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We constrain the primordial non-Gaussianity parameter of the local model fNL using the skewness

power spectrum associated with the two-to-one cumulant correlator of cosmic microwave background

temperature anisotropies. This bispectrum-related power spectrum was constructed after weighting the

temperature map with the appropriate window functions to form an estimator that probes the multipolar

dependence of the underlying bispectrum associated with the primordial non-Gaussianity. We also

estimate a separate skewness power spectrum sensitive more strongly to unresolved point sources.

When compared to previous attempts at measuring the primordial non-Gaussianity with WMAP data,

our estimators have the main advantage that we do not collapse information to a single number. When

model fitting the two-to-one skewness power spectrum, we make use of bispectra generated by the

primordial non-Gaussianity, radio point sources, and lensing-secondary correlation. We analyze Q, V, and

W-band WMAP 5-year data using the KQ75 mask out to lmax ¼ 600. Using V and W-band data and

marginalizing over model parameters related to point sources and lensing-secondary bispectrum, our

overall and preferred constraint on fNL is 11:0� 23:7 at the 68% confidence level (� 36:4< fNL < 58:4

at 95% confidence). We find no evidence for a nonzero value of fNL even marginally at the 1� level.

DOI: 10.1103/PhysRevD.80.123005 PACS numbers: 98.70.Vc, 98.80.�k, 98.80.Bp, 98.80.Es

I. INTRODUCTION

The inflationary paradigm has deservedly become a
cornerstone of modern cosmology [1–6]. Inflation solves
the flatness, horizon, and monopole problems of the stan-
dard big-bang cosmology. Furthermore, inflation is the
prevailing paradigm related to the origin of density pertur-
bations that gave rise to the large-scale structure we see
today. It posits that a nearly exponential expansion
stretched space in the first moments of the early universe
and promoted microscopic quantum fluctuations to pertur-
bations on cosmological scales today [7–11]. Inflation
makes detailed predictions for key statistical features of
these fluctuations. These predictions have now begun to be
tested by a range of cosmological observations, including
cosmic microwave background (CMB) temperature anisot-
ropy and polarization.

Recent measurements of the CMB with a variety of
ground, suborbital, and space-based experiments have pro-
vided some of the most stringent tests of inflation (e.g.,
[12,13]). Specifically among the generic predictions of
inflation, recent CMB measurements with the temperature
anisotropy power spectrum and polarization have estab-
lished (1) a nearly flat geometry, (2) a nearly scale-
invariant spectrum at large angular scales, (3) adiabatic
fluctuations, and (4) superhorizon fluctuations through the
temperature-polarization cross spectrum. One major pre-

diction of inflation yet to be verified is the stochastic
background of primordial gravitational waves [6,14,15].
While strong limits are expected from Planck [16], a
detection of the gravitational wave background is the
main focus of a next-generation space-based CMB experi-
ment [17–20].
Some other tests of inflation involve the probability

distribution function and isotropy of the density perturba-
tions generated by inflation. In the standard slow-roll infla-
tionary model, the inflaton, the hypothesized scalar field or
particle responsible for inflation, fluctuates with a minimal
amount of self interactions. In fact, such a small amount of
self interactions ensures that the fluctuations are nearly
Gaussian and that any non-Gaussianity produced would
be too small for detection [21–25]. Non-Gaussianity there-
fore would be a measure of either interactions of the
inflaton [26,27] or any nonlinearities [28,29], and a detec-
tion of non-Gaussianity would indicate a violation of slow-
roll inflation.
In this spirit, models of non–slow-roll inflation or alter-

natives to inflation have been proposed to generate large,
measurable non-Gaussianities. The curvaton mechanism
produces curvature perturbations associated with the fluc-
tuations of a light scalar field whose energy density is zero
[30]. The inhomogeneous reheating scenario can produce
non-Gaussianity through modulated reheating during the
reheating stage [31]. Using multiple inflaton fields that are
allowed to interact, those interactions can be used to source
non-Gaussianity [32]. Lastly, warm inflation [33], ghost
inflation [34], and string theory inspiredD cceleration [35]
and Dirac-Born-Infeld inflation [36] models also give rise
to a large non-Gaussianity (see review in Ref. [37]).
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To connect with observable measurements, the associ-
ated non-Gaussianity of the CMB can be described in
terms of the second-order correction to the curvature per-
turbations in position space with

�ðxÞ ¼ �LðxÞ þ fNL½�2
LðxÞ � h�LðxÞi2�; (1)

where the non-Gaussianity parameter fNL describes the
amplitude of the second-order correction. This form was
first suggested by Salopek and Bond [28,38] to describe the
non-Gaussianity in primordial perturbations from inflation
and has been the subject of experimental constraints using
a variety of CMB and large-scale structure data in recent
years.

Instead of constraints on the non-Gaussianity parameter
in the position space, recent studies make use of the
bispectrum involving a three-point correlation function in
Fourier or multipole space. The configuration dependence
of the bispectrum Bðk1; k2; k3Þ with lengths (k1; k2; k3) that
form a triangle in Fourier space can be used to separate
various mechanisms for non-Gaussianities, depending on
the effectiveness of the estimator used. To summarize the
status of the non-Gaussianity measurements, an analysis
with WMAP 3-year data first suggested a hint of a non-
Gaussianity in the local model with 27< fNL < 147 [95%
confidence level (CL)], far above the value of fNL < 1
expected in simple, single field, slow-roll inflation models
[39]. The WMAP team’s preferred measurement of a non-
Gaussianity parameter in 5-year V- and W-band data is
�9< fNL < 111 (95% CL) [12]. The most recent con-
straint on fNL comes from studying the WMAP 5-year data
with an optimal estimator leading to�4< fNL < 80 (95%
CL) [40]. At the 68% confidence level, with a value of
fNL ¼ 38� 21, there is still some marginal evidence for a
nonzero value of the non-Gaussianity parameter. If such a
result continued to hold with Planck, which increases the
precision of the fNL measurement by a factor of 3 to 4, then
our simple inflationary picture would need to be revised to
include a more complex model.

In this paper, we will pursue a new measurement of the
primordial non-Gaussianity parameter with a new estima-
tor that preserves some angular dependence of the bispec-
trum. On the contrary, the estimators employed by most
CMB non-Gaussianity studies, including those by the
WMAP team [12], involve a measurement that compresses
all information of the bispectrum to a single number called
the cross skewness computed with two weighted maps.
Such a drastic compression limits the ability to study the
angular dependence of the non-Gaussian signal and to
separate any confusing foregrounds from the primordial
non-Gaussianity. In addition to galactic foregrounds, non-
Gaussianity measurements could also be contaminated by
unresolved point sources, mainly radio and dusty galaxies,
and Sunyaev-Zel’dovich (SZ) clusters, among others [41].
Given the increase in size of CMB data, especially with

Planck, it is also necessary to develop accurate measure-
ment techniques to extract fNL that are unbiased.
Our estimator for non-Gaussianity uses a weighted ver-

sion of the squared temperature-temperature angular power
spectrum [42,43], which we refer to as the skewness power
spectrum. This power spectrum extracts information from
the bispectrum as a function of the multipole of one
triangle length in the harmonic space, while summing all
configurations given by the other two side lengths. The
difference in spatial dependence based on how the maps
are weighted provides ways to separate primordial non-
Gaussianity from that of the foregrounds. Here, we account
for both point source and lensing bispectra with latter
resulting from the correlation of the lensing potential
with secondary anisotropies [44,45].
To summarize our main results, after marginalizing over

the normalizations of point source and lensing-secondary
bispectra, with the combination of V- and W-band maps,
we are able to constrain fNL ¼ 11:0� 23:7 at the 68%
confidence level or �36:4< fNL < 58:4 at the 95% con-
fidence level. We find that fNL is never incompatible with
zero at 68% confidence when fNL is estimated in indepen-
dent bins of width 200 between 2< l < 600. We find a
significant contribution from unresolved point sources, but
failed to detect the lensing-secondary cross-correlations
using the two statistics we considered here.
In Sec. II, we review the background theory, and in

Sec. III, we review the estimator used and our simulation
procedure to compute the uncertainties. In Sec. IV, we
discuss our methods for analyzing and simulating data.
In Sec. V, we discuss our results. In Sec. VI, we conclude
with a summary of our results.

