
Fundamental theoretical bias in gravitational wave astrophysics
and the parametrized post-Einsteinian framework

Nicolás Yunes and Frans Pretorius

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
(Received 17 September 2009; published 14 December 2009)

We consider the concept of fundamental bias in gravitational wave astrophysics as the assumption that

general relativity is the correct theory of gravity during the entire wave-generation and propagation

regime. Such an assumption is valid in the weak field, as verified by precision experiments and

observations, but it need not hold in the dynamical strong-field regime where tests are lacking.

Fundamental bias can cause systematic errors in the detection and parameter estimation of signals, which

can lead to a mischaracterization of the Universe through incorrect inferences about source event rates and

populations. We propose a remedy through the introduction of the parametrized post-Einsteinian frame-

work, which consists of the enhancement of waveform templates via the inclusion of post-Einsteinian

parameters. These parameters would ostensibly be designed to interpolate between templates constructed

in general relativity and well-motivated alternative theories of gravity, and also include extrapolations that

follow sound theoretical principles, such as consistency with conservation laws and symmetries. As an

example, we construct parametrized post-Einsteinian templates for the binary coalescence of equal-mass,

nonspinning compact objects in a quasicircular inspiral. The parametrized post-Einsteinian framework

should allow matched filtered data to select a specific set of post-Einsteinian parameters without a priori

assuming the validity of the former, thus either verifying general relativity or pointing to possible

dynamical strong-field deviations.
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I. INTRODUCTION

A. The concept of bias and the validity of general
relativity

The problem of bias has had a negative impact on many
scientific endeavors by causing scientists to draw incorrect
inferences from valid data. As the next generation of
gravitational wave (GW) detectors [1–3] promises to
open a new observational window onto the Universe, one
wonders what bias might be present in this new branch of
astronomy that could lead to incorrect conclusions about
the Universe seen in GWs. This is a particularly pertinent
question to address early on, as the first observations are
expected to have quite low signal-to-noise ratio (SNR).

Bias is here to be understood as some set of a priori
assumptions, prejudices, or preconceptions that affect con-
clusions derived from properly collected data. We pur-
posely exclude from this definition experimentally
induced systematic errors, as we wish to concentrate on
errors introduced during post-processing and analysis. In
GW astrophysics, a principal source of bias is the a priori
assumption, often unstated, that general relativity (GR) is
the correct theory that describes all gravitational phe-
nomena at the scales of relevance to GW generation and
propagation. This bias is ingrained in many of the detection
and parameter estimation tools developed to mine GW data
and extract astrophysical information (see for example [4]
and references therein).

The study of theoretical bias in GW astrophysics is not
completely new. Recently, Cutler and Vallisneri [5] ana-

lyzed the issue of systematic error generated by the use of
inaccurate template families. This issue can be broadly
thought of as a modeling bias, where the preconception
relates to physical assumptions to simplify the solutions
considered (e.g. that all binaries have circularized prior
to merger), or unverified assumptions about the accuracy
of the solution used to model the given event. The study in
[5] considered inaccuracies arising from errors in solutions
to the Einstein equations due to the use of the post-
Newtonian (PN) approximation scheme, and they
found these inaccuracies could dominate the error budget.
This paper differs from that analysis in that we are con-
cerned with the validity of the Einstein equations them-
selves, an assumption that can be considered a fundamental
bias.
Systematic errors created by fundamental bias may be as

large as, if not larger than, those induced by modeling bias,
as waveforms could deviate from the GR prediction dra-
matically in the dynamical strong field, if GR does not
adequately describe the system in that region. This is
particularly worrisome for template-based searches, as
the event that will be ascribed to a detection will be the
member of the template bank with the largest SNR. Given
that GR is quite well tested in certain regimes, many
sources cannot have deviations so far from GR as to
prevent detection with GR templates (albeit with lower
SNR). Thus, if templates are used based solely on GR
models, although the corresponding events may be
‘‘heard,’’ any unexpected information the signals may
contain about the nature of gravity will be filtered out.
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But is it sensible to expect GR deviations at all? GR has
been tested to high accuracy in the Solar System and with
binary pulsars [6,7]. However, in the Solar System gravi-
tational fields are weak and particle velocities are small
relative to the speed of light, and all such tests only probe
linear perturbations in the metric beyond a flat Minkowski
background. Binary pulsar tests begin to probe the strong-
field regime in terms of the compactness of the source (i.e.
the ratio of the source mass to its radius), though known
systems are still quite weak with regard to the strength of
the dynamical gravitational fields (characterized by the
ratio of the total mass of the system to the binary separa-
tion). In this sense then, the dynamical, strong-field region
of GR has so far eluded direct observational tests [8].

The lack of experimental verification of GR in the
dynamical strong field could be remedied through GW
observations. For example, a compact object such as a
black hole (BH) or neutron star (NS) spiraling into a super-
massive BH will emit waves that carry a map of the
gravitational field of the central BH, a program of rele-
vance to the planned Laser Interferometer Space Antenna
mission (LISA) [9], and sometimes referred to as bothrod-
esy [10–13]. Such maps would then allow for detailed tests
of alternative theories of gravity. Additional work on con-
straining alternative theories have concentrated on using
either the binary inspiral or the post-merger ringdown
phase. With the former, studies have focused on the search
for the graviton Compton wavelength [14–21], the exis-
tence of a scalar component to the gravitational interaction
[17–25], and the existence of gravitational parity violation
[26,27]. Studies of the ringdown phase have concentrated
on violations of the GR no-hair theorem (that the mass and
spin completely determine the gravitational field of a rotat-
ing BH) by proposing to verify certain consistency rela-
tions between quasinormal ringdown (QNR) modes [28–
31]. All of the above tests, however, have focused on
specific alternative theories and have not investigated the
issue of fundamental bias that we wish to address here.

B. Toward a framework for detecting fundamental bias
in GW observations of compact object mergers

In this paper, we are not so much interested in specific
tests of particular alternative theories, but rather we want
to introduce a framework that may allow one to quantifi-
ably investigate the consequences of fundamental bias in
GWastronomy. We propose to do so via the introduction of
the parametrized post-Einsteinian (ppE) framework,
analogous to the parametrized post-Newtonian (ppN)
[6,32–36] or the parametrized post-Keplerian (ppK) ones
[6,37,38], where model waveforms are enhanced in a
systematic and well-motivated manner by parameters that
can measure deviations from GR. The construction of such
a ppE framework is a quixotic task in general, and so to
make it more manageable we will concentrate on a subset
of possible GW sources: the inspiral, merger, and ringdown
of binary BH-like compact objects.

Given that we want to liberate GW astronomy from the
assumption that GR is correct in all regimes, what sense
then does it make to begin with a binary BH merger, an
event wholly within the realm of GR? First, there is strong
observational evidence that highly compact objects exist,
and in many cases the observations are consistent with the
supposition that they are BHs [39]: the high luminosity of
quasars and other active galactic nuclei (AGN) can be
explained by gravitational binding energy released through
gas accretion onto supermassive (106–109M�) BHs at the
centers of the galaxies [40,41]; several dozen X-ray binary
systems discovered to date have compact members too
massive to be NSs, and exhibit phenomena consistent
with matter interactions originating in the strong-field
regime of an inner accretion disk [42]; the dynamical
motions of stars and gas about the centers of nearby
galaxies and our Milky Way Galaxy suggest the presence
of very massive, compact objects, the most plausible ex-
planation being supermassive BHs [43–45]. Therefore, it is
not too bold to assume that even if GR does not accurately
describe compact objects, whichever theory does must
nevertheless still permit BH-like solutions. Second, from
studies of the orbital decay of the Hulse-Taylor [46] and
more recently discovered binary pulsars [47,48], it is again
a rather conservative conclusion that the early evolution of
binary compact objects in the Universe is adequately gov-
erned by GR—namely, that binary systems are unstable to
the emission of quadrupole gravitational radiation.
Based on the above considerations, starting with GR

binary BH merger waveforms seems sound. We are then
faced with the question of how to modify these waveforms
in a sensible manner. In theory, there are uncountably many
conceivable modifications to GR that only manifest in the
late stages of the merger. To make this question manage-
able, we shall guide our search for ppE expansions by
looking to alternative theories that satisfy as many of the
following criteria as possible:
(i) Metric theories of gravity: theories where gravity is a

manifestation of curved spacetime, described via a
metric tensor, and which satisfies the weak-
equivalence principle [49].

(ii) Weak-field consistency: theories that reduce to GR
sufficiently when gravitational fields are weak and
velocities are small, i.e. to pass all precision, ex-
perimental, and observational tests.

(iii) Strong-field inconsistency: theories that modify GR
in the dynamical strong field by a sufficient amount
to observably affect binary merger waveforms.

Notice that the weak-field consistency criterion also re-
quires the existence and stability of physical solutions,
such as the Newtonian limit of the Schwarzschild metric
to describe physics in the Solar System. One might also
wish that other criteria be satisfied, such as well-posedness
of the initial-value problem, the existence of a well-
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defined, relativistic action, and that the theory be well-
motivated from fundamental physics (e.g. string theory,
loop quantum gravity, the standard model of elementary
interactions, etc.), but we shall not impose such additional
requirements here.

Instead of concentrating on a particular theory that
satisfies the above criteria, here we are more concerned
with being able to measure generic deviations from GR
predictions. In spite of the possibly uncountable number of
modifications one can introduce to the GR action, parame-
trizations of generic deviations is easier if one concentrates
on the waveform observable, the response function, which
in turn can be described by a complex function in the
frequency domain. Deviations from GR then translate
into deviations in the waveform amplitude and phase.
Such deviations could be induced, for example, by mod-
ifications to the GW emission formulas (e.g. the quadru-
pole formula), new polarization modes, new propagating
degrees of freedom, and new effective forces. In order to
ease the flow of the paper, we will not further discuss
details of how certain alternative theories modify the gravi-
tational waveform here, referring the interested reader to
Appendix A.

C. Two key questions related to fundamental bias

In view of the above considerations, we shall attempt to
lay the foundations to answer the following two questions
related to fundamental bias in GW astronomy, here focus-
ing on binary compact object mergers:

(1) Suppose gravity is described by a theory differing
from GR in the dynamical, strong-field regime, but
one observes a population of merger events filtered
through a GR template bank. What kinds of system-
atic errors and incorrect conclusions might be drawn
about the nature of the compact object population
due to this fundamental bias?

(2) Given a set of observations of merger events ob-
tained with a GR template bank, can one quantify or
constrain the level of consistency of these observa-
tions with GR as the underlying theory describing
these events?

As we will discuss in the next subsection, the ppE
framework will be able to answer question 2, at least for
the class of deviations from GR considered here. As for
question 1, we shall not specifically address it in this paper,
though will here give a couple of brief examples to clarify
the question. As a first example, suppose the ‘‘true’’ theory
of gravity differs from GR in that scalar radiation is pro-
duced in the very late stages of a merger, and during the
ringdown. This will cause the inspiral to happen more
quickly compared to GR, resulting in a late-time dephasing
of the waveform relative to a GR template. Also, less
power may be radiated in GWs during the ringdown phase.
In all then, these events may be detected by GR templates,
though with systematically lower SNR, i.e. be seemingly

more distant. Here then, the fundamental bias could make
one incorrectly infer that merger events were more fre-
quent in the past.
For a second hypothetical example, consider an extreme

mass ratio merger, where a small compact object spirals
into a supermassive BH. Suppose that a Chern-Simons
(CS)-like correction is present, altering the near-horizon
geometry of the BH as described in [50,51]. To leading
order, the CS correction reduces the effective gravitomag-
netic force exerted by the BH on the compact object; in
other words, the GW emission would be similar to a
compact object spiraling into a GR Kerr BH, but with
smaller spin parameter a. Suppose further that near-
extremal (a � 1) BHs are common (how rapidly astro-
physical BHs can spin is an interesting and open question).
Observation of a population of CS-modified Kerr BHs
using GR templates would systematically underestimate
the BH spin, leading to the erroneous conclusion that near-
extremal BHs are uncommon, which could further lead to
incorrect inferences about astrophysical BH formation and
growth mechanisms.

D. Toward a ppE construction

The concept of a ppE framework is in close analogy to
the ppN one, proposed by Nordtvedt and Will [6,32–36] to
deal with an outbreak of alternative theories of gravity in
the 1970s. Such a framework allows for model-
independent tests of GR in the Solar System, through the
introduction of ppN parameters in the weak-field expan-
sion of the metric tensor. When these parameters take on a
specific set of values, the metric tensor becomes identical
to that predicted by GR, while when it takes on different
values, the gravitational field becomes that predicted by
certain alternative theories. In the same way, we introduce
ppE parameters to interpolate between different theories,
but we parametrize the GW response function instead of
the metric tensor, as the former is the observable in GW
astrophysics.
We shall follow the ppN route in the construction of a

ppE framework: we will explore a set of alternative theo-
ries and their effects on GWs, and from these, we will
phenomenologically infer and engineer a ppE template
family that not only captures the waveforms from known
theories, but also other phenomenological corrections. As
we shall see, our approach reproduces corrections to the
GW response functions predicted by a large class of alter-
native theories of gravity proposed to date, including
Brans-Dicke theory, massive graviton theories, and non-
dynamical CS-modified gravity.
As a first step, we shall not consider here the effect of

scalar, vectorial, or all six tensorial polarizations on the
response function, nor will we attempt to classify alterna-
tive theories based on the different perturbative modes that
can be excited. In fact, such a classification already exists,
the Eð2Þ scheme [7,52], which organizes different alterna-
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tive theories according to whether they excite certain con-
tractions of the Weyl tensor as characterized by the
Newman-Penrose (NP) scalars. Here we will concentrate
on the two ‘‘plus’’ and ‘‘cross’’ tensorial degrees of free-
dom, and how these change in alternative theories.
Additional excited modes will only be considered insofar
as they affect the source dynamics, and thus indirectly the
structure of the plus and cross modes.

