expression we use is larger than the one used in [19].
The difference can be explained as follows.

Low’s theorem requires that the energy of the emitted
photons be much smaller than any other energy scale in the
system, including momentum transfer between the elec-
trons. This means that two relevant regions of phase space
were neglected: that where emitted photon energy is near
the kinematic boundary, and that where the momentum
transfer between the electrons is small. Because of these
limits imposed by Low’s theorem, the authors eventually
arrive at the final cross section with the a factor of 1=E2 in
it [see Eq. (36) from [19] ]. If the full kinematic phase
space was included there should be no such factor, and the
relevant formula has instead the following behavior: d��
r20 � 1=m2 [see Eq. (7) below].

Typical electron energies are E � � so our cross section
has an overall enhancement above that used by Jaikumar
et al. by a factor � m2=�2. This effect works in the
direction opposite to the effect due to the restriction on
the phase volume discussed in Sec. III A. Numerically the

exponential suppression e�!p=T discussed above is much
stronger than a polynomial enhancement � �2=m2.
Therefore our final results for emissivity are much smaller
than the results presented in [19]. To illustrate, see Fig. 1
where the emissivity is calculated with only the enhance-
ment present and no additional electronic phase-space
constraints from !p.

In this work, an ultrarelativistic cross section for
electron-electron bremsstrahlung is used. It is applicable
in arbitrary frames of reference, provided that the electrons
always remain ultrarelativistic [30]. This is always satisfied

because of the strong degeneracy. The only electrons that
participate are those near the Fermi surface which have
energy � 10 MeV. Equation (7) gives the singly-
differential (in the photon energy) cross section for the
emission of a bremsstrahlung photon with energy !. Each
term corresponds to the emission from each electron sepa-
rately. In the ultrarelativistic approximation, the cross
terms are negligible [31]:

d�

d!
¼ 4r20�

!

�
1� 2

3

�1 �!

�1
þ

�
�1 �!

�1

�
2
�

�
�
ln2�

�1 �!

!
� 1

2

�
þ ð1 $ 2Þ; (7)

where

� ¼ p1 	 p2 � �1�2 � ~p1 	 ~p2: (8)

The cross section above is only a slight generalization of a
textbook result [31]. The calculation is done numerically
because of the complexity of the full cross section, but
more importantly because of the nontrivial restrictions on
the phase volume of the scattering electrons.
In the paper [19], Jaikumar et al. describe the emission

spectrum of electron-electron bremsstrahlung. For photon
energies not near the plasma frequency, they use the text-
book result cross section [31]. For those energies near the
plasma frequency, they use the formula resulting from
applying Low’s theorem. Only in this region are the spectra
different, but they are not appreciably so. The spectrum
will not be dealt with further as we show below that
radiation from electron-electron bremsstrahlung is
negligible.
The calculation by Jaikumar et al. also considered the

inclusion of the Landau-Pomeranchuk-Migdal (LPM) ef-
fect [32]. The LPM effect encompasses multiple scattering
of radiation in high-density matter. This is most important
when the wavelength of the radiation is comparable to or
longer than the spacing of scattering centers. The result is
suppressed emission of low-energy photons. We do not
explicitly include the LPM effect in this work because
the suppression by the phase-space constraints is strong
enough to make electron-electron bremsstrahlung negli-
gible. Inclusion of the LPM effect would simply suppress
it further. More importantly, this suppression is expected to
be numerically similar as discussed previously [19]. It
could therefore be implemented if it is needed.
More recent work [20] refines the calculation of the

electron-electron bremsstrahlung emissivity, including
the LPM effect, surface effects near the quark boundary,
and the strong electric field. Their results do not differ
drastically from that discussed by Jaikumar et al. and
will not be discussed in detail.
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FIG. 1. Emissivity at T ¼ 1010 K. Data points with crosses are
from [19]. Points noted withþ are those calculated in this work.
The upper data points noted with asterisks are ‘‘unsuppressed.’’
These were calculated using the plasma frequency only as a
minimum photon energy, with the full unconstrained phase
volume for the electrons.

JEAN-FRANÇOIS CARON AND ARIEL R. ZHITNITSKY PHYSICAL REVIEW D 80, 123006 (2009)

123006-4



IV. APPROXIMATIONS

In this section we briefly discuss the approximations we
have implemented in our numerics.

The cross section used was calculated in a zero-
temperature vacuum [30]. Ideally the cross section should
be recalculated with proper insertion of inverse Fermi
distributions for the final electron energy integrals. In order
to avoid this tedium, we note that the cross section itself is
slowly varying. This allows the use of an effective degen-
eracy factor of two Fermi distributions ~nFð�Þ, one for each
electron, evaluated at the typical final electron energies at
the Fermi surface (see Sec. V).