II. THEORY

To begin, we define multipole moments of the tempera-
ture map through

alm ¼
Z

dn̂Tðn̂ÞYm�
l ðn̂Þ: (2)

The angular power spectrum and bispectrum are defined in
the usual way such that

ha�l1m1
al2m2

i ¼ �D
l1l2

�D
m1m2

Cl1 ; (3)

hal1m1
al2m2

al3m3
i ¼ l1 l2 l3

m1 m2 m3

� �
Bl1l2l3 : (4)

Here, the quantity in parentheses is the Wigner-3j symbol.
The orthonormality relation for Wigner-3j symbol implies

Bl1l2l3 ¼
X

m1m2m3

l1 l2 l3
m1 m2 m3

� �
hal1m1

al2m2
al3m3

i: (5)

The angular bispectrum Bl1l2l3 contains all the information

available from the three-point correlation function. For
example, the skewness, the pseudocollapsed three-point
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function of Ref. [46] and the equilateral configuration
statistic of Ref. [47] all can be expressed as linear combi-
nations of the bispectrum terms (see Ref. [29] for explicit
expressions and Ref. [48] for an expression relating skew-
ness in terms of the bispectrum).

A. Primordial non-Gaussianity

Here, we focus on the local form of the primordial non-
Gaussianity. Using the second-order correction to the cur-
vature perturbations � in Eq. (1) and following the deri-
vation in Ref. [38], we write the non-Gaussian (NG)
angular bispectrum of temperature anisotropies as

BNG
l1l2l3

¼ 2Il1l2l3

Z 1

0
r2dr½�l1ðrÞ�l2ðrÞ�l3ðrÞ þ ðPerm:Þ�;

(6)

where

Il1l2l3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s
l1 l1 l3
0 0 0

� �
; (7)

and r is the comoving radial coordinate.
The two functions in BNG

l1l2l3
are given by

�lðrÞ � 2

�

Z
k2dkgTlðkÞjlðkrÞ; (8)

�lðrÞ � 2

�

Z
k2dkP�ðkÞgTlðkÞjlðkrÞ: (9)

Here, P�ðkÞ / kns�4 is the primordial power spectrum
of Bardeen’s curvature perturbations, and gTlðkÞ is the
radiation transfer function that gives the angular power
spectrum as Cl ¼ ð2=�ÞR k2dkP�ðkÞg2TlðkÞ. In Fig. 1, we

show four example cases of �ðrÞ and �ðrÞ. We generate
them using a modified version of the CMBFAST code [49]
and for our fiducial cosmological parameter values, con-
sistent with WMAP 5-year best-fit model, as summarized
in Table I.

B. Unresolved point sources

In addition to the primordial bispectrum, we also ac-
count for the non-Gaussianity generated by unresolved
radio point sources. If the sources are Poisson distributed,
the bispectrum takes a simple form [38] with

BPS
l1l2l3

¼ Il1l2l3bps; (10)

where

bps ¼ g3ðxÞ
Z Sc

0
S3

dn

dS
dS; (11)

where dn=dS is the number counts of sources, and gðxÞ
maps flux density to thermodynamic temperature with
gðxÞ ¼ c2ðex � 1Þ2=2kB�2x2ex with x ¼ h�=kBTCMB �
�=56:84 GHz. This conversion can be simplified to gðxÞ ¼

�K=ð99:27 Jy sr�1Þðex � 1Þ2=x4ex. When model fitting to
data, we will ignore the exact number counts of the unre-
solved sources and parametrize the uncertainty with an
overall normalization

FIG. 1 (color online). �lðrÞ and �lðrÞ with respect to l for r
values defined as followed: r ¼ cð	0 � a	Þ, where 	0 is the
present day conformal time and c	 ¼ 235 Mpc. In these plots,
a ¼ 0:04, 0.4, 1.0, and 1.8.

TABLE I. Cosmological and noise parameters used in our
analysis. The first set is our fiducial cosmology model taken to
be consistent with WMAP 5-year best-fit cosmology [12]. The
second set of numbers is the normalization parameters related to
the instrumental noise in each of the three frequency bands used
for the analysis. fsky is the fraction of sky unmasked by KQ75

mask.

Parameter Value

H0 71:9 km=s=Mpc
�bh

2 0.02273

�ch
2 0.1099

ns 0.963

	 0.087

�2
R 2:41� 10�9

�0 for Q 2.197 mK

�0 for V 3.133 mK

�0 for W 6.538 mK

fsky 0.718
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bips ¼ Ai � 10�25 sr2; (12)

where the index i is for the three bands fromWMAP (Q, V,
and W) we use here.

Here, we only account for the shot-noise contribution
from point sources, similar to the analysis of non-
Gaussianity measurements by the WMAP team. It is likely
that unresolved point sources are clustered on the sky,
though existing WMAP data with measurements at the
two-point function level only lead to an upper limit on
the clustering amplitude of point sources [50]. In the
future, especially for a non-Gaussianity measurement
with Planck, it may be necessary to include the bispectrum
generated by clustered point sources.

C. CMB lensing-secondary correlation

The gravitational lensing effect of the CMB also gen-
erates a bispectrum through correlations of the lensing
potential with secondary anisotropies that are generated
at late times [44,45,51].

To understand this signal, we note that the lensed tem-
perature fluctuation in a given direction is the sum of the
primary fluctuation in a different direction plus the sec-
ondary anisotropy

Tðn̂Þ ¼ TPðn̂þr�Þ þ TSðn̂Þ
� X

lm

½ðaPlm þ aSlmÞYm
l ðn̂Þ þ aPlmr�ðn̂Þ � rYm

l ðn̂Þ�;

(13)

or

alm ¼ aPlm þ aSlm

þX
l0m0

aPl0m0
Z

dn̂Ym�
l ðn̂Þr�ðn̂Þ � rYm0

l0 ðn̂Þ: (14)

Using the definition of the bispectrum in Eq. (5), we obtain

Blens- sec
l1l2l3

¼ X
m1m2m3

l1 l2 l3

m1 m2 m3

 !Z
dm̂

Z
dn̂Ym2�

l2

� ðm̂ÞYm3�
l3

ðn̂ÞCl1rYm1�
l1

ðm̂Þ � hr�ðm̂ÞTSðn̂Þi
þ Perm:; (15)

where the extra five permutations are with respect to the
ordering of (l1; l2; l3).