In the future it would be useful to extend the ppE
templates to include additional GW polarizations and
modes. However that would be a nontrivial effort, the
main reason being that currently there is a lack of alter-
native theories that simultaneously satisfy the criteria dis-
cussed above and allow for the excitation of additional
modes. For example, Brans-Dicke theory does possess a
breathing mode, though it is strongly suppressed by con-
straints on its coupling constant. Similarly, Einstein-aether
theory generically has five propagating degrees of free-
dom, but these decouple and radiation can be shown to
remain quadrupolar [53]. Thus, unlike with the other ppE
extensions considered here, there is little theoretical guid-
ance available on how GR waveforms would be modified if
additional GW polarizations are excited. Without such
guidance then, it will be almost impossible to argue that
any proposed extensions are well-motivated.

A separate issue is whether the effect of additional
polarization states can be observed with contemporary or
planned detectors. For direct measurement one requires 2N
arms to be sensitive to N polarization states [54], for
example, using multiple ground-based detectors, Doppler
tracking of multiple spacecraft, or pulsar timing arrays
[55]. Alternatively, a space-borne detector such as LISA
can be sensitive to multiple polarization states for events
that last a sizable fraction of the spacecraft’s orbit, as the
motion of detector then effectively samples the waveform
with multiple arm orientations. For ground-based detec-
tors, binary merger events happen too quickly for a similar
strategy to be effective. However, other sources, for ex-
ample, the waves that could be emitted by a ‘‘mountain’’
on a pulsar, will produce coherent GWs over many rotation
periods of the Earth, and thus could also contain informa-
tion on multiple polarization states. We will not consider
these interesting issues here.

E. A ppE template family for the inspiral, merger and
ringdown of black-hole-like compact objects

For this initial study, we construct ppE templates de-
scribing only the quasicircular coalescence of nonspinning
and equal-mass compact objects. Even within this re-
stricted class of events, the ppE construction is nonunique,
and certainly more refined versions could be developed.
We introduce several ppE template families that vary in the
number of ppE parameters, and thus, in the amount of
fundamental bias each family assumes in its construction.
The frequency-domain (overhead tilde) ppE templates with

the least number of ppE parameters that we derive is the
following (more general representations are provided in
Sec. VC):

~hðfÞ ¼

8>><
>>:

~hðGRÞI ðfÞ � ð1þ �uaÞei�ub f < fIM;
�uceið�þ�uÞ fIM < f < fMRD;
� �

1þ4�2�2	ðf�fRDÞd f > fMRD;

(1)

where the subscripts IM and MRD stand for inspiral-
merger and merger-ringdown. In the inspiral phase (f <
fIM), the GW is described by a ‘‘chirping’’ complex ex-

ponential, consisting of the GR component ~hðGRÞI ðfÞ cor-
rected by ppE amplitude and phase functions with
parameters ð�; a;�; bÞ. Here u ¼ �Mf is the inspiral

reduced frequency, M ¼ M
3=5 is the chirp mass with
symmetric mass ratio 
 ¼ m1m2=M

2 and total mass M ¼
m1 þm2 (though again, we will only focus on the equal-
mass case). The merger phase (fIM < f < fMRD) is treated
as an interpolating region between inspiral and ringdown,
where the merger parameters ð�; �Þ are set by continuity,
and the merger ppE parameters are ðc; �Þ. In the ringdown
phase (f > fMRD), the GW is described by a single-mode
generalized Lorentzian, with real and imaginary dominant
frequencies fRD and �, ringdown parameter � also set by
continuity, and ppE ringdown parameters ð	; dÞ. The tran-
sition frequencies ðfIM; fMRDÞ can either be treated as ppE
parameters, or (for example) set to the GR light-ring
frequency and the fundamental ringdown frequency, re-
spectively. In a later section, we shall present more general
ppE waveforms with inherently less fundamental bias,
some of which are reminiscent to the work of [25,56,57],
except that here we are interested in tests of GR through the
determination of ppE parameters, instead of the measure-
ment of PN ones.
The ppE template presented above is nonunique; in fact,

the ppE framework as a whole is inherently nonunique, as
are the ppN or ppK ones, because a finite parametrization
cannot represent an infinite space of alternative theory
templates. However, this ppE family is minimal within
the class of templates considered here, as it employs the
smallest number of ppE parameters necessary to reproduce
corrections to the GW response function from well-known
alternative theories of gravity in the inspiral phase:
(i) GR is reproduced with ð�; a;�; bÞ ¼ ð0; a; 0; bÞ,

ðc; �Þ ¼ ð�2=3; 1Þ, and ð	; dÞ ¼ ð1; 2Þ;
(ii) Jordan-Brans-Dicke-Fierz, or simply Brans-Dicke

theory (BD), with ð�; a;�; bÞ ¼ ð0; a; �BD;�7=3Þ,
and �BD related to the Brans-Dicke coupling pa-
rameter [see Eq. (A6)];

(iii) Massive graviton (MG) theories with ð�; a;�; bÞ ¼
ð0; a; �MG;�1Þ, and �MG related to the graviton
Compton wavelength [see Eq. (A10)];

NICOLÁS YUNES AND FRANS PRETORIUS PHYSICAL REVIEW D 80, 122003 (2009)

122003-4



(iv) CS-modified gravity with ð�; a; �; bÞ ¼
ð�CS; 1; 0; bÞ, and �CS related to the CS coupling
parameter [see e.g. Equation (A18)].

The allowed range of the ppE parameters is not com-
pletely free, as Solar System and binary pulsar experiments
have already constrained some of them. The subset of
inspiral ppE templates that reproduce well-known theories
after fixing a and b is then constrained to some range in
ð�;�Þ. More precisely, since the Brans-Dicke coupling
parameter has been constrained to !BD > 4� 104 by the

Cassini spacecraft [58], this automatically forces �BD <

3:5� 10�8ðs1 � s2Þ2
2=5 when b ¼ �7=3, where s1;2 are
the sensitivities of the binary components. For example, for
a 1:4M� binary NS system, �BD & 10�9 when b ¼ �7=3.
Similarly, since the Compton wavelength of a massive
graviton has already been constrained to �g > 3:4�
1015 km from pulsar timing observations [59], this implies
�MG < 8:5� 10�31DMð1þ zÞ�1 km�2 when b ¼ �1,
where D is a distance measure to the source. For example,
for a 1:4M� binary NS system at a redshift of z ¼ 0:1, one
finds the prior �MG & 1:6� 10�8 when b ¼ �1. Finally,
the nondynamical CS coupling parameter has been con-
strained by binary pulsar observations to be such that for an
aligned binary (zero inclination angle), �CS & 70�
10�33D=M when a ¼ 1, which for a binary NS at redshift
z ¼ 0:1 translates to �CS & 4� 10�10.

One can also consider placing priors on other ppE
parameters introduced in Eq. (1) without fixing the wave-
form to represent a particular well-known theory. However,
since the merger and the ringdown have not been con-
strained at all by observation, one cannot really restrict
ðc; �; 	; dÞ. On physical grounds, one can only require that
d > 0 and real and ð�; 	Þ also real, such that the waveform
is well behaved at large frequencies. Since the quadrupole
formula has been verified to leading order with binary
pulsar observations, one also expects that for low frequen-
cies �ua < 1, which, for example, implies that if 0< a �
1 then j�j< 1, while if a � 1 then � is essentially uncon-
strained. If one does not expect gravitational radiation to be
sourced below dipolar order one must have b >�7=3;
similarly, if one expects strong-field, source generation
deviations to only arise beyond quadrupolar order then b >
�5=3. Of course, the stronger the priors imposed, the
stronger the bias the ppE model inherits.

F. The possible role of the ppE framework in data
analysis

We do not propose here to employ the ppE templates for
direct detection, but rather for post-detection analysis.
Following the detection of a GW by a pure GR template,
that segment of data could then be reanalyzed with the ppE
templates. In principle, one should search over all system
and ppE parameters, but in practice, since the ppE wave-
forms are deformations of GR templates, one can restrict
attention to a neighborhood of the system parameter space

centered around the best-fit ones obtained through filtering
with a GR waveform.
The templates presented above do contain some model-

ing error, i.e., the subset of the ppE template family with all
parameters set to the GR values—the ppE-GR templates—
are not the ‘‘exact’’ solution to the event in GR (for which
there is no known closed form solution). What is more
important though is that the ppE-GR templates have a high
overlap or fitting factor with the correct waveform, which
is why the ppE templates have been built as generalizations
of GR approximations with that particular property [60].
The modeling error in the ppE-GR templates could be
determined by computing fitting factors between them
and the corresponding GR templates, folding in the detec-
tor noise curve, or following the formalism laid out in [5].
This would then provide a measure of the efficacy of the
ppE templates in detecting deviations from GR, or con-
straining alternative models, with the given event.
Although the practical implementation of an efficient

post-detection analysis pipeline will be relegated to future
work, one should not necessarily restrict such analysis to a
frequentist approach. An alternative would be to perform a
Bayesian model selection study [61,62] to determine
whether the evidence points toward GR or a GR deviation
(through the nonvanishing of ppE parameters). The idea is
that more parameters in a template bank will generically
improve the fit to the data, even if there is no signal present.
Thus, any search should be guided by careful consideration
of priors (such as those discussed earlier) or through the
computation of evidence associated with a given model, for
example, as in [63]. Such considerations are particularly
important for low SNR events, such as those expected for
ground-based detector sources.
A clear path then presents itself for possible strategies

that one might pursue in the study of fundamental bias:
(i) Given a GR signal and a ppE template, how well can

the latter extract the former? How much modeling
error is intrinsic in the ppE template family?

(ii) Given a non-GR signal and a GR template, how
much fundamental bias-induced systematic error is
generated in the estimation of parameters? Can the
signal even be extracted?

(iii) Given a non-GR signal and a ppE template, how
well can the latter extract the former? How well can
intrinsic and ppE parameters be estimated?

These questions constitute a starting point for future data
analysis studies to investigate the issue of fundamental bias
in GW astronomy and refinements of the ppE framework.

G. Organization of this paper

An outline of the remainder of this paper is as follows:
Sec. II discusses the anatomy of binary BH coalescence in
GR; Sec. III derives some model-independent modifica-
tions to the inspiral GW amplitude and phase, while
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Sec. IV does the same for the merger and ringdown phase;
Sec. V uses the results from the preceding sections to
construct an particularly simple example of a ppE template
bank; Sec. VI concludes and points to future research.
Appendix A presents a brief summary of well-known
alternative theories and their effect on the GWobservable,
and Appendix B describes suggested ‘‘exotic’’ alternatives
to BHs.

We follow here the conventions and notation of Misner,
Thorne, andWheeler [49]. In particular, Greek letters stand
for spacetime time indices, while Latin letters stand for
spatial indices only. Commas in index lists stand for partial
differentiation, while semicolons stand for covariant dif-
ferentiation. The Einstein summation convention is as-
sumed unless otherwise specified. The metric signature is
ð�;þ;þ;þÞ and we use geometric units where G ¼ c ¼
1. In the Appendixes, we reinstate the powers ofG and c, as
one must distinguish the GR coupling constants from those
in alternative theories of gravity.

II. ANATOMY OFA COMPACT OBJECT BINARY
COALESCENCE IN GR

Let us now consider the quasicircular binary coales-
cence of nonspinning BH-like compact objects—namely,
events that exhibit inspiral, merger, and ringdown phases
akin to binary BH mergers in GR. Certain classes of exotic
horizonless compact objects, such as boson stars (see
Appendix B), may exhibit similar merger waveforms,
and insofar as they are viable candidates to explain com-
pact objects in the Universe that today are classified as
BHs, they are also within the scope of the ppE templates
we will construct here. Neutron star mergers, for example,
are not to be consider part of this family, as these are a
separate class of GW sources that would require a different
ppE expansion (though ostensibly the inspiral phase of a
NS/NS merger ppE template would be the same as the BH/
BH one, and if the merger regime for the former happens
outside the detector’s sensitivity window, as is expected to
be the case with LIGO/GEO/Virgo, then the binary BH
ppE templates would suffice).

We divide the coalescence into three stages: (i) the in-
spiral; (ii) the plunge and merger; (iii) the ringdown. In the
first stage, the objects start widely separated and slowly
spiral in via GW radiation-reaction. In the second stage, the
objects rapidly plunge and merge, roughly when the ob-
ject’s separation is somewhere around the location of the
light ring. In the third stage, after a common apparent
horizon has formed, the remnant rings down and settles
to an equilibrium configuration. Note that this classifica-
tion is somewhat fuzzy, as studies of numerical simulation
results have shown that a sharp transition does not exist
between them in GR [64–66]. In the remainder of this
section, we concentrate on GR coalescences and leave
discussions about possible modifications to the next
section.

