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We present results obtained from a finite-element simulation of seismic displacement fields and of

gravity gradients generated by those fields. The displacement field is constructed by a plane-wave model

with a 3D isotropic stochastic field and a 2D fundamental Rayleigh field. The plane-wave model provides

an accurate representation of stationary fields from distant sources. Underground gravity gradients are

calculated as the acceleration of a free test mass inside a cavity. The results are discussed in the context of

gravity-gradient noise subtraction in third generation gravitational-wave detectors. Error analysis with

respect to the density of the simulated grid leads to a derivation of an improved seismometer placement

inside a 3D array which would be used in practice to monitor the seismic field.
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I. INTRODUCTION

Within the next decade, the current generation of
gravitational-wave detectors [1–4] will be upgraded or
replaced by a second generation of detectors which are
expected to produce a wealth of data from astrophysical
events producing gravitational waves (GW) above 10 Hz
and up to a few kHz [5,6]. For the second generation, the
limiting noise sources at low frequencies are suspension
thermal noise, radiation-pressure noise, and seismic noise
[7,8]. A variety of solutions appear plausible to overcome
limitations posed by these noise sources to pave the way
for a third generation of detectors sensitive below 10 Hz
[9]. However, gravity-gradient noise (GGN) generated by
the stochastic seismic field directly couples to the interfer-
ometer’s test masses and is predicted to impose a low-
frequency barrier for future-generation GW detectors [10–
13]. Theoretically, GGN can be mitigated in many different
ways: by intelligent choice of location, by intelligent ar-
chitecture of buildings and soil, and by subtraction of an
estimated GGN contribution from the detector output, or a
combination of the above techniques. Since the gravity
gradients are linked to the spectrum of seismic displace-
ment, the most obvious strategy is to search for a seismi-
cally quiet place. It is confirmed by borehole studies and
underground experiments in mines [14–16] that the seis-
mic noise above 1 Hz and at 1 km depth is smaller by more
than an order of magnitude relative to the surface level.
The explanation for this observation is that the surface
supports additional surface modes, the Rayleigh and
Love modes, and the surface is subject to comparatively
violent disturbances from atmospheric pressure fluctua-
tions and human activities, both of which generate seismic
noise that decays rapidly towards greater depths.

In this paper, results are discussed in the context of GGN
subtraction. There is no technology available to directly
measure gravity gradients above 1 Hz with the required

precision, i.e. �5� 10�19 ðm=s2Þ= ffiffiffiffiffiffi
Hz

p
at 1 Hz. In fact,

any instrument that could measure those gravity gradients
would also be sensitive to gravitational waves (this is just
true for most interferometer topologies including the
Michelson interferometer; specialized interferometers can
be insensitive to GWs [17] or to non-GW displacements
[18]). Therefore, a straightforward technique is to monitor
the seismic field around the test masses and feed the
seismic data into a model for gravity-gradient generation,
which outputs the data that are to be subtracted from the
GW detector output. Theoretically, GGN can be reduced
arbitrarily well given ideal instruments and unlimited den-
sity of the seismometer array. The key questions that we
attempt to answer for a simplified model are to what level
one can subtract the GGN in practice and, given a certain
subtraction level, how many seismometers are needed and
out to which distance from the test masses the seismic field
needs to be monitored to reach the required subtraction
level. For a typical seismic amplitude spectrum deep
underground that is about 1 order of magnitude weaker
than spectra at quiet surface locations, an additional sub-
traction by 2 orders of magnitude is required to achieve a
sensitivity at 1 Hz comparable to the near-future sensitivity
goals above 10 Hz. For that reason, we will specify our
results to this subtraction level.
Our simulation, which is based on the assumption that

all sources of seismic waves are distant, does not answer all
of these questions yet, since the answers are highly depen-
dent on the detector site chosen. For a specific location, one
needs to know the spectral densities of the Rayleigh field,
the body field, and the field generated by local sources,
which include scattering centers. Rayleigh scattering, the
reflection of seismic waves from small-volume density or
Lamé-constant perturbations, is known to produce wave
attenuation and a decrease of the correlation length of the
seismic field [19]. In addition, Rayleigh scattering, as a
special form of reflection of seismic waves, exhibits mode
conversion between shear and pressure waves. In the con-
text of GGN prediction, it is useless to attempt a simulation
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of Rayleigh scattering based on a simplified approach.
What needs to be done is to construct a detailed model of
the local geology including all drifts (horizontal tunnels)
and shafts, to run a simulation of the seismic field with that
model, and to compare the results with measurements.