Ideally, the final electron energy Fermi distributions
~nFð�Þ together with the energy-momentum conserving
delta function would automatically suppress bremsstrah-
lung from electrons below the Fermi surface. In this case
the outgoing electrons would have even lower energies and
the final states would be mostly filled. Because we ap-
proximate the final state degeneracy with an effective
degeneracy factor, we cannot simply integrate the initial
electron energies from me to infinity. Rather we must
integrate each from �þme to infinity, making sure that
we satisfy the total energy condition, Eq. (5).

The cross section used is only valid for photon energies
not close to the hard boundary of the spectrum [30].
Specifically it is valid for !max �! � m. Thus those
photons near the maximum energy are ignored, but the
cross section in this region is smaller than for lower en-
ergies. The final electrons in this case also have smaller
energies, so the process is further suppressed by the final
state degeneracy. The photons considered still span a much
greater range than that allowed by Low’s theorem.

The plasma frequency acts as an effective photon mass.
This should be reflected by recalculating the cross section
with a massive boson propagator. This effect is a higher
order correction in � and is expected to be small. In
addition, the process involves electrons whose energies
are much higher than the plasma frequency and the inter-
mediate photon is not required to be on shell. This aspect of
the plasma frequency is most important at small momen-
tum transfers between the electrons, but even here we
expect it to be a small effect as it leads to a correction of
order � as explained above.

We should note that some low-energy photons with!<

!p may leave the system if they are produced within

�!�1
p � 10�13 cm of the outer edge of the electrosphere.

The probability for those photons with!<!p to escape is

quite small as the problem is similar to tunneling in quan-
tum mechanics when a low-energy particle can escape
through a high potential barrier by means of tunneling. A
simple estimate of the radiation contribution from such
photons has been performed in the case of quark-quark
bremsstrahlung in the interior of quark stars [24]. There it
is found that the contribution is 10�4 smaller than the
overall blackbody radiation. Similarly, an estimate of the

emissivity contribution from such photons in the electro-
sphere is presented in Appendix A. We find that the con-
tribution is at least 2 orders of magnitude smaller than that
from photons with !>!p. Those few photons which do

manage to escape the electrosphere despite the presence of
the plasma frequency do not contribute much to the overall
emissivity, so they are ignored.

V. EMISSIVITY

The electron-electron bremsstrahlung emissivity is ex-
pressed as the energy radiated per time per volume within
the electrosphere of the star.

Q ¼ 1

2

Z d3p1

ð2�Þ3
d3p2

ð2�Þ3 �ð�1; �2; cos�12Þ2nð�1Þ2nð�2Þ

� ð2~nðEÞÞ2; (9)

where

nð�iÞ ¼ 1

1þ eð�i��Þ=T ; i ¼ 1; 2; (10)

are simply Fermi distributions for the initial electrons,
while the factors of 2 in front of these account for the
multiple electron spin states. The overall factor of 1=2
accounts for the fact that only half of the photons emitted
with energy !>!p can actually escape the star. Even

with high enough energy to propagate, if a photon is
emitted towards the interior of the star, it will not escape.
The function

�ð�1; �2; cos�12Þ ¼
Z !max

!p

!

�
d�

d!

�
d! (11)

contains the first moment of the cross section. It is inte-
grated over photon energies from the plasma frequency
[21]

!p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4��2

3�
þ 4��T2

9

s
; (12)

to the limit of applicability of our cross section as dis-
cussed above. The effective degeneracy factor for the final
electron energies is

~nðEÞ ¼ 1� nðEÞ ¼ 1

1þ eð��EÞ=T ; (13)

where

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~p1jj ~p2jð1� cos�12Þ þm2

4

�
2þ j ~p1j

j ~p2j þ
j ~p2j
j ~p1j

�s

(14)

is the center-of-mass energy. The only relevant angle is
cos�12 which is constrained by Eq. (6) and the energies are
integrated from �þme to infinity according to Eq. (5).
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The integrations are performed numerically using
NUMERICAL PYTHON libraries and a custom wrapper

program.
The emissivity (Fig. 1) is smallest at the edge of the

quark star where the chemical potential is highest. We use a
typical electron chemical potential here of �0 ¼ 10 MeV.
Towards the outer edge of the electrosphere, the chemical
potential drops and the emissivity thus increases due to the
relaxed phase space. This feature is still present in the
previous work, but the effects of the degeneracy were not
fully included.