In describing the waveform, we shall concentrate on the

Fourier transform, ~hðfÞ, of the GW response function, hðtÞ,
as the former is more directly applicable to GW data
analysis (see e.g. [67,68] for a data analysis review). The
response function of an interferometer, hðtÞ, is a time-
series defined via the projection hðtÞ � Fþhþ þ F�h�,
where Fþ;� are beam-pattern functions that describe the

intrinsic detector response to a GW, while hþ;� are the

projections of the GW metric perturbation hij onto a plus/

cross polarization basis. We will split the Fourier transform

of the response function ~hðfÞ into three components, ~hIðfÞ,
~hMðfÞ, and ~hRDðfÞ, corresponding to the inspiral, merger,
and ringdown phases, respectively. We will further decom-
pose each of these complex functions into their real am-
plitude and phase components:

~h I;M;RDðfÞ ¼ AI;M;RDðfÞei�I;M;RDðfÞ; (2)

all of which will be modified in the ppE framework.
The inspiral phase can be modeled very well by the

restricted PN approximation (see e.g. [69]). In this ap-
proximation, the amplitude of the time-series is assumed
to vary slowly relative to the phase, allowing its Fourier
transform to be calculated via the stationary-phase ap-
proximation [69–71]. Improving on the restricted approxi-
mation leads to subleading amplitude corrections that
introduce higher harmonics in the Fourier transform,
though we shall not consider that here [71,72]. However,
we should note that if considering extreme-mass ratio
inspirals (EMRIs) or eccentric orbits, then higher harmon-
ics will play a significant role and should be accounted for
(see e.g. [69]).
In GR, within the restricted PN approximation the

Fourier transform of the response function can be written
as

AIðfÞ ¼ aIf
�7=6; (3)

�IðfÞ ¼ 2�ft0 þ�0 þ
X
k¼0

c PN
k uðk�5Þ=3; (4)

where we recall that u � �Mf is the reduced frequency

parameter,M ¼ M
3=5 is the chirp mass, 
 ¼ m1m2=M
2

is the symmetric mass ratio, M ¼ m1 þm2 is the total
mass, and f is twice the Keplerian orbital frequency. The
coefficient aI depends on the chirp mass, the luminosity
distanceDL, and the orientation of the binary relative to the
detector (parametrized through the inclination 
 and polar-
ization angle �) via1

1When modeling the Fourier transform of the response func-
tion for LISA, one must multiply aI by a factor of

ffiffiffi
3

p
=2 to

account for the geometry of the experiment. See e.g. Eqs. (4.18)
and (5.6) of [69]. Moreover, the beam-pattern functions further
depend on the motion of the detector around the Sun, which can
be modeled as in e.g. [73,74].
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aI ¼ �
�
5

24

�
1=2

��2=3 M
5=6

DL

Qð
; �Þ; (5)

where Qð
; �Þ ¼ Fþ cos2�ð1þ cos2
Þ=2� F� sin2� cos

is a function of the beam-pattern functions Fþ;�, the

inclination 
, and the polarization angle �.2 The quantities
t0 and �0 are constants, related to the time and phase of
coalescence, while c PN

k are constant PN phase parameters

that depend on the mass ratio. To 1.5 PN order, these
coefficients are given by

c PN
0 ¼ 3

128
; c PN

1 ¼ 0;

c PN
2 ¼ 3

128

�
20

9

�
743

336
þ 11

4



�

�2=5

�
;

c PN
3 ¼ 3

128
ð�16�
�3=5Þ;

(6)

and expressions to higher order are also known [75].
The merger phase cannot be modeled analytically by

any controlled perturbation scheme. We shall thus treat this
phase as a transition region that interpolates between the
inspiral and the ringdown. During this phase, numerical
simulations have shown that the amplitude and the phase
can be fit by [60,64]

AMðfÞ ¼ aIf
�1=2
IM f�2=3; (7)

�MðfÞ ¼ ��0 þ 2�f�t0; (8)

where fIM is the frequency of transition between inspiral
and merger and where ��0 and �t0 are new constants, and can
be related to �0 and t0 by demanding continuity of the
waveform. The frequency dependence of the amplitude in

the merger phase, f�2=3, is not universal, but specific to the
test system (equal-mass, nonspinning) studied here.3

The ringdown phase can be modeled very well through
BH perturbation theory techniques (see e.g. [77] for a
recent review). In this approximation, the GW response
function can be written as a sum of exponentially damped
sinusoids, the Fourier transform of each being a Lorentzian
function. Furthermore, for equal-mass mergers, a single
(least damped) QNR mode dominates the waveform, and
so to good approximation we can write [60]

ARDðfÞ ¼ aIf
�1=2
IM f�2=3

MRD

�
1þ 4

�
f� fMRD

�

�
2
��1

; (9)

�RDðfÞ ¼ ��0 þ 2�f�t0; (10)

where � is the width of the Lorentzian that essentially
describes the mean duration of the ringdown phase (the

damping time). Notice that during the plunge and the
ringdown the phase remains the same, modulo nonlinear
effects, which conveniently guarantees continuity of the
phase across this boundary.
The phenomenological parameters ðfIM; fMRD; �Þ can

be fit to numerical simulations to find [60]

fIM � 0:29
2 þ 0:045
þ 0:096

�M
! 1

8�M
;

fMRD � 0:054
2 þ 0:090
þ 0:19

�M
! 1

4�M
;

� � 0:51
2 þ 0:077
þ 0:022

�M
! 1

14�M
;

(11)

where the arrow stands for the approximate value for
equal-mass binaries. The quantities ðfIM; fMRDÞ denote
the boundaries of the inspiral-merger region and merger-
ringdown region, at which the piecewise function has been
constructed to be continuous. Notice that the merger and
ringdown phases are both rather short compared to the
inspiral phase, lasting approximately ð8�MÞ�1 Hz and
ð14�MÞ�1 Hz respectively. Because of the short duration
of these phases, they can be modeled via the simple linear
relation in the phase shown above, and in fact, as the
merger phase is fairly constant, it could be absorbed in
the overall amplitude.
The parametrization presented here is purposely similar

to that proposed in [60]. In that study, however, the phase
was modeled in all stages of coalescence by the same
function, namely, Eq. (4), where the parameters c PN

k are

not fixed to the PN value, but instead fitted to numerical
relativity waveforms (see e.g. Table 2 in [60]). If one
prefers, one could model the GW phase in the merger
and ringdown with the fitted parameters presented in
Table 2 of [60]. Alternatively, one could also follow the
prescription of [30] and construct the Fourier transform of
the response function for an infinite sum of modes, absorb-
ing the phase into a complex amplitude and paying more
careful attention to the response function, but we leave
such details for future work.

III. MODEL-INDEPENDENT MODIFICATIONS TO
THE INSPIRAL PHASE

We shall now consider leading-order deviations from
GR in the inspiral phase. In the restricted PN and stationary
phase approximations, the Fourier transform of the re-
sponse function can be written as (see e.g. Eq. (4.5) in [69])

~h IðfÞ � AIðfÞei�IðfÞ ¼ Aðt0Þ
2

1ffiffiffiffiffiffi
2 _F

p ei�ðf=2Þ; (12)

whereAðt0Þ is the time-domain amplitude evaluated at the

stationary point, defined via _�ðt0Þ ¼ �f, and overhead
dots stand for partial differentiation with respect to time.
F is the orbital frequency, and _F is its rate of change
evaluated at the stationary point Fðt0Þ ¼ f=2; recall that

2Note that the function Q as defined here differs from that
defined in [69] by a factor of 4.

3Though note that in [76] it was suggested that the exponent
might be closer to �5=6.
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f is the GW frequency. The quantity �ðFÞ is the GW
phase, which is given by (see e.g. Eq. (4.8) in [69])

�IðfÞ � ��

4
� 2�

Z f=2
dF0

�
2� f

F0

�
�ðF0Þ; (13)

where �ðFÞ � F= _F. The structure of Eq. (12) is generic for
any Fourier transform with a generalized Fourier integral
that contains a stationary point [70].

The orbital frequency and its rate of change completely
determine the Fourier transform of the response function in
the stationary phase approximation. The rate of change of
the orbital frequency is generically computed through the
product rule _F ¼ _EðdE=dFÞ�1, where EðFÞ is the orbital
binding energy. The quantity _E is calculated by invoking
the so-called balance law. This law states that the amount
of energy carried away in GWs is equal to the amount of
orbital binding energy lost by the binary system, i.e. _E ¼
�LGW, whereLGW is the GW luminosity. The luminosity
can be computed perturbatively in terms of a multipolar
decomposition of the effective energy-momentum tensor
of the system [78], which to leading order yields _E	
jd3Iij=dt3j2, where Iij is the reduced quadrupole moment

tensor of the binary.
We will consider GR modifications of the Fourier trans-

form of the response function during the inspiral arising
either from changes to the conserved binary binding energy
(the Hamiltonian, see e.g. [79] for a more precise defini-
tion), or changes to the energy balance law. The former are
essentially modifications to the conservative dynamics,
while the latter modifies the dissipative dynamics. We shall
tackle each of these corrections next.

A. Modifications to the binary Hamiltonian

The Hamiltonian for a binary system, or equivalently,
the binary’s center-of-mass binding energy, can usually be
expressed as a linear combination of kinetic energy T and
potential energy V: E ¼ TðpÞ þ Vðq; pÞ, where q and p
stand for generalized coordinates and conjugate momenta.
For a binary system, one can extract the Newtonian con-
tribution and rewrite such a generic Hamiltonian as

E

�
¼ v2

2
� M

r12
þ Vðv; r12Þ; (14)

where v ¼ jvi
1 � vi

2j is the relative velocity, � ¼ 
M is
the reduced mass, r12 is the orbital separation, andM and

are as before the total mass and symmetric mass ratio. The
quantity Vðv; r12Þ is some additional contribution to the
Hamiltonian that can be due either to relativistic effects, or
to non-GR contributions, for example, from additional
scalar or dipolar degrees of freedom. Of course, not all
functions V are allowed, since binary pulsar observations
have already verified GR in a quasiweak field, which trans-
lates into the requirement V � M=r12 � 1 when v � 1.

From such a Hamiltonian, one can derive a modified
version of Kepler’s third law (or equivalently Newton’s

second law), namely

!2 ¼ M

r312
þ 1

r12
�ðv; r12Þ; (15)

where! is the binary’s orbital angular frequency and� �
dV=dr12. We see then that modifications to the Hamil-
tonian and to Kepler’s law are not independent, as
expected.
Kepler’s law must be inverted to obtain the separation as

a function of angular frequency, which can then be inserted
into the Hamiltonian to obtain dE=dF. Although the un-
specified form of � does not allow an explicit inversion,
we can always write the inversion implicitly as

r12 ¼ M1=3!�2=3 þ �ð!Þ; (16)

where � is some function of ! determined from the
inversion of Eq. (15). As for ðV;�Þ, the quantity � must

also satisfy the condition � � M1=3!�2=3 in the weak
field.
One possible parametrization of � that satisfies the

above condition is

r12 ¼ Mx�1½1þ �1x
p
; (17)

where x � ðM!Þ2=3 is a PN parameter, while �1 and p are
dimensionless, real numbers. The parameters �1 and p
determine roughly where the non-Newtonian correction
to Kepler’s law begins to become important, and they
must be real since ! is real. Furthermore, the condition

that� � M1=3!�2=3 when x � 1 implies that p > 0 in the
inspiral phase. The choice of parametrization of � in
Eq. (17) is equivalent to choosing a parametrization for
the potential V in Eq. (14); with our choice one finds that

V ¼ � 3�1

1þ p
x1þp; (18)

to first order in x.
We have here chosen a parametrization for � that allows

an inversion analytically in terms of known functions. A
more general parametrization would be to add N terms
with exponents di;N > di;N�1 > � � �> p> 0. However,

the higher the exponent, the smaller its contribution, since
the inspiral phase must terminate outside the light ring
where in GR x < 0:4 (for simplicity, we here work with
one exponent only). In fact, in GR one finds that perturba-
tively

r12 ¼ Mx�1

�
1þ 1

3
xð
� 3Þ þ x2

�
19

4

þ 1

9

2

�

þ x3
�
� 24 257

2520

� 37

12

2 þ 2

81

3 þ 41

192

�2

þ 22

3

 ln

�
x0
x

���
; (19)

when x � 1 from Eq. (190) of [79], where here x0 is a
gauge parameter associated with harmonic coordinates.
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From the GR expression, we also infer that the constant �1

could depend on the system parameters, such as the mass
ratio. Also, �1 must depend on some non-GR coupling
intrinsic to the alternative theory, such that in the limit as
this parameter vanishes, one recovers the GR prediction.

The binary’s center-of-mass energy can now be ex-
pressed entirely in terms of the orbital frequency.
Requiring the circular orbit condition v ¼ r12!, we find

E

�
¼ 1

2
x½1þ �1x

p
2 � x½1þ �1x
p
�1 þ VðxÞ: (20)

In principle, we should not expand in x � 1, since we are
interested in corrections that could arise in the late inspiral
(though we know that even close to merger and in GR x <
0:4). To simplify the following analysis, we shall perform
this expansion regardless, as it only serves to motivate the
final ppE parametrizations, where x can take large values in
the late inspiral. Performing the x � 1 expansion, we find

E

�
¼ � 1

2
x

�
1þ

�
6

1þ p
� 4

�
�1x

p

�
(21)

and differentiating with respect to F ¼ !=ð2�Þ we obtain
dE

dF
¼ � 2�

3

M2x�1=2½1þ 2�1ð1� 2pÞxp
: (22)

The above considerations provide motivation to extrapo-
late a model-independent, non-GR parametrization for
dE=dF:

dE

dF
¼ � 2�

3
M2u�1=3½1þ �2u

q
; (23)

where we recall that u � �Mf ¼ 2�MF ¼ x3=2
3=5 for
circular orbits. We have simplified the above parametriza-
tion by introducing �2 � 2�1ð1� 2pÞ and q � 2p=3.
Such an expression resembles the PN expansion of GR,
which one can derive from Eq. (194) of [79]:

dE

dF
¼ � 2�

3
M2u�1=3

�
1þ u2=3
�2=5

�
� 3

2
� 1

6



�

þ u4=3
�4=5

�
� 81

8
þ 57

8

� 1

8

2

�

þ u2
�6=5

�
� 675

16
þ 34 445

144

� 205

24

�2

� 155

24

2 � 35

1296

3

��
: (24)

Similarly, the parameter �2 could depend on 
 but it must
also be proportional to a positive power of the alternative
theory couplings, such that when these vanish, one recov-
ers the PN expansion of the GR expectation.