This will not only help to determine the quality of a
GGN model that just takes fields from distant sources into
account, but it will also help to evaluate the quality of
needed seismic stations. An abnormally low measured
correlation between two seismic instruments would indi-
cate poor quality of the coupling between the seismometer
and seismic field, and how to improve it. The generally
high degree of inhomogeneity of rock or sediments near
the Earth’s surface, including man-made inhomogeneities
like foundations of buildings, is suspected to be respon-
sible for the widely reported lack of coherence in surface
measurements [15]. Similar problems occur in under-
ground environments where drilling and blasting creates
cracks and density or stress disturbances in the rock close
to the fabricated mine workings, which are known to alter
the seismic field. It will be one of the future challenges to
design seismic stations for ultrasensitive broadband seis-
mometers avoiding locally generated disturbances of the
seismic measurement.

Another minor simplification is to evaluate the GGN at a
single location and to interpret this result as displacement
noise in GW detectors. This approach neglects possible
correlations between GGN at different test masses.
However, above 1 Hz, correlations are negligible even in
hard rock assuming distances of about 10 km between test
masses. This is true for theoretical predictions based on
ideal models and especially for real measurements where
localized sources, scattering, and attenuation further de-
crease correlations.

We consider the simplified isotropic, stochastic plane-
wave model of the seismic field. It is also assumed that the
local geology is uniform, in which case the fundamental
Rayleigh field is the only surface field. We investigate
properties of underground gravity gradients without spec-
ifying absolute values for spectral densities. The reader can
find estimates in previous literature on gravity gradients
[10–13]. In Sec. II, we outline the basics of classical
gravity-field perturbations. The model for the surface and
body seismic fields used in our simulation is described in
Sec. III. Finally, in Sec. IV, we analyze the gravity-gradient
production by those fields and present our results.

II. THEORETICAL FOUNDATIONS

In the past, the generation of gravity gradients from
seismic fields was either linked to the perturbation �� of
a mean density �0 of rock as a bulk contribution or to a
surface effect where air is replaced by rock due to normal
displacement of the surface. We will outline briefly how to
calculate gravity gradients from bulk and surfaces and how
to combine them into a unified description.

Inside rock, seismic displacement ~�ð~r; tÞ generates den-
sity perturbations according to

�� ¼ ��0 div ~�: (1)

Three different modes contribute to ~�. The horizontal (SH)
and vertical (SV) shear modes are transverse waves and
have equal speed cS in isotropic rock. Their displacement
fields are divergence-free and one does not have to include
them in gravity-gradient calculations if contributions from
surfaces are excluded. They are important only at bounda-
ries between lighter and denser rocks, and above all be-
tween soil and air. The third mode is the longitudinal
pressure wave P. It has speed cP > cS and is entirely
responsible for the density perturbations inside the me-
dium. From Eq. (1), one calculates the gravity gradient at
some point ~r0 by

� ~abð ~r0; tÞ ¼ �G�0

Z
dV

div ~�ð ~r; tÞ
j~r� ~r0j2

� ~er (2)

where ~er is the unit vector ð~r� ~r0Þ=j~r� ~r0j. We call
Eq. (2) the divergence or body contribution to the gravity
gradient.
In addition to the divergence term, in case of voids or

close to the Earth’s surface, there is a surface contribution
to GGN which is related to any displacement normal to the
surface:

� ~asð~r0; tÞ ¼ G�0

Z
dS

~nð ~rÞ � ~�ð ~r; tÞ
j~r� ~r0j2

� ~er: (3)