Integrating by parts and simplifying further leads to a
bispectrum of the form

Blens- sec
l1l2l3

¼ � l1 l2 l3

0 0 0

 ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2l3 þ 1Þ

4�

s

�
�
l2ðl2 þ 1Þ � l1ðl1 þ 1Þ � l3ðl3 þ 1Þ

2
Cl1b

S
l3

þ Perm:

�
: (16)

When calculating the CMB lensing potential-secondary
anisotropy cross-correlation bSl , we will include both the

integrated Sachs-Wolfe (ISW) and the SZ effects, with the
latter modeled using the halo approach [52–54]. We will
take the sum of the two effects such that bSl ¼ bISWl þ bSZl .

The cross-correlation between the lensing potential and
ISW is calculated in the standard way [55,56] for the
fiducial � cold dark matter cosmological model, using
only the linear theory potential. For the lensing-SZ corre-
lation, the linear halo model takes into account the SZ
profile obtained analytically in Ref. [57] combined with
the halo mass function similar to calculations of the SZ
angular power spectrum. When model fitting the data, we
will parametrize the overall uncertainty with a parameter

i for each of the WMAP bands such that Blens- sec

l1l2l3
/ 
i.

While lensing modification to CMB bispectrum alone is
not expected to make a significant correction to the non-
Gaussianity measurement, analytical calculations of the
lensing effect on the CMB bispectrum suggest that the
lensing-secondary correlation will be the main contamina-
tion to a reliable measurement of the primordial non-
Gaussianity parameter [41,58–60]. This includes the
lensing-ISW effect, since SZ can be ‘‘cleaned out’’ in
multifrequency data such as those expected from Planck
[48,61]. It is due to this reason that we include the lensing-
secondary correlation here.

III. ESTIMATORS OF fNL

We will now motivate a new estimator for measuring
fNL. For this we introduce the squared temperature-
temperature angular power spectrum and discuss its use
as a probe of the angular bispectrum. We motivate a new
estimator by revising the original form in Ref. [42].
Through the expansion of the temperature

Tðn̂Þ ¼ X
almY

m
l ðn̂Þ; (17)

we can write

a2lm ¼
Z

dn̂T2ðn̂ÞYm�
l ðn̂Þ: (18)

We emphasize here that a2lm denotes the multipole mo-

ments of the temperature squared map and not the square
of the multipole moments of the temperature map.
We can now construct the angular power spectrum of

squared temperature and temperature as

C2�1
l ¼ 1

2lþ 1

X
m

a2lma
�
lm: (19)

After some tedious, but straightforward algebra, we can
write the relation between the bispectrum of the tempera-
ture field and the angular power spectrum of squared
temperature and temperature as
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C2�1
l ¼ 1

2lþ 1

X
l1l2

Bl1l2l
l1 l2 l
0 0 0

� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4�

s
: (20)

Here, we have made use of the relation

X
m1m2

l1 l2 l
m1 m2 m

� �
l1 l2 l0
m1 m2 m0

� �
¼ �D

ll0�
D
mm0

2lþ 1
: (21)

As it is clear, C2�1
l sums up all triangle configurations of

the bispectrum at each of the side lengths l of the triangle in
multipolar space.

If a priori known that certain triangular configurations
contribute to the bispectrum significantly, one can compute
this sum by appropriately weighting the multipole coeffi-
cients. This is essentially what can be achieved with the
introduction of an appropriate weight or a window function
in Eq. (18). Though the analytical expression for the two-
to-one angular power spectrum involves a sum over the two
sides of the angular bispectrum, the experimental measure-
ment is straightforward: one constructs the power spectrum
by squaring the temperature field, in real space, and using
the Fourier transforms of squared temperature values and
the temperature field, with any weighting as necessary.

This simple form of the skewness power spectrum has
already been used by Szapudi and Chen [62] to constrain
fNL ¼ 22� 52 (1�) with WMAP 3-year data. The form of
the skewness power spectrum as written exactly in Eq. (20)
is not useful for a primordial non-Gaussianity measure-
ment. We describe how to filter data for a measurement of
primordial non-Gaussinity below.

A. Skewness estimator

To obtain a more useful form, it is useful to review the
form of the skewness statistic employed by the WMAP
team, which is originating from Ref. [63]. The skewness
statistic makes use of two set of maps of the CMB sky as a
function of the radial distance r:

Aðr; n̂Þ � X
lm

Ylmðn̂ÞAlmðrÞ; (22)

Bðr; n̂Þ � X
lm

Ylmðn̂ÞBlmðrÞ; (23)

where

AlmðrÞ � �lðrÞ
Cl

blalm; (24)

BlmðrÞ � �lðrÞ
Cl

blalm: (25)

Here, Cl � Clb
2
l þ Nl where bl are the frequency depen-

dent beam transfer functions, and Nl is the power spectrum

from associated simulated noise maps. We discuss both of
these quantities later.
In A and B maps, weights are such that they are con-

structed from the theoretical CMB power spectrum Cl

under the assumed cosmological model, the experimental
beam bl, and the primordial non-Gaussianity projection
functions �lðrÞ and �lðrÞ, where �lðrÞ and �lðrÞ are de-
fined in Eqs. (8) and (9).
The WMAP team’s estimator [63] uses an integration in

the radial coordinate to obtain the skewness of the product
of the A and B2 maps

S3 �
Z

r2dr
Z

dn̂Aðr; n̂ÞB2ðr; n̂Þ: (26)

In practice, this skewness is corrected by an additional
linear term that corrects approximately the effects of par-
tial sky coverage associated with the mask and nonuniform
noise. This term is computed by combining observed map
with simulated maps that are Monte-Carlo averaged (see
Appendix A of Ref. [12]).
As it is clear from above, S3 involves a complete com-

pression of data to a single number. While in principle
different sources of non-Gaussianities contribute to S3 with
a single number alone, it is impossible to separate out the
primordial value from the non-Gaussianities generated by
secondary anisotropies and other foregrounds. To some
extent, the separation is aided by a different set of maps
that are weighted differently than the case of A and Bmaps.
A map optimized for the non-Gaussianity of the form

generated by shot-noise from point sources is the E map:

Eðn̂Þ � X
lm

Ylmðn̂ÞElmðrÞ; (27)

where

ElmðrÞ � bl
Cl
alm: (28)

Similar to S3, one can also compute a skewness associated
with E maps by taking SE3 ¼ R

dn̂E3ðn̂Þ. The WMAP
team used the latter to constrain the normalization of the
point source Poisson term with bps.