B. Modifications to the energy balance law

The energy flux at infinity is usually calculated in GR by
assuming that the only source of radiation are GWs, so that

_E ¼ �LGW, where we recall that LGW is the GW lumi-
nosity. In alternative theories of gravity, however, there
could be additional sources of radiation from other prop-
agating degrees of freedom. The balance law then becomes
_E ¼ �LGW �Lother.
The calculation of the GW luminosity is generically

performed in two steps. First, one employs perturbation
theory to determine the effective (Isaacson) GW stress-
energy tensor [80,81], the time-time component of which
provides an expression for LGW in terms of time deriva-
tives of the metric perturbation hij. In GR, this expression

is schematically LGW 	 _hij _h
ij. Second, one performs a

multipolar decomposition of the metric into mass and
current multipoles [78], which are given by integrals over
the sources and for point sources are simply proportional to
their trajectories and velocities. In GR, one then schemati-
cally finds hij 	 €Iij=R, where Iij is the reduced quadrupole

moment and R is the distance to the observer. Combining
both steps into one single procedure, one finds that the GW
luminosity in GR is proportional to third time-derivatives

of the reduced quadrupole moment LGW / I
:::
ijI
:::ij.

In general, one can decompose the GW luminosity in a
superposition of mass and current multipole moments [78]

L GW / 	M
_M2 þ 	D

€Di
€Di þ 	QI

:::
ijI
:::ij þ � � � ; (25)

where M is the monopole of the system, D is its dipole
moment, and 	M;D;Q are proportionality constant for the

monopole, dipole, and quadrupole contributions, respec-
tively. The quantity 	M has the effect of renormalizing
Newton’s gravitational constant G, and thus can be
bundled together with 	Q. On the other hand, the quantity

	D is related to the self-binding energy of the gravitating
bodies, and it produces an independent contribution to the
GW luminosity. In GR, these two contributions (monopole
and dipole) identically vanish due to center-of-mass and
linear-momentum conservation. Evaluating Eq. (25) with
standard definitions of multipole moments for a binary
system [78], one finds to leading order

_E ¼ ��2M2

r412

�
8

15
ð	1v

2 � 	2 _r
2Þ þ 1

3
	DG2

�
�Lother;

(26)

where 	1;2 are the so-called Peters-Mathews parameters,

whose numerical value depends on the alternative theory
under consideration, while 	D is a dipole self-gravitational
energy contribution, with G the difference in self-
gravitational binding energy per unit mass (see e.g.
Eq. (10.84) in [7]). For example, in GR ð	1; 	2; 	DÞ ¼
ð12; 11; 0Þ, while in Brans-Dicke theory without a cosmo-
logical constant ½	1; 	2; 	D
 ¼ ½12� 5ð2þ!BDÞ�1;
11� 11:25ð2þ!BDÞ�1; 2ð2þ!BDÞ�1
 [7], where !BD

is the BD coupling parameter.
Using the modified Kepler’s law from the previous sub-

section, we can reexpress the power as a function of
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frequency only, namely

_E ¼ � 32

5

2x5

�
	1

12
ð1� 2�1x

pÞ

þ 5

96
	DG2x�1ð1� 4�1x

pÞ
�
�Lother; (27)

where we have set _r ¼ 0, corresponding to a circular orbit.
The dipolar term dominates over GR’s quadrupolar emis-
sion during the early inspiral, which explains why Brans-
Dicke theory, whose dominant signature is precisely dipo-
lar radiation (see Appendix A 1), has been constrained so
well by binary pulsar observations. On the other hand, the
modification to Kepler’s law becomes important as the
binary approaches the end of the inspiral phase, as ex-
pected since it is meant to model dynamical strong-field
corrections to GR.

The quantityLother serves to parametrize both additional
contributions from scalar or vectorial degrees of freedom,
as well as high-order curvature corrections to the GW
effective stress-energy tensor. In the case of the former,

one could, for example, have Lother ¼ L� / _�2, where �

is some scalar field that is activated when the binary
approaches the merger phase. In fact, such is the case in
dynamical CS-modified gravity (see Appendix A 3), where
the CS field becomes strongly sourced during the late
inspiral, plunge, and merger, as the Riemann curvature

grows. Here, one could, for example, have Lother ¼
LR?R / jI:::ij � ðrkI

:::
lmÞ2j2, an interaction that is absent in

GR.

C. Modified GW phase

We can now combine the results from the previous two
sections to find _F:

_F ¼ 48

5�M2
u11=3½ �	1 þ �3u

q þ �	Du
�2=3

þ ~Lotheru
�10=3
; (28)

where we have rescaled �	1 � 	1

12 , �	D � 5
96	DG2
2=5,

~Lother � 5
32Lother, and where the new constant parameter

�3 can be related to ð	1; �1; p; 
Þ, though the expression is
not particularly illuminating. We have also here dropped
second-order terms, such as the influence of the modified
Keplerian relation on dipolar emission. The parameter �	1

has the effect of renormalizing the value of G or c, which
would not be directly observable in a GW detection, as it
would be directly reabsorbed by physical quantities, like
the chirp mass (unless one possesses an electromagnetic
counterpart). The parameter �	D parametrizes dipolar devi-
ations and depends on the sensitivities of the bodies. The
parameters �k1 and q parametrize deviations from Kepler’s

law, while �Lother describes possible additional sinks of
energy.

We can now integrate Eq. (13) to obtain the modified
GW phase:

�IðfÞ ¼ ��

4
��c þ 2�ftc

þ 3

128�
u�5=3½ �	1 � �4u

q � ��	Du
�2=3


þ 10�M
48

Z f=2
�
2� f

F0

�
ðu0Þ�18=3 ~LotherdF

0;

(29)

where �4 and ��	D are new parameters that again can be
related to the old ones, though these relations are unillumi-
nating. As is customary, we have here linearized in the GR
corrections to be able to perform the integral analytically,
an approximation that is valid in the inspiral, although not
necessarily so in the plunge and merger. Note that the term
proportional to ��	D mimics the Brans-Dicke correction to

the GW phase, which is known to scale as u�7=3 [see
discussion around Eq. (A6)], while q ¼ �1 mimics the
effects of a massive graviton on the propagation of GWs,
which is known to scale as u�1 [see discussion around
Eq. (A10)].

D. Modified GW amplitude

The GWamplitude depends both on the amplitude of the
time-domain waveform evaluated at the stationary point
and the rate of change of the frequency _F. The latter has
already been parametrized in Eq. (28). The former, how-
ever, requires further study. In GR, the quadrupole formula
requires that

hij / 1

DL

€Iij; (30)

which leads to the following waveform amplitude to lead-
ing order for a binary system:

A ðtÞ ¼ � 4�

DL

!2r212Qð
; �Þ; (31)

where Qð
; �Þ is as defined after Eq. (5). Evaluating this
amplitude at the stationary point and using the modified
Keplerian relations of Eq. (17), we find

A ðt0Þ ¼ � 4M
DL

Qð
; �Þu2=3½1þ 2�1

�2p=5uq
: (32)

Combining this expression with Eq. (28), we find that AI �
j~hIj is equal to

AIðfÞ ¼ �
�
5

24

�
1=2

��2=3 M
�5=6

DL

Qð
; �Þf�7=6

�
�
�	1 þ ~kIu

q � 	D

2
u�10=3 � 1

2
~Lotheru

�10=3

�
;

(33)
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where ~kI is another constant and we now keep only the
leading-order corrections. Such an expression agrees iden-
tically with the GR expectation when �	1 ¼ 1 and all other
modified parameters vanish.

The above results hinge on the assumption that the
quadrupole formula in Eq. (30) holds to leading order in
the GR modification. In well-known alternative theories of
gravity, including scalar-tensor ones, Eq. (30) is indeed
valid to leading order, acquiring subdominant corrections.
These corrections can be modeled by the undetermined

function ~Lother, in the same fashion as in Sec. III B. Thus,
the generalization of Eq. (30) leads to redundancies in the
parametrization that we are after. In Sec. V we shall use the
insight gained from the analysis of this section to infer a
generalized parametrization for a model-independent
modification of the inspiral gravitational waveform.

IV. MODEL-INDEPENDENT MODIFICATIONS TO
THE MERGER AND RINGDOWN PHASE

A. Merger phase

Let us now consider leading-order deviations from GR
first during the merger and then the ringdown phase. The
merger phase is the least understood regime of a binary
coalescence, because no controlled approximation scheme
can be employed to solve the field equations. In GR,
numerical simulations of the merger of two, nonspinning,
equal-mass BHs has produced the phenomenological fit

~hMðfÞ / u�2=3eicMðfÞ; (34)

where the phase is a linear function �MðfÞ ¼ �þ �u.
Comparing to the results of Sec. II we find that � ¼ ��0

and � ¼ 2�t0M�1. Linearity in the phase can be assumed
due to the short duration of the merger phase (usually less
than two GW cycles for BHs). This functional form is an
approximate fit and found only a posteriori, i.e. after a full
numerical solution has been obtained.

Lack of formally derivable analytic approximations of
the merger waveform is not exclusive to GR. Furthermore,
due to the dearth of numerical studies of this regime in
alternative theories (but see [82] for promising plans to
explore mergers in scalar-tensor theories), little guidance
can be found on how the merger regime may differ from
GR. How do we then parametrize model-independent cor-
rections of the merger waveform when we possess no
analytic or numerical guidance? For lack of a better pre-
scription, we will here assume that the waveform produced
during the merger can adequately be described as an inter-
polation between the inspiral and the ringdown wave-
forms. This is a good approximation to GR waveforms,
and hence is a rather conservative approach to a ppE
extrapolation. Specifically then, we propose

~hMðfÞ ¼
X1
n¼0

�M;nu
cM;neið�þ�uÞ; (35)

where �M;n and cM;n are an infinite set of undetermined

parameters. We shall here keep only one term in the poly-
nomial, setting �M;0 ¼ �, cM;0 ¼ c and all other amplitude

parameters to zero, while we shall leave � undetermined in
the phase. The parameters ð�; �Þ are set by requiring con-
tinuity between the inspiral-merger interface at u ¼
uIM: � ¼ AIðfIMÞu�c

IM and � ¼ �IðfIMÞ � �uIM. The
choice of a single term in the power-series representation
of the Fourier transform of the merger response function
forces us to consider coalescences with prompt mergers.
Delayed mergers can occur, for example, with exotic com-
pact objects such as boson stars [83], in a process akin to
delayed-collapse scenarios in NS mergers. Of course, addi-
tional terms could be added to the series of Eq. (35) to
account for such scenarios, however for simplicity here we
will restrict attention to prompt mergers.

B. Ringdown phase

Let us now consider the leading-order modification to
GWs that could be produced during the post-merger phase
due to alternative theory corrections. GWs emitted in this
stage are produced by oscillations in the remnant space-
time as it settles down to its final equilibrium configuration.
Simulations show that in GR the ringdown very quickly
becomes linear, and we will assume the same here for the
ppE expansion. In GR, the metric perturbation in general is
a sum of quasinormal ringdown (QNR) modes, which are
exponentially damped sinusoids, and so-called tail terms,
which are constant phase solutions that decay via a tem-
poral power law. The QNR modes dominate the early-time
post-merger waveform, which is why we label this phase
the ringdown phase.
We can write the ringdown time-domain response func-

tion as

hRDðtÞ ¼ ARDðtÞ cos½�RDðtÞ
; (36)

where the phase is purely real and the amplitude is a
decaying function of time. Because of the assumed linear-
ity, we can then decompose the amplitude and phase into a
sum of harmonics hRD ¼ P

n;‘;mA
n‘m
RD ðtÞ cos½�n‘m

RD ðtÞ
,
where ð‘;mÞ labels a spheroidal harmonic mode, and n is
an integer describing the overtone of the given mode. For
the QNR component of each mode, the amplitude is a
decaying exponential

QNRAn‘m
RD ðtÞ ¼ �ðtÞAn‘m

0 e�t=�n‘m ; (37)

where �n‘m is the decay constant of the mode, �ð�Þ is the
Heaviside function that guarantees the waveform is well-
defined at negative infinite time, and An‘m

0 is some constant

amplitude determined by continuity with the merger phase,
which as such must depend on the beam-pattern functions.
The phase of each QNR mode is

QNR�RDðtÞ ¼ 2�f‘mnt; (38)
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where f‘mn is the real quasinormal frequency of the
ðn; ‘;mÞ mode.