This equation is easy to understand. At each point at the

surface, a previously empty volume of size dSð ~n � ~�Þ is
replaced by surface soil of density �0, or the displacement
is opposite to ~n so that an empty volume is created. All
these contributions are summed up to give the surface
gravity gradient. Body and surface contributions as formu-
lated in Eqs. (2) and (3) are linear perturbations of the exact
theory. While this is obvious for the density perturbations,
Eq. (1), the surface term neglects higher orders by assum-
ing that the normal vector ~nð~rÞ does not change with time
and is evaluated at the unperturbed location of the surface.
Although the surface and body integrals do not seem to

have much in common, it is possible to cast their sum into
the simple form

� ~að ~r0; tÞ ¼ � ~abð~r0; tÞ þ � ~asð~r0; tÞ
¼ G�0

Z
dV

1

j~r� ~r0j3
ð ~�ð~r; tÞ

� 3ð ~er � ~�ð ~r; tÞÞ � ~erÞ: (4)

The easiest way to prove this is to perform an integration
by parts of Eq. (2). The sum formula should be familiar to
the reader. It describes a dipole perturbation, where in this
case the dipole moment is given by the displacement field
~�. From a finite-element (FEM) point of view, one could
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have guessed this equation was right from the beginning.
The finite elements are represented by point masses �0dV

that are displaced by ~�. The lowest-order perturbation of a
homogeneous field due to the displaced point mass must be
the dipole field. Since the dipole term comprises body and
surface effects, Eq. (4) is the natural choice to simulate
gravity gradients. The remaining problem is to define the
displacement field with surface and body fields of different
types. This will be described in Sec. III.

III. SIMULATION OF SEISMIC FIELDS

Our FEM simulation is purely kinematical, which is
much faster than running a fully dynamical simulation
with commercial software. Many relevant aspects of the
seismic field, such as surface reflection and mode conver-
sion, tube waves, etc., are well described in many publica-
tions and monographs and can be taken care of in the
simulation. There is no need to calculate the solution of
the displacement field with initial data and boundary con-
ditions. Admittedly, as soon as one attempts to simulate a
geologically complex environment, then a dynamical FEM
simulation may become necessary. This approach is fol-
lowed by a group in the Netherlands (led by Jo van den
Brand) which attempts to fill in many of the required
details coming from rock inhomogeneities.

A kinematical simulation means to use a simple expan-
sion of the field into plane or spherical waves and to
propagate them through the grid or along surfaces. We
simulate one frequency at a time, which means that the
field is characterized by three different wavelengths (i.e.
shear, pressure, and fundamental Rayleigh waves). The
model for the Earth’s surface is plane, and the horizontal
directions are denoted by x, y, and the vertical direction by
z. The surface level is defined by z0 ¼ 0; deeper levels
have negative z coordinates. As we will show later, it is
sufficient to simulate a grid whose size is twice the length
of pressure waves in all directions from the test mass for
which the gravity gradient is calculated. Surface waves are
described by plane or spherical 2D waves exponentially
decaying at greater depths (evanescent waves). We also
investigated the case when grid spacing becomes similar to
or larger than the size of the cavity around the test mass.
We ran additional high-density small-volume simulations
whenever the cavity size was smaller than the grid spacing
to make sure that gravity gradients from density changes
close to the test mass or from the cavity surface are
estimated correctly. From this study we found that in all
cases the corrections from the fine-grid analysis were
negligible for the purpose of this paper. We also neglected
surface modes of cavities in the case of the test mass being
underground [20,21]. Though not included in our simula-
tion, the aforementioned publications clearly indicate that
all but one of the additional discrete modes would appear at
high frequencies above 100 Hz. Also, the cavity modes
would have to be generated at the cavity surface, and it is

reasonable to assume that sources of cavity modes such as
pressure fluctuations inside the cavity or machinery di-
rectly acting on cavity surfaces can be avoided or
eliminated.
Seismic reflections from density changes can be com-