B. Revised skewness power spectrum

In order to revise the previously discussed skewness
power spectrum, instead of simply integrating over the A
and B2 maps, we extract the multipole moments of the B2

map and the product AB maps

ðB2ÞlmðrÞ �
Z

dn̂B2ðr; n̂ÞYlmðn̂Þ;

ðABÞlmðrÞ �
Z

dn̂Aðr; n̂ÞBðr; n̂ÞYlmðn̂Þ:
(29)

These two multipole moments then allow us to write the
new skewness power spectrum appropriately weighted in
the same manner as the previous skewness estimator [43]:
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C2�1
l � ðCA;B2

l þ 2CAB;B
l Þ;

CA;B2

l � 1

2lþ 1

Z
r2dr

�X
m

RealfAlmðrÞðB2ÞlmðrÞg
�
;

CB;AB
l � 1

2lþ 1

Z
r2dr

�X
m

RealfBlmðrÞðABÞlmðrÞg
�
:

(30)

To see how C2�1
l probes the primordial bispectrum, we

can write the multipole moments of the squared B map as

ðB2ÞlmðrÞ ¼
X
l0m0

X
l00m00

�l0 ðrÞ
Cl0

�l00 ðrÞ
Cl00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4�

s

� l l0 l00

0 0 0

 !
l l0 l00

m m0 m00

 !
a0l0m0a0l00m00 ; (31)

where a0lm are the beam times the observed multipole mo-

ments (blalm). Note that the observed multipole moments
relate to theory moments via another beam factor.

Similarly, the multipole moments of the (AB) product
map is

ðABÞlmðrÞ¼
X
l0m0

X
l00m00

�l0 ðrÞ
Cl0

�l00 ðrÞ
Cl00

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ1Þð2l0 þ1Þð2l00 þ1Þ

4�

s

� l l0 l00

0 0 0

 !
l l0 l00

m m0 m00

 !
a0l0m0a0l00m00 : (32)

The CA;B2

l power spectrum is simply then

CA;B2

l ¼ 1

2lþ 1

Z
r2dr

X
m

X
l0m0

X
l00m00

�l0 ðrÞ
Cl0

�l00 ðrÞ
Cl00

�lðrÞ
Cl

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4�

s
l l0 l00

0 0 0

 !

� l l0 l00

m m0 m00

 !
a0lma

0
l0m0a0l00m00 : (33)

Using the definition of the angular bispectrum, we can
simplify to obtain

CA;B2

l ¼ 1

2lþ 1

Z
r2dr

X
l0l00

�l0 ðrÞ
Cl0

�l00 ðrÞ
Cl00

�lðrÞ
Cl

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2l00 þ 1Þ

4�

s

� l l0 l00

0 0 0

 !
B̂0
ll0l00blb

0
lb

00
l ; (34)

where B̂0
ll0l00 is the bispectrum estimated from data under

beam smoothing. It relates to the theory bispectrumBll0l00 as

B̂0
ll0l00 ¼ Bll0l00blb

0
lb

00
l .

We can similarly simplify the term for CAB;B
l and by

putting the two terms together, we find that the total is

C2�1
l � ðCA;B2

l þ 2CAB;B
l Þ

¼ 1

ð2lþ 1Þ
�X
l0l00

�
BNG;fNL¼1
ll0l00 B̂0

ll0l00blb
0
lb

00
l

ClCl0Cl00

��
: (35)

If we assume that the observed bispectrum is simply that

of the primordial non-Gaussianity, then B̂ll0l00 ¼ f̂NLB
NG
ll0l00

and we can write an estimator for fNL as

f̂ NL ¼ ð2lþ 1ÞC2�1
l =FNG;NGðlÞ; (36)

where FNG;NGðlÞ is simply the Fisher matrix element for the

primordial bispectrum with fNL ¼ 1:

Fi;jðlÞ ¼
X
l0l00

�
Bi
ll0l00B

j
ll0l00

C0lC0l0C0l00

�
; (37)

where now we have redefined noise to be such that C0l ¼
Cl þ Nl=b

2
l as the bispectra are no longer beam smoothed.

In reality, C2�1
l includes contributions from secondary

anisotropies and foregrounds. Here, we include the non-
Gaussianities generated by point sources and the lensing-
secondary correlation. Thus, we write

ð2lþ 1ÞĈ2�1
l ¼ f̂NLFNG;NGðlÞ þ ÂFNG;PS þ 
̂FNG;len- sec

(38)

and consider a joint estimation of the three unknown
parameters.
To help break degeneracies between the three parame-

ters, we also estimate the skewness power spectrum of the
E map defined in Eq. (27) as

CE;E2

l � 1

2lþ 1

�X
m

RealfElmðE2Þlmg
�
: (39)

Similar to our derivation above, one can simplify the
multipole moments of the ðE2Þlm to show that this probes

E2�1
l � CE;E2

l ¼ 1

ð2lþ 1Þ
�X
l0l00

�
B
PS;bps¼1

ll0l00 B̂0
ll0l00blb

0
lb

00
l

ClCl0Cl00

��
:

(40)

Thus, we write

ð2lþ 1ÞÊ2�1
l ¼ f̂NLFPS;NGðlÞ þ ÂFPS;SN þ 
̂FPS;lens- sec:

(41)

The two Eqs. (38) and (41) will form the main set of
equations that we will solve with our measurements. While
we have not explicitly stated so far, these two quantities
will be measured in 3 WMAP frequency channels making
use of Q, V, and W-band data. We allow for frequency
dependence in A and 
, but assume fNL is the same
independent of the frequency in all three channels.
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C. Approximate corrections for partial sky

Before we move onto discuss data analysis and our
simulations to compute the covariances, we note that we
also make a correction to both C2�1

l and E2�1
l to account

for partial sky coverage and inhomogeneous noise. This is
done in an approximate manner by making use of the
equivalent form of the linear terms of the skewness statistic
in the language of our skewness power spectrum. For the
case of the C2�1

l estimator, the correction is derived in

Ref. [43]:

C2�1
l ¼ 1

fsky
fCA;B2

l � 2ChA;BiB
l � CA;hB2i

l g

þ 2

fsky
fCAB;B

l � ChABi;B
l � CBhA;Bi

l � CAhB;Bi
l g; (42)

where fsky is the sky fraction observed. The new terms are

defined as, for example,

CBhA;Bi
l ðrÞ ¼ 1

Nð2lþ 1Þ
X
i

X
m

fðBDASÞilmðrÞðBSÞilmðrÞg;

(43)

where i runs over a set of N simulations, and ðBDASÞilm are

the coefficients of spherical harmonics for the map pro-

duced by multiplying the ith simulated A map with the B
map derived from raw data.
Similarly, for E2�1

l we find

E2�1
l ¼ 1

fsky
fCE;E2

l � CE;hE2i
l � 2ChE;EiE

l g; (44)

where terms such as CE;hE2i
l can be written similar to

Eq. (43) above with the replacement of E maps instead
of A and B maps.

D. Theoretical expectation

In Figs. 2 and 3, we show the theoretical expectations for
C2�1
l and E2�1

l , respectively. We plot these for the Q, V,
and W band by making use of the beam functions bl and
noise power spectrum estimate Nl that are described in
Sec. . Here, we show the cases of primordial non-
Gaussianity with fNL ¼ 1, point sources with Ai ¼ 1,

FIG. 2 (color online). Contributions to C2�1
l expected from

primordial non-Gaussianity and unresolved point sources. We
show the case with fNL ¼ 1 for primordial non-Gaussianity
(top), shot-noise from unresolved point sources with bips ¼ 1

(middle), and lensing-secondary signal with 
i ¼ 1 (bottom).

FIG. 3 (color online). Contributions to E2�1
l expected from

primordial non-Gaussianity and unresolved point sources. We
show the case with fNL ¼ 1 for primordial non-Gaussianity
(top), shot-noise from unresolved point sources with bips ¼ 1

(middle), and lensing-secondary signal with 
i ¼ 1 (bottom).
Note the large difference in the y-axis scale from the top curve
involving primordial non-Gaussianity to middle and bottom
curves with point sources. As is known, the skewness power
spectrum associated with E maps is more sensitive to shot-noise
bispectrum from point sources.