In GR, the Fourier transform of the QNR component of
the ringdown waveform is thus a sum of Lorentzian-like
functions:

QNR ~hRDðfÞ ¼
X
n‘m

An‘m
0

2
ðbþ þ b�Þ;

bþ;� ¼ �n‘m
1þ 4�2�2n‘mðf� fn‘mÞ2

:

(39)

This result can be obtained by rewriting the cosine in
Eq. (36) as a sum of complex exponentials using Euler’s
formula, and then following the doubling prescription of
[84], where one essentially replaces t=�‘mn ! jtj=�‘mn in
the Fourier integral and then multiplies the result by a
correction factor that accounts for the doubling [30].

Tail terms in the post-merger waveform are induced
either by linear interactions between the GWs and the
background, or nonlinear behavior right after merger.
Linear tails have a long history in GR [85–87] and they
are controlled by the asymptotic form of an effective
potential far from the source. Such tails depend on the
harmonic one is looking at but generically for a
Schwarzschild background they can be parametrized by

tailAn‘m
RD ðtÞ ¼ An‘m

0 t�ð2‘þ3Þ; tail�n‘m
RD ðtÞ ¼ 0: (40)

Recently in [88] it was suggested that ‘‘nonlinear tails’’
could be produced during merger. Such tails are structur-
ally similar to the linear ones, except that one replaces the
power 2‘þ 3 ! b, where b is some positive integer. In
this case, the Fourier transform is given by

tail ~hRDðfÞ ¼
X
n‘m

� i�An‘m
0

ð�2�ifÞb�1

ðb� 1Þ! ; (41)

for positive frequencies (the Fourier transform for a
Schwarzschild linear tail can be easily inferred from the
above equation). In GR then, one expects the complete
ringdown GW to be a superposition of QNR terms and tail
terms, leading to a Fourier transform that is the linear
combination of Eqs. (39) and (41).

What generic type of modifications could we expect
from alternative theories of gravity? One possibility would
be to modify the power in the exponential damping part
of the ringdown, i.e. in Eq. (39) expð�t=�n‘mÞ !
expð�ta=�an‘mÞ, with a positive real number. However, a �
1 does not seem to be very ‘‘natural,’’ and would signifi-
cantly complicate the analysis. For this study we simply
keep a ¼ 1. Another possible modification is to correct the
tail behavior of the ringdown waves. Linear tails, however,
are predominantly controlled by the dominant 1=r behav-
ior of an effective potential in the far-field field, which in
turn depends on the 1=r behavior of the background metric
tensor. If we require that all stable post-merger metric
tensors approach the Schwarzschild solution at late times

in the far field (by Solar System tests), it is unclear how
much linear tails would be modified by nonlinear terms in
the gravitational field. On the other hand, nonlinear tails
could be modified in alternative theories of gravity, as
suggested in [89,90]. Nonetheless, alternative theory cor-
rections to either linear or nonlinear tail terms can both be
parametrized by some undetermined power b, leading to
the Fourier transform shown in Eq. (41).
For simplicity then, we will propose a modified ring-

down waveform with a similar functional form as the GR
result given in Eq. (39), though allow the decay constants,
frequencies, and powers to take on non-GR values.

V. PARAMETRIZED POST-EINSTEINIAN
FRAMEWORK

In this section we collate the results from the previous
sections to construct ppE extensions of the inspiral,
merger, and ringdown waveform segments of a binary
merger. In each of these phases, we shall divide this task
into the construction of a ppE phase and a ppE amplitude,
such that the waveform is given by

~h
ppE
A � A

ppE
A ðfÞ exp½i�ppE

A ðfÞ
; (42)

where A ¼ ðI;M;RDÞ for the inspiral, merger, and ring-
down phases, respectively. Then, we shall put these wave-
forms together to construct a ppE waveform for the entire
coalescence. We conclude this section with a discussion of
the data analysis cost incurred due to the addition of ppE
parameters to the waveform.

A. Inspiral

Let us employ the insight gained by the analysis of
Sec. III to propose inspiral ppE waveforms. Consider
then the ppE-GW phase, a generic form of which can be
extrapolated from Eq. (29). One simple parametrization for
the test system is the following:

�ppE;1
I ðfÞ ¼ ��

4
��c þ 2�ft0 þ �ub

þ u�5=3
X7
k¼0

c PN
k uk=3; (43)

where c PN
k are PN phase coefficients, some of which are

given in Eq. (6), while � and b are ppE parameters. Such a
parametrization allows one to easily map between BD GW
modifications and massive graviton ones, through the pa-
rameter choices ð�; bÞ ¼ ð�BD;�7=3Þ and ð�; bÞ ¼
ð�MG;�1Þ respectively.
One generalization would be to allow more than one

alternative theory to be modeled simultaneously by the ppE
waveform. With the test system in mind, such an idea
suggests
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�
ppE;2
I ðfÞ ¼ ��

4
��c þ 2�ftc þ �u�7=3 þ �u�1

þ �ub þ u�5=3
X7
k¼0

c PN
k uk=3: (44)

The benefits of this parametrization is that it explicitly
incorporates the GW phases predicted by alternative theo-
ries, as well as the PN prediction, while allowing, through
the ub term, for new alternative theory modifications that
have not yet been developed. Note however that now we
have introduced a degeneracy into the waveforms; i.e.
when b ¼ �7=3, waveforms along the line �þ � ¼
const are identical. In a sense then this is a nonoptimal
expansion.

A better suggestion might then be to postulate

�
ppE;3
I ðfÞ ¼ ��

4
��c þ 2�ftc þ u�7=3

X9
k¼0

�ku
k=3:

(45)

The controlling factor in the phase expansion has been
modified to �7=3 instead of �5=3 to allow for dipole
radiation. The phase parameters�k can take on any values;
the ppE-GR templates will be those where �k ¼ c PN

k .

Continuing in this vein then, the most general expansion
we propose here for the phase is the following:

�
ppE;4
I ðfÞ ¼ ��

4
��c þ 2�ftc þ

XN�1

k¼0

�ku
bk ; (46)

where now �k and bk are each a set of N ppE parameters.
The ppE-GR templates are those with �k ¼ c PN

k , and

bk ¼ ðk� 5Þ=3. Again, this family can also capture the
inspiral phase of several well-known alternative theories
(see Appendix A) with appropriate choices of the parame-

ters. The parametrizations in �
ppE;3;4
I are a generalization

of the studies in [25,56,57], except that we here allow for
non-GR exponents in the u-dependence of the phase that
could model dynamical strong-field corrections to GR.

Now let us concentrate on amplitude parametrizations.
A generic form for the amplitude that can be extrapolated
from Eq. (33) is the following:

A
ppE
I ðfÞ ¼ �

�
5

24

�
1=2

��2=3 M
5=6

DL

Qf�7=6½1þ �ð��
GRÞua
:

(47)

The quantities �ð��
GRÞ and a are a ppE function and

parameter, respectively, where the former could depend
on the GR parameter vector �

�
GR ¼ ½M; 
; Fþ;�Þ
. Such a

non-GR deformation of the GW amplitude is not degener-
ate with high-order PN corrections, since these scale with
higher harmonics of the GW signal, instead of the funda-
mental mode. Moreover, such a parametrization reduces to
well-known alternative theory predictions, such as CS-
modified gravity when a ¼ 1 and � reduces to the second

term in Eq. (A18). Of course, one could in principle
introduce N terms to the GW amplitude with different
frequency exponents, though for simplicity we will not
do so here; furthermore, GW detectors are most sensitive
to phase, so there might be less to gain by introducing
expansive amplitude modifications.

B. Merger and ringdown

Here we employ the considerations discussed in Sec. IV
to construct a ppE waveform that models the merger and
ringdown phase in a non-GR, model-independent fashion.
For the merger phase, we have [see Eq. (35) with Eq. (42)]

AppE
M ðfÞ ¼ �uc; �ppE

M ðfÞ ¼ �þ �u: (48)

The ppE parameters during the merger are then the real
numbers ðc; �Þ, while the parameters ð�; �Þ are set by
requiring continuity with the inspiral phase. When the
ppE parameters are ðc; �Þ ¼ ð�2=3; 2�t0M�1Þ one recovers
the GR prediction for the test system.
A simple proposal for a ppE parametrization of the

ringdown waveform is

AppE;1
RD ðfÞ ¼ �

�

1þ 4�2�2	ðf� fRDÞd
; (49)

with�ppE
RD ¼ 0, and where fRD and � are the dominant QN

frequency and decay time, 	 is a real ppE function of the
final mass of the remnant, d is a real ppE parameter, the
quantity � is determined by continuity with the merger
phase, and where we have chosen the transition to occur at
the fundamental ringdown mode fMRD ¼ fRD. This mod-
els the ringdown with a single decaying mode, although
even in GR there are an infinite number of such modes
excited during ringdown (a possibility we analyze below).
A more general ringdown waveform is as follows [91]:

AppE;2
RD ðfÞ ¼ X

‘;m;n

�
�‘mn

1þ 4�2�2‘mn	ðf� �f‘mnÞd
; (50)

where �f‘mn and �‘mn are the frequency and damping time
of the (n‘m)-th mode, while the ppE function 	 and
parameter d are assumed mode-independent. One could
in principle postulate different ppE parameters for different
modes, but this would introduce an immense number of
such parameters, not all of which would necessarily be
independent.
Traditionally, suggested tests of alternative theories of

gravity using ringdown GWs are based on the ‘‘no-hair’’
theorem of GR. This theorem states that given the mass and
angular momentum of a perturbed BH, all frequencies and
damping times of the waveform are determined. For ex-
ample, in GR the (220) mode is given by [77,92]

M!220 	 1:5251� 1:1568ð1� aÞ0:1292;
Q220 	 0:700þ 1:4187ð1� aÞ0:4990;

(51)

where the total mass of the remnant is M, the spin Kerr
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parameter of the remnant is a � J=M2, and we have
defined the quality factorQ‘mn � !‘mn=ð2�‘mnÞ. The stan-
dard no-hair test assumes that two modes have been de-
tected, the first of which can be used to determine a andM,
while the second one can be used to check for consistency
through equations similar to those above for additional
modes. The violation of the two-hair theorem is common
in alternative models for compact objects [31]. With the
parametrization of Eq. (50), no assumption has been made
about the relation between different ‘mn modes, and thus,
such a test is still possible.

One fact that should be kept in mind is that the strength
of decay of the QNR modes (i.e. the scaling of �‘mn with
harmonic number) depends strongly on how exotic the
compact object is. In GR, the first quasinormal mode is
dominant because �‘mn increases rapidly with n, ‘, and m.
This is not the case, for example, with boson stars [31]; in
such objects there are classes of modes with comparable
damping times, yielding a signal that cannot be extracted
with one (or a small set) of modes. We shall not concern
ourselves with this issue here, beyond pointing out that
some strategies have been developed to deal with it [30].

C. The complete ppE waveform

In summary then, the complete ppE waveform we have
proposed takes on the following piecewise continuous
form:

~hðfÞ ¼

8>><
>>:

~hppE;AI ðfÞ for f < fIM;
~hppEM ðfÞ for fIM < f < fMRD;
~h
ppE;B
RD ðfÞ for f > fMRD;

(52)

where A is any of A ¼ ½1; . . . ; 4
 and B is any of B ¼ ½1; 2
.
All pieces of the waveform are decomposed into an am-
plitude and a phase with the structure of Eq. (42). During
the inspiral, the amplitude is given by Eq. (47), while the
phase can be any of Eqs. (43)–(46), depending on the level
of bias one wishes to allow for. During the merger, the
amplitude and phase are given by Eq. (48), while in the
ringdown the phase is zero and the amplitude is given by
either Eq. (49) or (50) depending on the level of generality
desired. The quantities fIM and fMRD are the inspiral-
merger and the merger-ringdown frequency transitions,
respectively. These quantities can also be considered ppE
parameters, or alternatively fIM and fMRD can be set to the
light-ring frequency and dominant ringdown mode of the
corresponding remnant ppE-GR BH, for example.

Note that these waveforms are not analytic; they are
continuous but nondifferentiable at the patching frequen-
cies between the phases. Of course, if desired, ppE families
with higher levels of differentiability could be constructed,
though our main goal here was to introduce the ppE frame-
work with a simple (yet potentially useful and relevant)
model.

Furthermore, one could easily extend these waveforms
with additional ppE parameters to try to capture larger
classes of deviations from GR. However, there is an in-
creasing price one must pay the more parameters are added
to a fitting routine: an increase in the number of filters
needed and a deterioration in the accuracy of parameter
estimation. The extra computational cost needed to deal
with additional parameters could be prohibitively high. For
example, one can show that the introduction of one single
extra parameter to ringdown waveforms increases the num-
ber of required templates to cover the parameter space
from 500 to 106 in a frequentist, matched-filtering scheme
[93]. In view of this, one must ensure that additional
parameters included are truly well-motivated, as it is ex-
plained in the Appendixes.
At first glance, another potential problem with these ppE

templates, were they to be used directly for GW searches of
equal-mass, binary BH inspirals, is they do contain some
modeling error, i.e. with all ppE parameters set to their GR
values, the waveforms will not exactly describe the merger
event in GR. In principle one can construct ppE waveforms
with as small a modeling bias as desired, though this may
not be practical, in particular, if hybrid waveforms using
numerical solutions for the late inspiral and merger phase
of the waveforms are needed. The numerical waveform
segments will only be known as sets of numbers—either
direct samplings of the simulation waveforms, or coeffi-
cients of some truncated series expansion fit to the latter—
and it is unclear how such waveforms could then be
extended in any well-motivated, model-independent man-
ner as done here.
However, as discussed in the introduction, we do not

propose to use the ppE templates for direct detection, but
rather in post-analysis after a detection has been made with
GR templates. Some modeling error is then not much of an
issue, other than possibly limiting the accuracy with which
the given ppE family can measure deviations from GR.
Also, there are alternative techniques to ‘‘brute-force’’
matched filtering that would alleviate some of the prob-
lems with increased numbers of parameters, though we
leave further study of this in the context of the ppE frame-
work to future investigations [94].