plicated since incident P waves partially convert into SV
waves and vice versa (SH waves do not convert). However,
reflections from a plane rock-air interface are compara-
tively simple, and concise analytical solutions exist
[22,23]. The reflection mechanism can be understood in
various ways: energy transport, surface displacement, etc.
In our case, the main purpose is to calculate the amplitudes
of the reflected modes. The amplified surface displacement
due to constructive interference of up-going and down-
going waves, which depends on the angle of incidence,
results automatically. However, we do not include genera-
tion of evanescent P waves from reflected SV waves with a
nearly horizontal direction of propagation. This parameter
regime fills the gap between traveling waves and fully
evanescent fields, i.e. the Rayleigh field. Our approach is
to treat evanescent modes separately in terms of an inde-
pendent Rayleigh field and to disregard possible correla-
tions between body and evanescent surface fields. This
may not be an adequate simplification for real fields, but
it is the only possibility to study GGN from body and
evanescent fields separately. All in all, investigating the
variation of gravity gradients by changing the composition
of the seismic field and varying the physical parameters of
the rock, we think that our simulation already contains
more details than necessary for our aims. Many results
are equally valid for Rayleigh waves, as for waves from
many randomly localized sources, and as for the stochastic
isotropic field. We want to emphasize that most idealiza-
tions do not simplify the GGN subtraction, but instead they
are applied here to make the investigation of GGN and the
presentation of results clearer. In the following, we sum-
marize the main simplifications and state our opinion about
their relevance for GGN subtraction in reality:
(1) Rock homogeneity: The seismic array would mea-

sure a scattered field in the same way as the incident
undisturbed body field, and therefore GGN from
scattered fields would be included automatically.
However, strong scattering (that is generally
avoided by going underground) may require in-
creased seismometer density near the respective
scattering centers.

(2) Neglect of Love and higher-order Rayleigh modes:
For the case when GGN from surface fields in
underground GW detectors cannot be neglected,
i.e. the seismic wavelength is comparable to the
depth of the detector, a detailed investigation of
GGN from surface modes would be necessary. It is
not true that the higher-order Rayleigh fields are
generally weak. Love modes, i.e. evanescent SH
waves, produce GGN neither through normal dis-
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placement of the surface, nor through density fluc-
tuations of the rock, but only through displacement
of the cavity surface.

(3) Stationarity of seismic fields: The seismic array
needs to be large enough to capture changes of the
seismic field before they can lead to significant
changes of GGN at the test mass. In principle, the
faster the change, the more problematic the GGN
modeling, but fast changes correspond to high-
frequency contributions to fields. Therefore, given
a subtraction goal within a limited range of frequen-
cies, most of the energy may reside in frequencies
that do not need to be subtracted.

A. Stochastic isotropic fields

At first, we need to specify what we mean by an isotropic
field. Strictly speaking, we do not simulate an isotropic
field. Instead, we need to consistently combine the notion
of an isotropic field with the boundary conditions at the
free surface. The isotropic field in our simulation is formed
by plane waves with random directions of propagation, but
all emerging from the lower half-space. Each wave is
reflected from the Earth’s surface to produce an amplified
surface displacement via constructive interference with the
reflected wave. In our model, the field’s energy of injected
waves is uniformly partitioned between the three polar-
izations SV, SH, and P. The isotropic field is a model that,
very likely, does not reflect reality. It has been shown that
surface fields can be highly anisotropic [24], but to our
knowledge this has not been studied for body fields (which
would require a large 3D underground array). However,
since the degree of isotropy does not affect convergence
properties of GGN [25], the isotropic model is favorable
since it best averages out systematic errors due to finite grid
density.

Let us start with a description of the reflection of seismic
waves at the free surface. The SH waves are, by definition,
polarized parallel to the surface. No mode conversion takes
place, and the amplitude of the incident wave is equal to
the amplitude of the reflected wave. The wave’s phase does
not change, and surface displacement doubles relative to
the amplitude of the SH wave.