MEASUREMENT OF PRIMORDIAL NON-GAUSSIANITY . . . PHYSICAL REVIEW D 80, 123005 (2009)

123005-7



and lensing-secondary cross-correlation with bSl calculated
for the sum of ISW and SZ effects with 
i ¼ 1.

As it is clear from Fig. 2, the primordial non-Gaussianity
signal is expected to be degenerate with foreground non-
Gaussianities. The shape of C2�1

l alone is not enough to

clearly separate the primordial non-Gaussianity signal
from point source and lensing non-Gaussianities.
Fortunately, the separation is aided whenC2�1

l is combined

with E2�1
l . As it is clear from Fig. 3 (especially note the

difference in the y axis range for the top and middle plots),
this latter power spectrum allows a better determination of
the point sources. In practice, we perform a combined
analysis of both spectra, including the confusion from
secondary bispectra, when model fitting to quantities,
fNL, Ai, and 
i. To compare with previous results on the
literature related to the non-Gaussianity parameter with
WMAP data using the effects of point sources only, we
also consider the case where lensing is ignored in the
analysis.

In Fig. 4, we include a plot of the F�1=2
NG;NGðlÞ, showing the

expected error fNL as a function of the multipole for Q, V,
andW bands. Out to lmax of 600 and with fsky ¼ 0:718, the

Carmer-Rao bound is at the level of 	21 with V band to
	23 with Q band. This assumes that the bispectrum only
contains primordial non-Gaussianity, but the degeneracy
between secondary non-Gaussian signals and primordial
non-Gaussianity is expected to increase the optimal error at
some level more than this bound. Also, to saturate the
Cramer-Rao bound, an optimal estimator that accounts

for the mode-mode correlations associated with the partial
sky and the mask will become necessary [40]. Our estima-
tor only accounts for the cut-sky approximately making use
of the linear terms. We also weight each multipole coeffi-
cient with ðClb

2
l þ NlÞ�1, as in the case of Gaussian sta-

tistics appropriate for the whole sky. While this approach is
not different from that of the WMAP team’s [12], in an
upcoming paper we hope to return to the issue of an exact
calculation implementing the full covariance for the two-
to-one skewness power spectrum.

IV. DATA ANALYSIS

We first discuss our data analysis procedure and then
how we computed the covariance through simulations.

A. Measurement of C2�1
l and E2�1

l

To extract C2�1
l and E2�1

l from data, we use the raw

WMAP 5-year Stokes-I sky maps for the Q, V, and W
frequency bands as available from the public lambda web-
site.1 We use Healpix2 [64] to analyze the maps.
Specifically, starting from the fits files of raw maps, we
use anafast, masking with the KQ75 mask and without an
iteration scheme, to generate multipole coefficients (alms)
for each frequency map out to lmax ¼ 600. We will refer to
these multipole moments hereafter as aDlm. With these

definitions, we use Eqs. (24), (25), and (28) to generate
Alm, Blm, and Elm by substituting aDlm in place of alm.
Our recipe for obtaining C2�1

l and E2�1
l is

(1) Use Healpix and the KQ75 mask to generate aDlm
from the WMAP 5-year Stokes-I sky maps for the
Q, V, and W frequency bands.

(2) Obtain Aðr; n̂Þ, Bðr; n̂Þ, and Eðn̂Þ from Eqs. (24),
(25), and (28) by using �ðrÞ and �ðrÞ from Eqs. (8)
and (9), respectively, with the replacement of alm
with aDlm. Figs. 5–7, show the resulting maps.

(3) Calculate CA;B2

l , CB;AB
l , and the linear terms from

Eqs. (30) and (42), respectively, with latter using
equations of the form (43). Repeat the same to

obtain CE;E2

l with E maps as defined in Eq. (39)

and the corresponding equations for linear terms in
Eq. (44). This correction associated with partial sky
coverage involves the use of simulated maps de-
scribed below. We integrate over r from 	 ¼ 0:004
to 2 with 500 steps. (see Fig. 1).

(4) Use the estimatedC2�1
l and E2�1

l withWMAPQ, V,
andW maps for our parameter estimate analysis (see
below).

(5) Compute analytically Fij terms with lmax ¼ 600 in

each of the summations of l1 and l2 and making use
of the noise and beam spectra for WMAP (see
below).

FIG. 4 (color online). Expected error for fNL calculated based
on the Fisher matrix approach for each of the three noise curves
for the WMAP in Q, V, and W bands and with fsky ¼ 0:718

when using KQ75 mask. The Cramer-Rao bound ranges from
about 	21 in V band to 	23 in Q band. This estimate assumes
that only the primordial non-Gaussianity signal is present in the
bispectrum and ignores the degeneracies between primordial
non-Gaussianity and other parameters, such as those related to
unresolved point sources.

1http://lambda.gfsc.nasa.gov
2For more information see http://healpix.jpl.nasa.gov
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FIG. 5 (color online). A maps for V frequency band. From
upper left hand corner moving clockwise: 	 ¼ 0:04, 0.4, 1.0, 1.8.

FIG. 6 (color online). B maps for V frequency band. From
upper left hand corner moving clockwise: 	 ¼ 0:04, 0.4, 1.0, 1.8.
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In Fig. 8, we see the C2�1
l for each WMAP frequency

band plotted as a function of l. These plots were generated
by binning the estimators with �l of 40 and plotting the
midpoint of each bin. The V and W estimators have
roughly the same shape and are mostly positive. The Q
estimator is noticeably different, dropping negative when
l > 300.

Furthermore, in Fig. 8, we see E2�1
l for each WMAP

frequency band plotted as a function of l. Like the estima-
tors mentioned above, these were similarly binned in bins
of size �l ¼ 40.

Lastly, in Figs. 9 and 10, we see the contributions to
C2�1
l and E2�1

l from each term in Eqs. (42) and (44),

respectively. The linear terms are not very significant

compared to the other terms. Nevertheless, they are still
considered in this analysis.

B. Simulations of A, B, and E maps

In order to do proper statistics for C2�1
l and E2�1

l , we

create 250 simulated maps at eachWMAP frequency band.
To do so, we first produce 250 Gaussian maps to model the
CMB sky. For the Gaussian maps, we runthe synfast rou-
tine of Healpix with an in-file representing the WMAP 5-
year best-fit CMB anisotropy power spectrum and generate
maps with information out to l ¼ 600. We then use anafast,
without employing an iteration scheme, masking with the
KQ75 mask, to produce alms for the Gaussian maps out to
l ¼ 600. We will refer to these alms now collectively as
aGlm.

1. Noise

In addition to these Gaussian maps, we create 250 noise
maps for each of our frequency bands: Q, V, and W. We
generate these maps from white noise with mean ¼ 0 and
standard deviation ¼ 1 taking into account �0 and NObs as
follows:

Nðn̂Þ ¼ �0ffiffiffiffiffiffiffiffiffi
Nobs

p nðn̂Þ; (45)

where Nðn̂Þ is our noise map, nðn̂Þ is a map made of pure

FIG. 7 (color online). E maps for Q, V, and W frequencies.