VI. CONCLUSIONS

In this paper we have considered the notion of funda-
mental bias in GW astrophysics. The main source of this
bias is the assumption that GR correctly describes GW
physics throughout the generation of the waves, and their
subsequent propagation. If GR is wrong in the dynamical
strong-field regime, a region yet to be constrained by
observational tests, and templates based solely on GR are
used, such a bias could cause wrong inferences to be made
about the population and nature of corresponding sources
in the Universe.
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We have introduced the parametrized post-Einsteinian
or ppE framework to help remedy this problem of funda-
mental bias for classes of sources that do not deviate too
radically from GR to prevent detection with GR templates.
The ppE framework introduces non-GR parameters in the
waveform to model non-GR deviations, in analogy to the
ppN framework developed for Solar System tests. As an
example, we focused on one source for which there is good
observational evidence that GR correctly describes (most
of) the event: the quasicircular inspiral, merger, and ring-
down of equal-mass, nonspinning BH-like objects. Each
ppE parameter is ostensibly selected to characterize a
violation of some fundamental GR property or principle,
for example, emission of dipole radiation; we were fur-
thermore careful to choose parameters so that the ppE
template family would be sensitive to known effects of
certain theories of gravity, as reviewed in Appendix A.

The acknowledgment of bias and the formal introduc-
tion of the ppE framework opens up an entire new set of
possible studies, as discussed at the end of Sec. I F.
Depending on whether the signal is a GR or non-GR one
and whether the template is a GR or ppE one, one can
attempt to answer several important questions that are
critical to data analysis. For example, with a non-GR signal
and a GR template, one can determine how much system-
atic error induced by fundamental bias might contaminate
parameter estimation and perhaps even signal extraction
(depending on SNR). Alternatively, given a non-GR signal
and a ppE template one can attempt to determine how well
GW observations can truly constrain generic GR devia-
tions. Through a systematic refinement of the ppE frame-
work and the development of different ppE template
families appropriate for different sources (spinning BH
binary coalescences, extreme-mass and intermediate-
mass ratio inspirals, etc.), we shall thus be able to deter-
mine the true potential of GWobservations to constrain our
standard model of the gravitational interaction.

There are numerous additional avenues to be explored
here. Several include studying the systematic errors fun-
damental bias could introduce on inferences about a popu-
lation of detections made with pure GR templates (i.e.
question 1 in Sec. I C), designing ppE families for addi-
tional events (larger classes of binary BH mergers, binary
NS or NS/BH mergers, NS oscillations, etc.), refining the
proposed ppE detection pipeline discussed in the introduc-
tion, and exploring how strongly particular alternative
theories may be constrained using ppE templates.

In addition, it would be very useful to understand how
the merger phase in compact object coalescence differs in
alternative theories. Such an understanding can only be
gained via numerical simulations of such merger events in
alternative theories that possess well-posed initial bound-
ary value problems. This would give some indication of
whether a simple interpolation between inspiral and ring-
down would suffice, or if not, give guidance on how to
model this phase in a ppE fashion.

The proposed ppE framework could also become more
powerful if coupled to coincident electromagnetic detec-
tions, for those events that also emit photons. In such a
case, some of the system parameters, for example, the mass
and the luminosity distance, could be independently (elec-
tromagnetically) determined, thus reducing the full (sys-
tem plus ppE) parameter space and allowing for a more
accurate measurement of ppE parameters. Electromagnetic
observations, however, might also be affected by some of
the GR modifications discussed here. A fruitful direction
for future research would then be to map the ppE parame-
ters introduced here to modifications of electromagnetic
observations.
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APPENDIX A: A BESTIARY OF ALTERNATIVE
THEORIES OF GRAVITY

In this appendix we shall provide a brief review of some
well-known alternative theories of gravity. We refer the
reader to the extensive references cited in this appendix for
further reading.

1. Scalar-tensor theories and Jordan-Brans-Dicke-
Fierz theory

Scalar-tensor theories modify the action by the inclusion
of a scalar field c that couples to the Einstein-Hilbert term
with a field-dependent coupling function Að’Þ and a po-
tential Vð’Þ, namely (see e.g. [6,7] for details):

SST ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�g
p ½R� 2’;�’;� � Vð’Þ


þ Smat½c mat; A
2ð’Þg��
; (A1)

where commas stand for partial differentiation, g is the
determinant of the Einstein metric g��, Smat is the action

for c mat, and we have neglected the cosmological constant
term. The scalar-tensor theory action as written in Eq. (A1)
is sometimes said to be in the Einstein frame [95,96].
The action as written in Eq. (A1) might seem to define a

nonmetric theory, because the external matter degrees of
freedom c mat couple both to the metric tensor and to the
scalar field ’ [6]. As we explain below, however, scalar-
tensor theories are indeed metric as the scalar field acts
only as a mediator that influences the metric, but it is the
latter that determines the motion of external matter fields.
By performing the conformal transformation ~g�� ¼
A2ð’Þg�� we can map the above action into
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SST ¼ 1

16�G

Z
d4x

ffiffiffiffiffiffiffi�~g
p �

�R�!ð�Þ
�

�;��;� ��2V

�
þ Smat½c mat; ~g��
; (A2)

which is clearly a metric theory. In Eq. (A2), the new field
� is defined via � � A�2, the coupling field !ð�Þ is
defined as ! � ð��2 � 3Þ=2, where � � A;’=A. Equa-
tion (A2) is sometimes said to be in the Jordan frame
[95,96].

Variation of the action with respect to the metric and the
scalar field leads to the modified field equations [7,97],
which in the Jordan frame are

h� ¼ 1

3þ 2!ð�Þ
�
8�Tmat

�� � d!

d�
�;��

;�

�
;

G�� ¼ 8�

�
T�� þ !

�2

�
���� � 1

2
g���

;��;�

�

þ 1

�
ð�;�� � ~g��h�Þ;

(A3)

whereh ¼ ~g��@�� is the d’Alembertian operator and Tmat
��

is the matter stress-energy tensor. Because of the form of
the modified field equations, scalar-tensor theories are
sometimes thought of as modifying Newton’s gravitational
constant via G	 1=�. When the coupling!ð�Þ ¼ !BD is
constant, then the scalar-tensor theory reduces to BD the-
ory [98].

Scalar tensor theories satisfy all of the necessary criteria
we discussed in the introduction. First, scalar-tensor theo-
ries can be written as purely metric theories, as shown
above. Second, these theories reduce exactly to GR in the
limit !BD ! 1, and thus, it passes all precision tests for a
sufficiently large coupling. As for the dynamical strong-
field behavior, one might expect the gradients of the scalar
field to become large close to merger, although scalar-
tensor theories are not built to introduce high-order curva-
ture corrections. Early studies of scalar-tensor theories in
NSs suggest that the dynamical strong-field behavior can
be greatly modified, a process sometimes called sponta-
neous scalarization [22,99].

The additional theoretical criteria discussed in the in-
troduction are also satisfied by scalar-tensor theories. Such
theories have been shown to be well-posed as an initial
value problem [100,101]. Moreover, BD theory has been
shown to possess stable Schwarzschild-like BH solutions
that pass all precision tests [97] for sufficiently large
coupling. Finally, scalar-tensor theories are well-motivated
from the low-energy effective theory limit of string theory.
More precisely, when one integrates out all the string
quantum fluctuations, one finds that the higher-
dimensional string theoretical action reduces to a local
field theory similar to a scalar-tensor theory [102,103].
The mapping between scalar-tensor theories and string
theory is � ¼ e�2c , where c is the dilaton field that
couples to matter via mðc Þ ¼ �m expð�c Þ, where �m is a

constant and � mediates the dilatonic coupling. By requir-
ing the strong equivalence principle to hold, one can show
that the action takes the form of Eq. (A2) in the Jordan
frame with ! ¼ ð1=�2 � 12Þ=8 [102,103].
Scalar-tensor theories can also be mapped to the recently

popular fðRÞ class of theories. In the latter, one modifies
the Einstein-Hilbert action by replacing the Ricci scalar by
some functional of this quantity. Of course, such an action
defines an infinite class of theories as fðRÞ is arbitrary.
Such arbitrariness removes a certain amount of predict-
ability from fðRÞ theories. Moreover, one can show that
fðRÞ theories are equivalent to BD theory with !BD ¼ 0,
via the mapping � ¼ dfðRÞ=dR and Vð�Þ ¼
RdfðRÞ=dR� fðRÞ [104,105]. Because of its reduced pre-
dictability and equivalence with BD theory, we shall not
consider fðRÞ theories further in this paper.
The emission and propagation of GWs in scalar-tensor

theories is different from that in GR. The main effect of BD
theory is the emission of monopolar and dipolar energy,
which modifies the GW flux formula via _E ¼ _EBD þ _EGR,
where the dominant BD correction is dipolar and of the
form [17,23,106]

_E BD ¼ � 2

3


2M4

r412

S2

!BD

; (A4)

where we recall thatM ¼ m1 þm2 is the total mass, r12 is
the binary orbital separation, and 
 ¼ m1m2=M

2 is the
symmetric mass ratio. The quantity S is a function of the
sensitivity of the compact objects, related to the self-
gravitational binding energy per unit mass, which is deter-
mined by the equation of state. Such a modification arises
because BD theory also corrects the compact object’s
effective mass, causing the location of the center of gravi-
tational binding energy to disagree with the center of
inertial mass. The effective mass now depends on the
internal structure of the bodies, thus violating the strong
equivalence principle. Although for pure NS binaries or
pure BH binaries this effect is either small or identically
cancels, it does not vanish for mixed (BH-NS) binaries.
The Fourier transform of the GW metric perturbation is

greatly affected by the BD modification to the GW flux
formula, since this propagates into modifications to the
evolution of the orbital radius and GW frequency. One
can show that the transform of the response function
(defined in Sec. II) takes the form [17,23,106]

~h BD ¼ ~hGRe
i�BD ; (A5)

where ~hGR is the Fourier transform of the response function

in GR. The Brans-Dicke phase correction, �BD ¼
��BDu

�7=3, where we recall that u ¼ �Mf is the dimen-
sionless frequency parameter, the chirp mass M �

3=5M, and the Brans-Dicke phase parameter

�BD � 5

3584

S2

!BD


2=5; (A6)
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neglecting terms of Oð!�2
BDÞ. Note that in the limit !BD !

1 one recovers GR. In the Solar System, Doppler tracking
of the Cassini spacecraft has led to the (2�) constraint
!BD > 4� 104 [58]. Studies have suggested that a GW
detection could place constraints on !BD that are 1 or 2
orders of magnitude larger than the Cassini one [17–
19,23,24].

GWs in scalar-tensor or BD theory are not restricted to
having only two polarizations, namely, these theories also
allow for a breathing mode. GW detectors, however, are
not directly sensitive to breathing modes due to the ge-
ometry of the interferometer. In spite of this, GW detectors
will be indirectly sensitive to these modes, since they will
carry energy away from the binary and thus naturally lead
to a modification of the energy balance law. The correction
to the GW amplitude, and thus the GW response function,
however, is subdominant since it leads to Oð1=!BDÞ cor-
rections to the GR prediction [107].

Apart from the inspiral phase, the merger and ringdown
phases are also modified in scalar-tensor theories. The
ringdown phase has been analyzed in [108], where it was
found that the QNR frequencies in NS mergers are shifted
in such theories. The plunge and merger regime have not
yet been studied, although one expects the largest GW
modifications to arise in this region. In fact, [99] has shown
that dynamical strong-field gravity effects in scalar-tensor
theories can greatly affect NS parameters and their
oscillations.

2. Massive graviton theories

Massive graviton theories is the name given to models in
which the gravitational force is propagated by a massive
gauge boson, i.e. a graviton with massmg � 0 or Compton

wavelength �g � h=ðmgcÞ<1. In GR, GWs can be

thought of as massless gravitons propagating at the speed
of light. If the gravitons possess a finite Compton wave-
length, however, GWs will travel at velocities less than the
speed of light. When we refer to massive graviton theories
in the main text of this paper, we really mean corrections to
the propagation of GWs as induced by an effective graviton
mass.

On a classical effective level, several theoretical frame-
works exist where GWs propagate at speeds less than that
of light [109–111]. One example is Rosen’s bimetric the-
ory [109], where gravitons follow null geodesics of some
fiducial metric 
��, while light follows null geodesics of

some other metric g�� [6,7]. A similar, more recent ex-

ample is Visser’s massive graviton theory [110], where the
graviton is given a mass at the cost of introducing a non-
dynamical background metric, i.e. a prior geometry.
Another recent example is TeVeS theory [111], where the
introduction of a scalar and a vector field leads to sublu-
minal GW propagation.