Mode conversion between SVandPmakes the reflection
problem intractable in general, and still sufficiently com-
plicated for plane, free surfaces. The ansatz to obtain the
reflection coefficients is to require vanishing traction at the
surface (traction is the stress vector associated with a
surface element). We refer the reader to the first book of
the monograph by B. Kennett [22], where this problem is
elegantly solved for free surfaces or rock-fluid interfaces.
Here, we will just introduce the notation and present the
results. The simplest way to parametrize surface phe-
nomena is to introduce the concept of slowness which is
the inverse of speed. Given the speed of shear and pressure
waves cS, cP inside the rock, the horizontal slowness p,

e.g. p ¼ sinð�Þ=cP, provides a complete parametrization
of reflection coefficients, where in this example � is the
angle of incidence of a P wave with respect to the vertical
direction. Mode conversion is exclusively between waves
of the same horizontal slowness. Therefore, it would be
more complicated to reformulate the problem in terms of
the angle �. For example, a P wave incident with angle �
gives rise to a P wave reflected at the same angle, but also
to a converted mode SV that subtends a smaller angle
�ð�Þ<�.
For each mode SVand P with common horizontal slow-

ness and phase speeds cS and cP, we define the vertical
slowness as

qSðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2S
� p2

s
; qPðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

c2P
� p2

s
: (5)

Then, the complex reflection coefficients can be cast into
the form

�SSðpÞ ¼ �PPðpÞ ¼
ð2p2 � 1

c2S
Þ2 � 4p2qSqP

4p2qSqP þ ð2p2 � 1
c2S
Þ2 ;

�SPðpÞ ¼ �PSðpÞ ¼ �i
4pð2p2 � 1

c2
S

Þ ffiffiffiffiffiffiffiffiffiffiffi
qSqP

p

4p2qSqP þ ð2p2 � 1
c2S
Þ2 :

(6)

These equations can be used for the entire range of hori-
zontal slownesses, 0<p<1, but we will restrict our-
selves to a regime where vertical slownesses of the
relevant modes stay real, i.e. no evanescent reflections.
As mentioned before, the evanescent surface field is treated
independently in our simulation. An incident shear wave
SV with 1=cP < p< 1=cS will generate evanescent P
waves at reflection (qP becomes imaginary). For p >
1=cS, SV and P waves are evanescent (qP and qS are
imaginary) and combine to form the Rayleigh field. So
we will restrict ourselves to p < 1=cS and ignore the
evanescent P mode for p > 1=cP. Figure 1 shows the
reflection coefficients for cS ¼ 0:58 � cP, which corre-
sponds to a medium with Poisson ratio � ¼ 0:25 [see Eq.
(7)]. In that case, the largest angle of incidence of SV
waves before the reflected P mode becomes evanescent
is� ¼ arcsinðcS=cPÞ ¼ 34:5� (reminder: this angle is with
respect to normal direction).
In all examples to follow, the isotropic field is con-

structed from N ¼ 50 pressure waves with speed cP ¼
3 km=s and 2 � N shear waves whose speed is determined
by

cS ¼ cP �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2�

2� 2�

s
; (7)

assuming a Poisson solid (� ¼ 0:25, cS ¼ 0:58 � cP).
Directions of propagation are drawn from a uniform dis-
tribution over the upper half-sphere. Each wave is reflected
according to Eq. (6).
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B. Stochastic fields from fundamental Rayleigh waves

Isotropic media with uniform density do not support
Love waves, i.e. shear waves with purely horizontal dis-
placement trapped in a layered geology, or higher-order
Rayleigh modes, so that we just need to consider the
fundamental Rayleigh mode with our simplified approach.
As Rayleigh waves are coherently composed of SV and P
waves, even the phase of the displacement field shows
vertical dependence because SV and P waves decay at
different rates. Rewriting the equations in [26] in terms
of the horizontal and vertical slownesses, the horizontal
and vertical displacements of the Rayleigh wave read

�hor ¼ A � ðpRe
!q0Pz � �q0S � e!q0

S
zÞ � sinð�ð ~rÞÞ;