FIG. 8 (color online). C2�1
l (top) E2�1

l (bottom) for Q, V, and
W with the measured spectra binned with a width of �l ¼ 40.
The error bars for V and W are also shown.
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white noise, Nobs is the number of observations per pixel,
and �0 is the root mean sqaure noise per observation. We
use the frequency dependent Nobs for each point in the sky
provided by the WMAP 5-year Stokes-I map fits files and
take �0 ¼ 2:197, 3.133, and 6.538 mK as established by
the WMAP team for Q, V, and W band 5-year data,
respectively [65,66]. See also Table I.

Starting with these noise maps, we create alms using
anafast with the KQ75 mask with no iteration scheme out
to l ¼ 600. We will henceforth refer to these alms collec-
tively as aNlm. Furthermore, to calculate the power spectrum

from these noise maps, we use Healpix to evaluate the
analytical expression

Nl ¼ �pix

Z d2n̂

4�fsky

�2
0Mðn̂Þ

Nobsðn̂Þ ; (46)

where�pix � 4�=Npix is the solid angle per pixel,Mðn̂Þ is
the KQ75 mask, and fsky ¼ 0:718 is the fraction of sky

retained by the KQ75 mask [12]. Figure 11 shows the
power spectrum from our simulated noise maps for each
frequency compared to the analytical values quoted by the
WMAP 5-year team [12]. For reference, the beam func-
tions bil are plotted in Fig. 12.

To use our estimator on the simulated maps, we must
add the noise to the Gaussian maps while at the same time

FIG. 9 (color online). Contributions to C1�2
l for Q, V, and W

maps.

FIG. 10 (color online). Contributions to E1�2
l for Q, V, and W

maps.

FIG. 11 (color online). The noise power spectrum from our
masked simulated noise maps for the Q, V, and W frequency
bands compared with the analytical results from the WMAP 5-
year team.
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correcting for the beam. To do this, we work in multipole
space where we construct the total simulated aSlm �
aGlmbl þ aNlm, where bl are the frequency dependent beam

transfer functions plotted in Fig. 12.
Figure 13 show the results of C2�1 plotted with respect

to l for each frequency band. Similarly, Fig. 14 show the all

250 simulated E2�1
l plotted for each frequency band. These

were binned with �l ¼ 10.
From these 250 simulations, we are able to develop a

covariance matrix that will be used for best-fit estimates
with error bars. We find this covariance matrix by binning
all 250 resulting estimators,C2�1

l (orE2�1
l ), in bins of �l ¼

40. We can then treat each of these as an observation for
each l bin and create the covariance matrix by calculating
the covariance of these observations. This produced an
N � N covariance matrix where N is the number of l bins.
Figure 15 shows the correlation matrices from the simu-

lations. These matrices were obtained by taking the co-

variance matrix Cij and building the correlation matrix Ĉij

from the normalization

Ĉ ij ¼
Cijffiffiffiffiffiffiffiffiffiffiffiffiffi
CiiCjj

p : (47)

We see that the correlation matrix obtained from the
C2�1
l simulations show that these estimators have highly

correlated l bins. It is interesting to note that the low l bins
are highly correlated with each other, and the high l bins
are highly correlated with each other but low l bins are not
correlated strongly with the high ell bins.
We also see correlation in the E2�1

l estimators but not

nearly to as great a degree as C2�1
l above. Furthermore, in

the bottom of Fig. 15, we see the full C2�1
l þ E2�1

l corre-

FIG. 12 (color online). The beam transfer functions bl used in
our analysis for each frequency Q, V, and W.

FIG. 13 (color online). The results for C2�1
l from all 250

simulations for the three frequency bands. These plots have
been binned with �l ¼ 10.

FIG. 14 (color online). The results for E2�1
l from all 250

simulations for the three frequency bands. These plots have
been binned with �l ¼ 10.
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lation matrix and note there is correlation between the l
bins between C2�1

l and E2�1
l but not as much as there is

between C2�1
l alone.

C. Best-fit estimation

In order to fit the data, we use a least squares fitting
analysis. Given a data set consisting of n points (xi; yi), we
can fit this data with a model function fðx;pÞ where there
are m adjustable parameters held in the vector p. We wish
to find which of those parameter values best fit the data.

To do this, we minimize the �2 value defined as

�2 ¼ ðy �M � pÞTC�1ðy �M � pÞ; (48)

where y defines our data points we would like to fit to, p are
the parameters we wish to solve for, M is a matrix con-
taining our theoretical model we use for fitting, and C is
our covariance matrix described above.
For example, for a single frequency analysis where we

would like to fit for fNL and the coefficients for point
sources: y ¼ C2�1D

l taken from data, M is the vector

containing hC2�1 Th
l ; PSThi, and p ¼ hfNL; Aii with Ai

being the coefficient for point sources.
We minimize �2 by setting its derivative to zero and

solving for p yielding

p ¼ ðMTC�1MÞ�1MTC�1 � y: (49)

FIG. 15 (color online). Matrices showing correlations between each frequency for both C2�1
l and E2�1

l . The upper left hand corner
shows correlations between small ell, and moving toward the lower right corner shows correlations between high ell.

MEASUREMENT OF PRIMORDIAL NON-GAUSSIANITY . . . PHYSICAL REVIEW D 80, 123005 (2009)

123005-13



Lastly, we find the error bars for our best-fit parameters
via

�p2 ¼ ðMTC�1MÞ�1; (50)

where the diagonal of this matrix gives the variance of the
parameters, and the �2 fit is given by Eq. (48).

V. RESULTS AND DISCUSSION

A. fNL estimate

We now discuss the results of our analysis. The primor-
dial and foreground non-Gaussianity parameter estimates
are summarized in Table II for the case with and without
point sources and in Table III for the case with both point
sources and lensing-secondary correlation. For each of

TABLE II. Parameter estimates with C2�1
l (top), E2�1

l (middle), and the combination of the
two (bottom) with Q, V, W, and V þW maps for the case where we ignore point sources and
including point sources. The point source amplitudes are listed under columns for Ai’s. The
Q-band point source amplitude of ð24:2� 5:0Þ � 10�25 sr2, equivalent to ð4:9� 1:0Þ �
10�5 �K3-sr2, is consistent with the WMAP team’s preferred value of ð4:3� 1:3Þ �
10�5 �K3-sr2. The value of fNL with the amplitude of point sources marginalized over 11:5�
23:6.

Type fNL (no PSs) fNL (w=PSs) AQ AV AW �2=dof

C2�1
l

Q �61:6� 32:2 �10:5� 33:6 62:0� 12:1 1.6

V 5:4� 30:4 36:5� 32:9 22:1� 9:0 0.6

W 5:5� 30:0 31:8� 33:3 18:6� 10:1 0.6

V þW 4:8� 27:7 39:0� 30:7 18:5� 8:2 25:3� 9:2 1.0

E2�1
l

Q 426:4� 100:5 280:4� 111:3 17:7� 5:8 1.3

V 159:1� 98:0 107:3� 104:6 3:2� 2:3 0.3

W 90:4� 102:6 84:9� 108:6 0:4� 2:4 0.3

V þW 133:1� 140:9 102:4� 93:9 3:3� 2:2 �0:1� 2:3 0.8

Full

Q �23:1� 29:4 �22:0� 29:4 24:2� 5:0 3.2

V 13:1� 26:8 16:3� 26:8 4:2� 2:1 0.6

W 19:5� 26:9 19:5� 27:0 0:4� 2:3 0.6

V þW 11:4� 23:6 11:5� 23:6 5:0� 1:8 �1:8� 2:0 0.9

TABLE III. Parameter estimates with C2�1
l (top), E2�1

l (middle), and the combination of the two (bottom) with Q, V,W, and V þW
maps for the case where we account for both point sources and the amplitude of lensing-secondary bispectrum. The point source
amplitudes are listed under columns for Ai’s, while the amplitude of the lensing-secondary signal is tabulated under 
i’s. Our preferred
value of fNL with the amplitude of point sources and the lensing-secondary signal marginalized over using V and W maps in
combination is 11:0� 23:7.