Apart from the above effective, phenomenological mod-
els, quantum gravitational theories exist that also suggest

gravitons could have a mass, such as, for example, loop
quantum cosmology (LQC) [112,113]. In LQC, the disper-
sion relation of propagating tensor modes acquires holon-
omy corrections during loop quantization, which lead to

a mass [114] mg ¼ ��1=2��1ð�=�cÞ, where � is the

Barbero-Immirzi parameter, � is related to the area opera-
tor, and � and �c are the total and critical energy density,
respectively. In string theory inspired effective theories, the
four-dimensional graviton might also acquire a mass if
there are compact, extra dimensions [115]. Unfortunately,
a complete action for such a string theoretical-inspired,
massive graviton theory that remains covariant and free of
the van Dam-Veltman-Zakharov (vDVZ) discontinuity (in
the limit asmg ! 0, the effective theory does not reduce to

GR) remains elusive.
Massive graviton theories do not generally satisfy any of

the criteria described in the introduction. Some of these
models, including the string-theory inspired ones
[115,116], are not weak-field consistent due to the vDVZ
discontinuity. Moreover, most of these models unavoidably
need to postulate the existence of prior geometry, making
them Lorentz violating and forcing them to violate the
strong equivalence principle. Finally, the main effect of
massive graviton theories is to modify GW propagation,
which is by definition a weak-field effect. Needless to say,
due to these problems, only limited effort has gone into the
study of stable solutions [117] or Cauchy well-posedness,
although the latter is unlikely to be generically satisfied.
In spite of such fundamental problems, the GW com-

munity has been interested in GW propagation tests of
massive graviton theories because they hold the potential
to constrain a formally quantum gravitational effect. Such
tests postulate the phenomenological, special-relativistic
parametrization [14]:

vg ¼
�
1�m2

g

E2
g

�
1=2 	 1� m2

g

2E2
g

; (A7)

where Eg is the energy of the graviton, vg its speed, and the

second equality arises in the limit of mg=E � 1. Such a

modified dispersion relation leads to a modified relation
between graviton time of emission and arrival [14]:

�ta ¼ ð1þ zÞ
�
�te þ D

2�2
g

�
1

f2e
þ 1

f02e

��
; (A8)

where fe and f
0
e are the frequencies of the two gravitons at

emission and D=DL 	 1� zþOðz2Þ in the limit of low
redshift [14]. Such a change in the time of arrival leads to a
modified Fourier transform of the response function [14]

~hMG ¼ ~hGRe
i�MG ; (A9)

where the massive graviton correction is �MG ¼
��MGu

�1 with
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�MG ¼ �2DM
�2
gð1þ zÞ : (A10)

As before, M � 
3=5M is the chirp mass, where M is the
total mass and 
 is the symmetric mass ratio.

There are numerous suggestions on how GW detections
could be used to place bounds on �g [14–21,118,119].

Such tests could lead to constraints as strong as present
weak-field bounds, the best of which is mg < 3:6�
10�25 eV [15] or equivalently �g > 3:4� 1015 km [59]

from pulsar timing observations.
Another feature of a massive graviton that is usually

neglected is its effect on Newton’s second law. A general
property of massive graviton theories is the introduction of
a Yukawa-like suppression of the gravitational potential
[14]

VMGðrÞ ¼ M

r
e�r=�g : (A11)

Such a modification is sometimes referred to as a fifth
force, which has led to the Solar System bounds on mg

cited above [120]. A slightly more general parametrization
of the above Yukawa-like correction to the Newtonian
potential is

VMGðrÞ ¼ �M

r
ð1þ �MGe

�r=�gÞ; (A12)

where �MG is an undetermined parameter. Gravitational
theories with compactified extra dimensions give such
corrections to the effective four-dimensional gravitational
potential, where �MG depends directly on the compactifi-
cation [121]. Regardless of the Yukawa parametrization,
GWs will also sense this modified potential as a change in
the frequency evolution, although the correction is likely
suppressed by the ratio of the binary separation to the
graviton Compton wavelength.

One last important effect in massive graviton theories is
the appearance of three additional longitudinal modes (see
e.g. [122]). Such an effect seems unavoidable if the mas-
sive graviton correction to the action is of Pauli-Fierz type
[122]. Longitudinal modes arise due to the nonvanishing of
the NP scalars �2 and �3, and can be associated with the
presence of spin-1 particles.

Under the influence of longitudinal GWs, a circular
arrangement of test particles will be deformed along the
direction of propagation (see [7] for a graphical represen-
tation), which could lead to significant biases in GW
astronomy. Consider, for example, a situation where a
GW is observed by a network of detectors, such that the
inclination angle can be extracted with some accuracy. If
GWs were longitudinal instead of transverse, the estima-
tion of the inclination angle could have considerable sys-
tematic errors. If there are observed electromagnetic
counterparts, for example, if binary NS mergers cause
gamma-ray bursts (GRB), such a bias might be noticed

with coincident detections. However, if only the GRB is
observed, and its sky location is used to search for a
corresponding GW event, the latter could be missed if
most of the energy was emitted in a longitudinal wave
not accounted for in the post-analysis.

3. Chern-Simons–modified gravity

CS-modified gravity is a particular, nonminimally
coupled, scalar tensor theory, inspired by string theory
and loop quantum gravity. This extension proposes the
inclusion of a parity-violating Pontryagin density to the
Einstein-Hilbert action (see [123] for a complete review):

SCS ¼ 	
Z

d4x
ffiffiffiffiffiffiffi�g

p
Rþ �

4

Z
d4x

ffiffiffiffiffiffiffi�g
p

#�RR

� �

2

Z
d4x

ffiffiffiffiffiffiffi�g
p ½ð@#Þ2 þ 2Vð#Þ
; (A13)

where �RR ¼ �R�
�
��R�

���, the dual to the Riemann ten-

sor is �R�
�
�� ¼ �����R

����=2 and 	�1 ¼ 16�G. The

quantities � and � are coupling constants, while the quan-
tity # is a coupling field, and together they determine the
strength of the CS modification. Note that the Pontryagin
density is a topological term in four dimensions, and thus,
it can usually be integrated by parts and removed from the
action. In CS-modified gravity, however, this density is
coupled to a nonconstant field, which forces nontrivial
correction upon integration by parts. A nondynamical ver-
sion of this theory exists, defined by Eq. (A13) with� ¼ 0,
but this model has been shown to be severally overcon-
strained [50,124,125].
The CS modification is motivated by the requirement

that any quantum gravitational theory be anomaly-free. In
perturbative string theory of type I, IIB, or heterotic, the
absence of such a term leads to Green-Schwarz anomalies
upon compactification. The requirement of anomaly can-
cellation thus necessitates the inclusion of such a CS term
[126]. Even in the nonlinear regime, Ramond-Ramond
scalars induce such a CS term for all types of string theory
due to duality symmetries [126,127]
A CS extension of GR can also be motivated by loop

quantum gravity. Here, such terms arise upon the promo-
tion of the Barbero-Immirzi parameter to a field when
coupled to fermions [128,129]. Recently, an embedding
of such a loop quantum gravity effect has been worked out
in the context of supersymmetric string theory [130].
Upon variation of the action (A13) with respect to all

degrees of freedom we find the equations of motion of the
theory:

G�� þ �

	
C�� ¼ 1

2	
ðTmat

�� þ T#
��Þ;

�h# ¼ �
dV

d#
� �

4
�RR;

(A14)

where Tmat
�� is the stress-energy for nongravitational matter
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degrees of freedom, while T#
�� is the stress-energy tensor

of the # field, namely

T#
�� ¼ �

�
@�#@�# � 1

2
g��ð@#Þ2 � g��V

�
: (A15)

The CS correction is then mostly encoded in the C tensor,
which is defined as

C�� ¼ ð@�#Þ����ð�r�R
�Þ
� þ ðr��#Þ�R�ð��Þ�; (A16)

where ����� is the Levi-Civita tensor and r� is the co-

variant derivative associated with g��.

The main criteria discussed in the introduction are sat-
isfied by CS-modified gravity. By construction, this GR
extension is a metric theory that reduces to GR in the weak-
field limit for sufficiently small gradients of #. Also, as
opposed to scalar-tensor theories, CS-modified gravity can
potentially have large, purely strong-field deviations due to
the presence of the Riemann squared term in the action.

Some of the additional theoretical criteria discussed in
the introduction are also satisfied by CS-modified gravity.
This GR extension is well-motivated by the leading candi-
dates for a quantum theory of gravity. CS-modified gravity
admits the Schwarzschild solution, and a modified Kerr
solution [50,51,131], although the stability of these solu-
tions with a dynamical scalar field (with nonvanishing
background value) have not yet been investigated. The
well-posedness of the theory as a Cauchy problem is
difficult to determine and it has not yet been worked out,
although there are arguments that suggest the theory is
well-posed at the linear level (for details on this see [123]).

One of the main effects of the CS modification is to
induce parity violation in gravitational interactions. In the
nondynamical framework (when the CS scalar is fixed
a priori and devoid of dynamics), parity violation can be
searched for in the Solar System [132–134] and with
double binary pulsar observations [135] through frame-
dragging modifications. The best current bound on non-
dynamical CS-modified gravity comes from the latter,

leading to the constraint _#�1 > 33 meV. In the dynamical
framework (when the CS scalar is consistently determined
by its coupled evolution equation), the CS modification is
essentially unconstrained, as the known corrections only
appear in the strong-field regime [50,51]. Moreover, the
effects of CS terms can be enhanced in this regime in the
presence of dense matter [136].

GW tests have been proposed to constrain CS-modified
gravity during binary inspirals [26,50,131,137]. Such tests
can be divided into those that study GW propagation
effects [26,137] and those that concentrate on GW genera-
tion effects [50,131]. GW propagation is modified because
left- and right-polarized modes obey different evolution
equations, leading to the solution [26] hR;L ¼ hGRR;Le

i�CS ,

where the CS phase correction is given by

�CS ¼ i�R;L�fH0

Z z

0
dzð1þ zÞ5=2

�
7

2

d#

dz
þ ð1þ zÞ d

2#

dz2

�
(A17)

and where �R;L ¼ �1 depending on whether the GW is

right- or left-polarized. Note that the correction is purely
imaginary and k-dependent, leading to a frequency-
dependent amplitude correction. The Fourier transform of
the response function of a GW detector is then modified as
follows [137]:

~h	 ~hGR
�
1� 4i�CS

F2þ þ F2��ð1þ �2Þ
F2þð1þ �2Þ2 þ 4F2��2

�
; (A18)

where Fþ;� are the beam-pattern functions of the detector,

� ¼ cos
 with 
 the inclination angle. In Eq. (A18), we
have effectively neglected terms quadratic in #, and thus,
we have ignored the possibility of a CS-induced resonance
present in the detector’s sensitivity band [137].
CS-modified gravity also changes the generation of

GWs, directly affecting their phase and amplitude.
Although these corrections are quadratic in # during the
early inspiral, they can be large during the late inspiral and
merger of compact objects. Strong nonlinearities source
large # gradients, which in turn emit energy-momentum.
Such energy emission modifies the GR flux formula, and
thus, the orbital frequency evolution, leading to phase
corrections. Recent studies have performed simulations
of EMRIs in this theory [50,131], which confirm that
dynamical strong-field effects can lead to significant accu-
mulative dephasing relative to GR.

4. Einstein-aether theory

Einstein-aether theory is a Lorentz-violating model
where the Einstein-Hilbert action is enlarged into
[53,138–141]:

SEA ¼ 	
Z

d4x
ffiffiffiffiffiffiffi�g

p ðRþ K��
��r�u

�r�u
�Þ; (A19)

where again 	�1 ¼ 16�G,

K��
�� ¼ c1g

��g�� þ c2�
�
��

�
� þ c3�

�
��

�
� þ c4u

�u�g��;

(A20)

and c1;2;3;4 are coupling constants. Clearly, the action re-

mains covariant, but it does not remain Lorentz invariant
because the vector u�, the ‘‘aether,’’ selects a preferred
frame (e.g. that in which u� is at rest). This vector can be
forced to have unit norm via an additional Lagrange-
multiplier term in the action.
The motivation to construct a theory that explicitly

possesses preferred-frame physics arises from quantum
gravity. First, the existence of a unique vacuum in the
quantum theory is believed to select a preferred frame
[53]. Second, exact Lorentz invariance is known to lead
to quantum field theoretic divergences for states with arbi-
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trarily high energy [138], which are usually eliminated
through the introduction of a short-scale cutoff that breaks
Lorentz invariance. Einstein-aether theory is a model con-
structed to explicitly break Lorentz invariance, while pre-
serving the general covariance of GR.

Einstein-aether theory satisfies all of the necessary cri-
teria discussed in the introduction. As is obvious from the
form of the action, this model is a metric theory, which
reduces to GR in the weak field for sufficiently small
coupling constants c1;2;3;4 [142,143]. In the dynamical

strong field, however, it could disagree with GR, although
the aether correction to the action is not constructed from
higher-order curvature terms. Some of the additional theo-
retical criteria discussed in the introduction are also sat-
isfied. Although this model is phenomenological, it is well-
motivated by quantum field theory considerations.
Stationary and stable BH solutions have been found both
analytically [144] and numerically [145]. While the well-
posedness of the Cauchy problem has not been studied
separately, the theory has been shown to be well-posed
numerically in certain dynamical scenarios [145].

Linearized Einstein-aether theory possesses five propa-
gating degrees of freedom [146]: one scalar (spin-0), three
vectorial (spin-1), and two tensorial (spin-2) modes. The
spin-0 mode leads to a breathing mode, while the spin-1
modes lead to longitudinal polarizations and the spin-2
ones to transverse-traceless or quadrupolar ones. The speed
of propagation of these modes is found to be generically
different from unity, where, in particular, for the spin-2
modes [146]

v2
g ¼ 1

1� ðc1 þ c3Þ : (A21)

In spite of their apparent superluminal nature, the spin-2
modes possess positive-definite energies. Although
Einstein-aether theory predicts the existence of scalar and
vectorial modes, these decouple in the weak-field limit and
all radiation can be forced to be quadrupolar by some
choice of the coupling constants [53].