At a small enough chemical potential, the emissivity
starts to decrease because of lower electron density. This
point (called the photosphere) is resolved near�� 2 MeV
for T ¼ 1010 K. Our ultrarelativistic approximations are
no longer reliable at this point. Nevertheless, the emissivity
varies as expected as a function of the chemical potential.

The result is a severely suppressed emissivity in all
regions of the star for typical temperatures T < 1010 K
which is due to the phase volume suppression as qualita-
tively explained in Sec. III.

VI. SURFACE FLUX

The surface flux of radiation is expressed as the energy
radiated per time per surface area of the quark star. We
must integrate the emissivity along the radial direction
from the bare surface of the quark star (z ¼ 0) to infinity.
The corresponding computations can be easily done nu-
merically in our framework with any profile function for
the chemical potential �ðzÞ. However, in previous work
[19] the authors used a specific profile function to use in
their analytical computations. We duplicate their model
(instead of using a known function which is a solution of
mean field equations) in order to make precise compari-
sons with [19].

Previous work [19] used an effective boundary of z0 �
1000 fm. At a large enough distance the chemical potential
of electrons will be so low that the electrons will no longer
be ultrarelativistic. Including the radiation from this far
region is possible in principle because the density profile is
known in this regime [33]. The density here is low enough
that the inclusion of radiation from this region would not
affect our result for sufficiently high temperatures which is
the subject of the present work, so it is neglected.

As mentioned in Sec. II, modifications to the electro-
sphere that extend it to much larger distances than 1000 fm
[22] will not be discussed in this paper. In addition to the
arguments presented above we should mention that these
changes (even if they exist) will not affect the calculated
flux at sufficiently large temperatures because the modifi-
cations occur in the nonrelativistic, low density regime.

In what follows, we assume that the temperature is
constant for the entire electrosphere because energy trans-
port is very rapid for dense degenerate matter [34]. Here we
use a chemical potential profile used in a previous work

[35]:

�ðzÞ ¼ �0

1þ z�0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�=3�

p : (15)

The surface flux is then

F ¼
Z z0

0
Qdz: (16)

For typical temperatures, the suppression is severe to the
point of making electron-electron bremsstrahlung negli-
gible compared to electron-positron production (see
Fig. 2). At higher temperatures the suppression lessens,
but only well above 1010 K. As we mentioned in Sec. III B
the use of the full kinematic phase space results in some-
what higher emissivity than was obtained using Low’s
theorem in this region. This enhancement however is not
strong enough to approach the electron-positron produc-
tion flux, which also increases with temperature. At these
high temperatures the dominant radiation mechanism be-
comes thermal emission [16], so the comparison of
electron-electron bremsstrahlung and electron-positron
production becomes less relevant.
At much smaller temperatures than we are considering

(T < 108 K) the region of strong degeneracy would extend
all the way to the nonrelativistic region. The radiation
would then come primarily from nonrelativistic electrons.
In this case the analysis could be performed similarly,
using a known profile function which interpolates from
the relativistic to nonrelativistic regime [36]. The cross
section for such computations also should be modified to
include relativistic and nonrelativistic regimes along with
the ultrarelativistic formula [Eq. (7)] used in the present
paper. The results of a nonrelativistic consideration would
also reveal information about the radiative properties of the
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FIG. 2. Surface flux normalized to blackbody flux. �0 ¼
10 MeV, z0 ¼ 1000 fm . The long-dashed line is from [19].
The short-dashed line is the eþe� flux from [17]. The solid line
is the flux calculated in this work. Data points above 1010 K are
coarsely computed because of slow convergence.
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strangelet dark matter candidates [33,36], which are effec-
tively quark stars with a very small mass.

VII. CONCLUSIONS

The presence of a plasma frequency in the degenerate
electron gas in the electrosphere of a bare quark star has
many implications on electron-electron bremsstrahlung
radiation. The restriction of the electronic phase space
beyond the usual degeneracy of the electrons results in a
severe suppression of the emissivity at temperatures below
a few 1010 K.

Full inclusion of photon energies and scattering angles
beyond those permitted when using Low’s theorem does
not significantly increase the emissivity. Consideration of
the entire electrosphere including the nonrelativistic region
would further enhance the emissivity, but it would be a
small contribution at sufficiently high temperatures. The
LPM effect would also suppress the emissivity of low-
energy photons. This effect has been considered previ-
ously, and therefore it is not included in our final expres-
sions. It can be implemented if needed, but the suppression
from the phase volume constraint !p � 0 already reduces

the electron-electron bremsstrahlung so much that the extra
suppression from the LPM effect would be meaningless.