Type fNL (PSþ lensing) AQ AV AW 
Q 
V 
W �2=dof

C2�1
l

Q 21:1� 40:3 �80:2� 39:3 �11:7� 5:8 3.4

V 15:7� 38:9 8:7� 23:0 �3:7� 4:6 1.0

W �13:5� 39:8 39:7� 25:6 0:6� 4:4 1.2

V þW 14:3� 37:6 18:2� 20:8 9:0� 22:0 �2:7� 4:1 �2:2� 4:0 1.3

E2�1
l

Q 122:2� 118:6 8:5� 6:2 6:6� 1:7 0.7

V 80:5� 107:8 2:1� 2:6 1:2� 1:1 0.3

W 62:3� 113:2 �0:2� 2:5 0:9� 1:3 0.3

V þW 72:0� 103:1 1:9� 2:4 �0:5� 2:4 1:4� 1:1 1:3� 1:2 0.8

Full

Q 21:8� 29:6 24:0� 5:7 0:2� 1:2 3.3

V 16:7� 27:1 4:1� 2:4 0:2� 0:5 0.6

W 18:7� 27:2 0:5� 2:3 �0:3� 1:0 0.8

V þW 11:0� 23:7 2:8� 2:2 �0:4� 2:2 1:0� 0:8 �0:6� 0:9 0.9
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these analyses, we bin and tabulate our measurements with
bins of �l ¼ 40. When �l < 20, the data are noisy to see
the overall structure with a large covariance between ad-
jacent bins and when �l > 100, information from the
fluctuating point source curves is lost leading to a large
degeneracy between parameters and an increase in parame-
ter errors. Furthermore, of all binning widths between 20<
�l < 100, the results are similar, but the best �2 value is
always found with a binning at �l ¼ 40 (Fig. 16). Note that
in the limit of a large �l bin (with �l > 200), we effectively
reach the case of determining fNL similar to the previous
skewness statistic, with effectively just one data point per
band.

In Tables II and III the first set of results, denoted by
C2�1
l , show the case when we fit our measured C2�1

l to the

theoretical predictions involving a combination of primor-
dial non-Gaussianity, point sources, and lensing correla-
tions as shown in Fig. 2. Given that Q map leads to a poor
�2 when model fitting Q alone or Q in combination with
other maps, we exclude the Qþ V þW combination and
instead consider V þW as our preferred set of maps. When
fitting to V andW, we compute the covariance of V andW,

for example hC2�1;V
l C2�1;W

l i � hC2�1;V
l ihC2�1;W

l i. Without

point sources and lensing and simply fitting to fNL with
C2�1
l , we find 4:8� 27:7.3 If the shot-noise from point

sources are included, after marginalizing over AV and AW ,
we find fNL ¼ 39:0� 30:7.

As we discussed earlier, however, fitting to C2�1
l alone

with point sources lead to a worse determination of fNL
than in the case where point sources are ignored due to the
degeneracy between primordial non-Gaussianity and point
sources. Thus, we also include Emaps in our analysis with
the associated results from the skewness power spectrum
denoted with E2�1 in Tables II and III. The Emaps provide
a better estimator for the point sources but a worse estima-
tor for fNL than the C2�1 estimator, for reasons we dis-
cussed already. (Figure 3) With E2�1

l , the error bars for the

point source amplitudes are about half of what they were
for C2�1 alone; whereas, the error bars on fNL are about 3
times worse.

One interesting thing to note is that E2�1
l is always

positive. This shows up in the best-fit fNL values, where
for C2�1

l only the Q map pushes fNL towards a negative

value; whereas, E2�1
l fromQ pushes fNL to a large positive

value. In fact, if we include Q band and do an fNL analysis
with the E map alone, we find a 6� detection of the
primordial non-Gaussianity. The �2 from such an analysis,
however, is poor and the result should not be trusted as a
detection of a nonzero fNL.

Finally, we consider the best fit when C2�1
l and E2�1

l are

combined. The V þW analysis gives us the best constraint
on fNL with �36:4< fNL < 58:4 at the 95% confidence
level or (11:0� 23:7) at the 68% confidence level, when

we include both point sources and the lensing-secondary
correlation and marginalize over (AV; AW; 
V; 
W). As
with the C2�1

l only analysis, this combined analysis has

fNL consistent with zero at 1�. As seen by comparing
Tables II and III in the V þW case, our fNL is essentially
the same whether we include the lensing-secondary bis-
pectrum or not.
While we do not include theQ band in our fNL estimate,

the Q-band point source amplitude of ð24:2� 5:0Þ �
10�25 sr2 using the combination of C2�1

l and E2�1
l is

consistent with the WMAP team’s preferred value for the
point source amplitude of ð4:3� 1:3Þ � 10�5 �K3-sr2

[12]. In their units, our bQPS is equivalent to ð4:9� 1:0Þ �
10�5 �K3-sr2. While we cannot make an exact compari-
son as the WMAP team tabulates their point source values
with lmax of 900, our values for b

V
PS and b

W
PS are also within

uncertainties consistent with previous measurements.
While the non-Gaussianity associated with point sources
is detected, we do not detect the lensing-secondary bispec-
trum. It is likely that the C2�1

l and E2�1
l are not the best

ways to detect this correlation. The best-fit values for 
V

and 
W , however, are close to their 1� errors.
As tabulated in Table III, including the bispectrum of

lensing-secondary correlations does not lead to a signifi-
cant degradation of the fNL measurement. We find fNL ¼
11:0� 23:7 at the 1� confidence level, but we do not find a
detection of 
i in each of the three bands when C2�1

l is

combined with E2�1
l .

Note that our V þW analysis gives an fNL value fully
consistent with zero at the 1� level. Previous results have
suggested a marginal hint of a primordial non-Gaussianity
with the most recent optimal anlaysis giving fNL ¼ 38�
21 [40] (Table IV). Compared to this result, our V þW has
a slightly worse error with 11:0� 23:7, and the increase of
13% is consistent with the fact that our analysis is sub-

FIG. 16 (color online). The various fNL values taken from
various binnings of the data from a full analysis considering
both C2�1

l and E2�1
l with point sources and ISW.

3We quote 1� results with � error and 2� result as a range.
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optimal. As discussed earlier, however, our approach is not
different from both the WMAP team’s approach [12] and
previous other estimates of fNL [39]. Moreover, our lmax is
set at 600, while their analysis extends to 750.