Compact objects are also modified in Einstein-aether
theory [144,145,147–150]. Nonrotating NSs have a
slightly smaller radii relative to GR, which leads to larger
redshift factors for electromagnetic radiation produced at
NS surfaces. The Roche lobes of interacting NS are also
somewhat enlarged, leading to prompter tidal disruptions
relative to the GR prediction. BHs possess slightly larger
innermost stable circular orbits (ISCO) relative to GR,
which shifts the GW signal to slightly larger frequencies
during the late inspiral, plunge and merger [144,145].

The evolution of binary systems is also modified in
Einstein-aether theory [53,149,150]. Kepler’s second law
is modified in a manner that is dependent on the sensitiv-
ities of the bodies [53]. Such a correction should be mag-
nified during the late stage of coalescence, precisely when
the system emits the most amount of energy in GW radia-

tion. After the merger, the ringdown phase is also modified,
since BHs possess QNR frequencies larger than in GR
[149,150].

5. MOND and TeVeS

Modified Newtonian dynamics (MOND) is a model
proposed to explain galaxy rotation curves without invok-
ing cold dark matter [151]. This model was generalized to a
relativistic theory through the postulate of a tensor-vector-
scalar (TeVeS) theory [111,152,153]. TeVeS and MOND
have managed to successfully explain a number of astro-
physical phenomena beyond galaxy rotation curves, but we
shall not discuss those here (for a review, see [153]).
The main modification introduced in MOND is the

correction of Newton’s second law via

ai�

�jaij
a0

�
¼ �ri�; (A22)

where � is the Newtonian potential, a0 	 cH0 	
10�10 ms�2 is an intrinsic scale in the theory, and � is a
function that interpolates between �ðxÞ 	 x for x � 1 and
�	 1 as x ! 1. One popular choice for this function is
� ¼ xð1þ xÞ�1, which leads to the modified equation

ai ¼ �ri�

�
1þ a0

jri�j
�
; (A23)

where we have expanded in jri�j � a0 and we have
assumed the zeroth order solution ai 	�ri�.
How relevant is this modification to binary BH coales-

cences? The acceleration to compare a0 to is jri�j 	
M=r212, where, as before, M is the total mass and r12 is
the binary separation. The initial separation for a binary
system with a period such that it is one year from reaching
6M is

r12 � 1:774� 108M�
�

M
106M�

�
3=4

�
0:25




�
1=5

�
T

1 yr

�
1=4

:

(A24)

Supermassive BH binaries (LISA sources) and NS binaries
(ground-detector sources) can be sampled to initial sepa-
rations of 	107M� and 	300M� before coalescence, re-
spectively. For the most massive BH binariesM	 107M�,
with the largest initial separations r12 ¼ 108M�, the
Newtonian acceleration is very low, 10�3 ms�2, but still
much larger than a0. Based on this, MOND-like modifica-
tions to binary dynamics are negligibly small.
A relativistic extension of MOND exists, namely,

TeVeS, which adds a dynamical vector and scalar field to
the action, making the theory stratified: the gradient of the
scalar field and the vector field select ‘‘strata’’ or preferred
spacetime sections. This model is by definition bimetric,
where the physical metric differs from the auxiliary one,
not only by a conformal factor but also by terms that
depend on the vector field. The interpolating function �
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is here governed by the evolution of the scalar field, which
itself is coupled to the evolution of the metric tensor. In
view of this, one can think of TeVeS as a generic theory
that interpolates between MOND in the slow-velocity limit
and BD theory in the large-velocity limit [153].

Do these theories satisfy the necessary criteria discussed
in the introduction? As we mentioned above, TeVeS is a
theory that depends on metric tensors only, and as such, it
is a metric theory, albeit Lorentz violating. In this vein,
both MOND and TeVeS violate the strong equivalence
principle, due to the presence of preferred frames [154].
Weak-field consistency is actually violated since TeVeS
reduces to MOND in this limit, instead of GR or regular
Newtonian gravity, though of course if dark matter is due to
an inaccurate description of gravity on galactic scales, then
consistency with Newtonian gravity here is not a desirable
feature. For TeVeS, in the dynamical strong field one could
expect large deviations from GR due to the presence of
additional, dynamical scalar and vectorial fields. MOND is
not well-motivated by fundamental theoretical considera-
tions. TeVeS, being a covariant theory derivable from an
action is arguably more well-motivated, though it is un-
known whether it admits a well-posed initial boundary-
value formulation [155].

One consequence for GW detection in TeVeS would be
the modification of the balance law in binaries, since addi-
tional scalar and vectorial degrees of freedom will also
emit energy [156]. Another consequence is that TeVeS
GWs propagate with speeds vg ¼ ce�� < c, where � is

the TeVeS scalar field [111]. In regions of higher curvature
(near singularities or close to binary mergers) � is larger
and thus GWs travel more slowly than in GR [111].

6. DGP theory

Several higher-dimensional theories have been pro-
posed; one—Dvali-Gabadadze-Porrati (DGP) [115,157]—
has received particular attention in the literature since it has
the potential to explain the acceleration of the Universe.
Let us then summarize some of the principal features of
DGP theory, following the review paper [158].

DGP is a metric theory, based on the string-inspired idea
of braneworlds: higher-dimensional spaces of which our
four-dimensional Universe is only a surface, which for
DGP is of codimension one. The extra dimension in DGP
is assumed large and flat relative to astrophysical scales. As
such, the theory introduces infrared modifications to the
field equations, as opposed to ultraviolet ones, via leakage
of gravitons into the extra dimension.

By construction then, DGP gravity will not modify GR
in the dynamical strong-field regions of relevance to com-
pact object GW sources. Nonetheless, it is informative to
study how such modifications could modify GWs emitted
by cosmological binaries. Moreover, although the theory is
somewhat well-motivated from a fundamental physics
standpoint and although BH and weak-field Solar System

solutions exist, it remains unclear whether Cauchy well-
posedness is satisfied due to the potential emergence of
ghosts or tachyonlike fields by the extra dimension [159].
DGP has not really been studied in the context of GWs

produced by binary systems. The only studies on GWs and
DGP refer to either cosmological tensor perturbations or
shock waves [159–161], neither of which are applicable for
our purposes. Such a lack of interest in GW solutions is
surprising, considering the DGP action is well-known, in
vacuum reducing to

SDGP ¼ � 1

16�

Z
d5x

ffiffiffiffiffiffiffiffiffiffiffiffi
�gð5Þ

q
ðM3Rð5Þ þM2

pR
ð4ÞÞ; (A25)

where M and Mp are the five-dimensional and observed,

four-dimensional Planck scale, Rð5Þ is the five-dimensional

Ricci scalar, gð4;5Þ are the determinants of the induced four-
and five-dimensional metric tensors, andLm is some addi-
tional matter Lagrangian that couples to the four-
dimensional sector only. Note that we have reinstated the
factors of G here (through the explicit appearance of the
Planck mass), as these get modified in DGP theory. With
such an action, the DGP field equations become, in vac-
uum,

M3Gð5Þ
AB þM2

p�½x5 � zðx�Þ
Gð4Þ
AB ¼ 0; (A26)

where A; B; . . . ¼ f0; 1; 2; 3; 4g stand for bulk indices and
�; �; . . . ¼ f0; 1; 2; 3g for spacetime indices, with x5 the
extra dimension, zðx�Þ the location of the brane, and

Gð4;5Þ
AB the four- and five-dimensional Einstein tensor.
One can now linearize the field equations about

Minkowski spacetime to find that the spacetime compo-
nents of the field equations become (in Lorentz gauge)

M2
p�ðx5Þhð4Þh�� ¼ M2

p�ðx5Þh55;�� �M3hð5Þh��;

(A27)

where hð4;5Þ are the four- and five-dimensional
d’Alembertian operators in flat space and we have chosen
the brane to be located at x5 ¼ 0. If we now reintroduce
matter fields, which couple to the four-dimensional sector
of the field equations minimally, we can compute the
Fourier transform of the above equation, whose solution
becomes

~h�� ¼ 8�

M2
pp

2 þ 2M3p

�
~T�� � 1

3

��

~T��

�
: (A28)

The propagation of GWs is then modified at scales larger
than r0 � M2

p=ð2M3Þ, which correspond to cosmological

scales. Alternatively, one can think of DGP modifications
as introducing a spacetime-dependent Newton constant.
For example, for scales r < r0 the gravitational potential
of an isolated point source of mass m is
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VðrÞ ¼
��Gbranemr�1 for r � r0;
�Gbulkmr�2 for r � r0;

(A29)

whereGbrane ¼ M2
p andGbulk ¼ M�3. One sees that such a

correction to the binding energy can be mapped to the
model-independent corrections of Sec. III A via p ¼ 1.
However, the crossover scale here is gigantic, as sinceM	
100 MeV then r0 	 1020M�. Of course, ifM is larger, then
the crossover scale becomes smaller, but then DGP would
introduce ultraviolet corrections instead of infrared ones.

An interesting DGP correction to the GW response
function would occur in the amplitude via the luminosity
distance. Such a correction arises because DGP introduces
modifications to the Friedmann equations and its solutions.
In particular, the Hubble parameter is modified in DGP
theory via

HðzÞ 	 1

2
H0

�
1

r0H0

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

r20H
2
0

þ 4�0
Mð1þ zÞ3

s �
; (A30)

for a matter dominated and spatially flat cosmology, where
�0

M is the matter density content of the Universe. Since the
luminosity distance depends on an integrated measure of
the Hubble parameter, this quantity is modified in DGP
theory. Such a correction could be recovered by the ppE
parameter�, which models amplitude deviations, for small
redshift sources.

APPENDIX B: EXOTIC COMPACT OBJECTS

Many alternative theories of gravity have been discussed
so far, but little has been said about the generic and model-
independent possibility that a completely gravitationally
collapsed object is not represented by the Schwarzschild or
Kerr line elements. As discussed in the introduction,
though many observations of compact objects consistent
with BHs have been made, there is little to no strong
evidence that they are indeed BHs as described by GR
(i.e. that they possess an event horizon).

Several alternatives exist that replace the Schwarzschild
or Kerr singularities with other so-called exotic alterna-
tives. One such possibility arises from q-balls (see e.g.
[162,163]), namely, a coherent scalar ‘‘condensate’’ that
can be described classically as a nontopological soliton.
These objects acquired some recent interest since they are
unavoidable in viable supersymmetric extensions of the
standard model [164]. When the gravitational interaction
is included, q-stars emerge; furthermore, with gravity, a
large class of scalar field matter sources admit similar
stable solitons, and these are often called boson stars (see
e.g. [165–170]. Boson stars are fairly generic objects that
could be present not just in GR, but also in other alternative
theories of gravity, such as scalar-tensor ones [171]. Some
interesting features of boson stars are, for example, angular

momentum quantization in terms of the scalar charge
[170,172] and that (even in pure GR) they can be almost
as compact as BHs, though of course without an event
horizon.
Horizonless, compact objects with large spins are prob-

lematic from a theoretical standpoint. In fact, boson stars,
and all horizonless, compact objects that possess high spins
have been shown to be unstable under small perturbations
[173]. Such instability would lead to gravitational collapse
to BHs, or possibly ‘‘explosions.’’ Since many astrophys-
ical BH candidates are believed to have high spins, such an
instability restricts the interest of horizonless objects.
Nonetheless, the existence of slowly spinning or nonspin-
ning, horizonless, compact objects cannot be ruled out by
present observations.
Several works have looked at how merger dynamics

might be different with boson stars, within the context of
GR. One study explored the merger of a small compact
object with a supermassive boson star [174], and showed
that stable orbits could exist inside the surface of the boson
star. Such orbits exist because the effective potential for
these geodesics inside the surface of the boson star does not
present the usual Schwarzschild-like singular behavior, but
instead turns over and remains finite, allowing for a new
minimum. Such orbits lead to extreme precession that
excites higher frequency harmonics of the waveform.
The merger and ringdown of boson star binaries is also

drastically different from that of BH binaries. The merger
of boson stars must be treated numerically; one such study
explored a scenario where the merger results in a single
object in a spinning bar configuration that either fragments
or collapses into a Kerr BH [83,175]. The quasinormal
ringing of boson stars is also different from that of BHs;
furthermore the former do not satisfy the two-hair (or no-
hair) theorem [28]. Instead, boson stars satisfy a three-hair
theorem, where knowledge of the final mass, spin angular
momentum, and quadrupole structure determines all suc-
cessive QNR modes [176]. A different QNR spectrum in
GW emission could be used to search for the existence of
such boson stars [28,29,31,176].
Boson stars, however, are not the only exotic objects in

the literature. Another interesting example is a gravita-
tional vacuum star, or gravastars [177,178]. In such ob-
jects, the event horizon is replaced by a phase transition
that takes the outer Schwarzschild solution to an inner
de Sitter spacetime. Once more, the removal of an event
horizon will lead to modified orbital dynamics, although a
full analysis has not yet been carried out. Such stars will
also lead to a different QNR spectrum [179,180].
Exotica is not limited to regular, horizonless alterna-

tives; for example, one could have BH solutions in GR
that have exotic matter ‘‘hair,’’ such as skyrmion BHs
[181]. These ‘‘dirty’’ BHs might or might not cause modi-
fied orbital dynamics, but they will certainly lead to a
different QNR spectrum [182].
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