The result is that electron-electron bremsstrahlung is a
negligible radiation mechanism when compared to
electron-positron pair production (with subsequent eþe�
annihilation) at all temperatures considered (T > 108 K.
This is contrary to the conclusion found in a previous
consideration of the same process [19]. Electron-positron
pair annihilation which results in hard X-ray emission has a
very distinct spectrum compared to canonical neutron
stars. This could therefore be a powerful tool to establish
the existence of quark stars and the strange matter
hypothesis.
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APPENDIX: ESTIMATION OF THE
CONTRIBUTION FROMLOW-ENERGY PHOTONS

In this appendix, we demonstrate that photons with
energy less than the plasma frequency do not contribute
much to the overall bremsstrahlung emissivity. A similar
estimate has been presented previously in the case of
quark-quark bremsstrahlung in the interior of a quark star
[24]. There it was found that the emission of such photons
was negligible compared to the overall blackbody radia-
tion, being 4 orders of magnitude smaller.

N0 photons with energy !<!p will be attenuated by

travelling through the electrosphere as

dN

dx
¼ � N

LðxÞ ; (A1)

where N is the number of such photons remaining, x is the
instantaneous position of the photons, and LðxÞ is the
position-dependent mean free path. We use [24]

LðxÞ � 1

2!p

; (A2)

where the plasma frequency [Eq. (12)] gains its position
dependence from the chemical potential [Eq. (15)]. This
leads to a suppression factor of

N

N0
¼ S� exp

�
�
Z z0

z

dz0

cos�Lðz0Þ
�
; (A3)

where now the z0 integral is along the radial direction and �
is the emission angle relative to z0.
In the calculation of emissivity, the only change is in the

quantity � [Eq. (11)] which, to consider the emission of
photons of energy!<!p must be integrated from 0 to!p

with the inclusion of the suppression factor S. All phase-
space constraints will still be present, and we may compare
only these � functions for the sake of simplicity. Since we
anticipate that the emissivity from low-energy photons will
be much smaller than that from the photons of energy !>

!p, we may simplify our expressions in ways that either

make the low-energy photon contribution larger, or high-
energy contribution smaller. One simplification that does
not follow these requirements is that we neglect the tem-
perature in Eq. (12); however this simplification is com-
pletely justified as � � T in all regions considered.
In the case of the suppression factor S, such a simplifi-

cation is necessary because the differential cross section
d�=d! has already been integrated over the photon emis-
sion angle. If we simplify the expression by using the
maximum value of cos�, the suppression is grossly under-
represented. This simplification essentially means that all
photons are taken to be emitted directly radially outwards.
With these simplifications made, the integral in Eq. (A3)

can be performed. The suppression factor is

S�
�
�ðz0Þ
�ðzÞ

�
2:8
: (A4)

The suppression is not exponential because it is expressed
in terms of the chemical potential �ðzÞ and not the radial
distance.
The task remains to show thatZ ð!max�mÞ=�

!p=�
fðxÞdx > S

Z !p=�

0
fðxÞdx (A5)

where fðxÞ is the cross section used (from [31]) with
constant factors cancelled from both sides and expressed
in terms of a dimensionless parameter x ¼ !=�. For sim-
plicity, we will take � ¼ � as a typical value of the
electron energy

BREMSSTRAHLUNG EMISSION FROM QUARK STARS PHYSICAL REVIEW D 80, 123006 (2009)

123006-7



fðxÞ ¼
�
4

3
� 4

3
xþ x2

��
ln

�
4�2

m2

�
1

x
� 1

��
� 1

2

�
: (A6)

As mentioned above, we are free to change fðxÞ ! gðxÞ for
x 2 ½0; !p=�
 as long as gðxÞ> fðxÞ in that region. By

neglecting all negative contributions and maximizing the
leading x2 ! ð!p=�Þ2, we arrive at

gðxÞ ¼
�
4

3
þ

�
!p

�

�
2
�
ln
4�2

m2

1

x
: (A7)

Finally, we may also change fðxÞ ! fmin for x 2
½!p=�; A=�
, where fmin is the minimum value of fðxÞ
in that region. This occurs at a one of the boundaries x ¼
!p=�. We arrive at

fð!p=�ÞA�!p

�
> S

Z !p=�

0
gðxÞdx (A8)

as a weaker but sufficient condition to satisfy the expres-
sion (A5). We find that this relaxed condition is satisfied
quite easily, and that the left side is indeed greater by 1 to 2
orders of magnitude, depending on which part of
the electrosphere is examined. Therefore the low-energy
photons with!<!p which are able to escape the electro-

sphere indeed contribute little to the overall bremsstrah-
lung emissivity.
The reader is reminded that the actual contribution will

be much smaller than 101–102, as the suppression was
grossly underestimated for the sake of simplicity.
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