Furthermore, it is interesting to note what tight con-
straints the E maps place on the parameters. In Fig. 17,
we see that E2�1

l places a very tight fit on the best-fit point

source coefficients. For example, this fit is tight enough
that the best overall fNL midpoint value is pulled down
from 39.0 using C2�1

l only with point sources to 11.5 for

the full analysis. The E map analysis is thus nontrivial
indeed.

To see if there is any scale dependence to non-
Gaussianity, we bin fNL in widths of 200 and estimate
the value between 0< l < 600. The results are shown in
Fig. 18 and tabulated in Table V. Except in the last bin for
the case with point sources only between 400< l < 600,
our fNL values are fully consistent with zero at the 1� level
and the last bin is consistent with zero at the 2� level. The
last bin also has a large error due to the increase of the
instrumental noise. For the same reason, we do not pursue a
measurement of fNL when l > 600.

It is also interesting to note how accurate our overall
error estimate is. As we compute our covariances with 250

simulations, there is an inherent error of 1=
ffiffiffiffiffiffiffiffi
250

p
in the

error bars we obtained in this analysis. Because of this, we
note that a more accurate estimate of fNL should be to
consider it as 11:0� 23:7ð�1:5Þ, where the extra error
within the bracket denotes an additional statistical error
associated with the finite number of simulations.

B. Cross skewness

Previous results for fNL from the WMAP 5-year team
compute fNL by compressing all information into a single
quantity called cross skewness defined by Eq. (26). To
compare our measurement C2�1

l with their results, we

TABLE IV. Summary of recent results on fNL measurements. Compared to the expectation
from Cramer-Rao bound using the Fisher matrix estimate, our measurement is suboptimal, but
compared to the previous best estimate for fNL of 38� 21, our estimate is fully consistent with
zero at the 1� confidence level.

Technique fNL Ref.

WMAP 3-year, skewness 87� 30 [39]

WMAP 5-year, skewness 51� 30 [12]

WMAP 5-year, Minkowski functions �57� 61 [12]

WMAP 5-year, wavelets 31� 24:5 [67]

WMAP 5-year, needlets 84� 40 [68]

WMAP 5-year, needlets northern hemisphere �25� 75 [69]

WMAP 5-year, needlets southern hemisphere 75� 75 [69]

WMAP 5-year, N-point probability distribution function 30� 62 [70]

WMAP ISW correlation 236� 127 [71]

Large-scale structure bias 20:5� 24:8 [72]

WMAP 5-year, optimal estimator 38� 21 [40]

WMAP 5-year, skew-power spectrum 11:0� 23:7ð�1:5Þ this paper

FIG. 17 (color online). Top: Confidence intervals showing
constraints on fNL versus AV for the C2�1

l , E2�1
l , and full

analysis. Below: Same for AW . Red is 68% confidence interval
(CI), Green is 95% CI, and blue is 99.7 CI.
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calculate our own equivalent version of this cross skewness
statistic defined as

Ŝ AB2 ¼ Xð2lþ 1ÞC2�1;D
l ; (51)

where C2�1;D
l is the estimator obtained from data. We also

compute the skewness of the Emap using E2�1;D
l in above.

We jointly fit ŜAB2 and ŜE3 with a combination of fNL and
Ai by effectively comparing the statistic from data to
prediction from theory with theory expectation computed

as, for example, SAB2 ¼ Pð2lþ 1ÞC2�1;Th
l . In order to

determine the errors, we also preform the same cross-
skewness analysis on all 250 simulations and calculate

the covariance of ŜAB2 and ŜE3 from these 250 numbers
for each frequency. We find that fNL estimated from each
of the 250 Gaussian and noise simulations leads to a
Gaussian error distribution (Fig. 19).
We tabulate our results for fNL after marginalizing over

Ai’s in Table VI. Here, when doing the summations, we set
lmax ¼ 500 so we can compare directly withWMAP 5-year
published results [12]. We see that for all three channels,
we have good agreement with the WMAP team’s 5-year
findings. Our best-fit value tends to be bit more positive
than quoted by the WMAP team (with 0:26�, 0:25�,
0:17� in Q, V, and W, respectively), but this is a small
difference when compared to the large error bar. The errors
quoted in the WMAP 5-year paper are consistent with our
measurements had we used the skewness statistic.
However, as we discussed earlier, fitting to C2�1

l and

E2�1
l leads to an improvement in the error estimate of

TABLE V. Independent estimates of fNL in bins of �l ¼ 200
between 2< l < 600.

Type fNL (with PSs) fNL (PSsþ lensing-secondary)

C2�1
l

2< l < 200 39:5� 45:6 5:5� 33:4
100< l < 300 35:3� 69:6 23:9� 87:3
200< l < 400 49:6� 46:5 46:3� 64:5
300< l < 500 38:3� 65:6 15:5� 57:8
400< l < 600 192:0� 190:4 164:1� 162:9
Full

2< l < 200 �9:2246� 44:6 4:2� 40:5
100< l < 300 �6:1� 101:4 18:0� 67:2
200< l < 400 64:5� 74:0 46:1� 65:8
300< l < 500 68:3� 92:8 �26:5� 54:2
400< l < 600 103:6� 178:3 �5:6� 56:3

FIG. 18 (color online). Angular dependance of fNL between
2< l < 600 in bins of 200. The top panel is for C2�1

l only and

with point sources. The middle panel is the full measurement
with C2�1

l and E2�1
l and using point sources. The lower panel is

full measurement with both point sources and lensing-secondary
correlations. The blue circles use mutually disjointed bins from
each other. The green triangles also use mutually disjoint bins.

FIG. 19 (color online). Histogram of the fNL estimated from
Gaussian and noise simulations for the cross-skewness statistic
S3 ¼

Pð2lþ 1ÞC2�1
l . Top: Q, Middle: V, Bottom: W. A best-fit

Gaussian curve is plotted in blue over each histogram.
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fNL, since the shapes of the two skew spectra allow us to
break the degeneracies better. Comparing our V þW re-
sult using the two spectra to skewness for the same maps,
we find that the improvement in the error is roughly 20%.

VI. CONCLUSION

In this paper, we constrained the primordial non-
Gaussianity parameter of the local model fNL using the
skewness power spectrum associated with the two-to-one
cumulant correlator of cosmic microwave background
temperature anisotropies. This bispectrum-related skew-
ness power spectrum was constructed after weighting the
temperature maps with the appropriate window functions
to form an estimator that probes the multipolar dependence

of the underlying bispectrum associated with primordial
non-Gaussianity.
We also estimate a separate skewness power spectrum

more sensitive to unresolved point sources. When com-
pared to previous attempts at measuring the primordial
non-Gaussianity with WMAP data, our estimators have
the main advantage that we do not collapse information
to a single number. When model fitting two-to-one skew-
ness power spectrum, we make use of bispectra generated
by primordial non-Gaussianity, radio point sources, and
lensing-secondary correlations.
We analyzeQ, V, andW-bandWMAP 5-year data using

the KQ75 mask out to lmax ¼ 600. Using V- and W-band
data and marginalizing over model parameters related to
point sources, our overall and preferred constraint on fNL is
11:0� 23:7 at the 68% confidence level (� 36:4< fNL <
58:4 at 95% confidence). Despite previous claims, we find
no evidence for a nonzero value of fNL even marginally at
the 1� level.
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