�ver ¼ A � ðq0Pe!q0Pz � �pR � e!q0
S
zÞ � cosð�ð~rÞÞ;

(8)

with �ð~rÞ ¼ �0 � ~kR � ~r, � �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
q0P=q0S

q
, j ~kRj ¼ 2	fpR,

! ¼ 2	f, and finally pR ¼ 1=cR. The primed quantities
are related to vertical slownesses as defined in Eq. (5) via
q0S;P � �i � qS;PðpRÞ. The speed cR of the fundamental

Rayleigh wave obeys the equations

R

�
cR
cS

�
¼ 0; RðxÞ ¼ x6 � 8x4 þ 8x2

2� �

1� �
� 8

1� �
:

(9)

The displacement vector is constructed according to

~�ð~rÞ ¼ �horð~rÞ
~kR

j ~kRj
þ �verð~rÞ ~ez: (10)

The displacement field of a single plane Rayleigh wave is
shown in Fig. 2. We simulate the total Rayleigh field by
summing contributions from 20 plane Rayleigh waves
whose directions of propagation are drawn from an iso-
tropic 2D distribution.

IV. RESULTS

In this section, we present our results of a gravity-
gradient simulation based on the seismic-field decomposi-
tion as specified in the previous section. Unless explicitly
stated otherwise, our simulations are based on parameter
values as listed in Table I. The Poisson ratio � completely
determines the ratio of wavelengths of the different wave
types: P, S, and Rayleigh.

A. A scaling law for the absolute value of GGN

We present a scaling law that helps us to understand the
link between seismic fields and gravity-gradient produc-
tion. It holds under ideal conditions, i.e. homogeneous
rock, no surfaces, distant sources only. It states that gravity
gradients from seismic fields are independent of the seis-
mic wavelength (equivalently, seismic speed). By conse-
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FIG. 2. The figure shows a cross section of the displacement
field of a Rayleigh wave propagating from left to right. The rate
of exponential amplitude decay is different for the pressure and
shear part so that the direction of displacement depends on
depth.
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FIG. 1. The two plots show the absolute values (solid lines)
and phases (dash-dot lines) of the reflection coefficients. The
range of horizontal slownesses is p 2 ½0; 1=cS�. The cross-mode
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solely relevant for the conversion of SV into evanescent P
modes.
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quence, the gravity-gradient spectrum, measured as the
amplitude spectral density of acceleration, adopts the fre-
quency dependence of the seismic displacement spectrum.

Figure 3 illustrates two isotropic density-perturbation
fields with different correlation lengths on spheres which
have identical radii. Now, an easy mistake is to compare
the cases and to conclude that the field with a shorter
correlation length produces less GGN at the center of the
sphere based on the assumption that having many more
cells (a cell comprises rock of similar density perturbation)
on the sphere leads to a higher degree of averaging out of
gravity gradients. The problem is that one has to consider
integration over all spherical shells around the test mass,
and we will show that the integral for the class of fields
considered here does not depend on wavelength.

Let us first introduce the concept of displacement cells.
As in Fig. 3, the density-perturbation or displacement field
exhibits a certain pattern which consists of distinguishable
regions of similar displacement or density perturbation. We
call each region a cell and identify it by an index i. The
volume of each cell is denoted by Vi and its position by
~ri ¼ ri ~ei. Furthermore, each cell is characterized by a

fiducial displacement ~�iðtÞ such that the gravity-gradient
integral over any subset of cells can be discretized as
follows:

� ~að~0; tÞ ¼ G�0

Z
dV

1

r3
ð ~�ð~r; tÞ � 3ð ~er � ~�ð ~r; tÞÞ � ~erÞ

¼ G�0

X
i

Vi

1

r3i
ð ~�iðtÞ � 3ð ~ei � ~�iðtÞÞ � ~eiÞ (11)

Since the positions of cells are defined by the displacement
pattern at a given time, it would be more accurate to
understand the cell positions as functions of time, ~riðtÞ ¼
riðtÞ ~eiðtÞ, but, for ease of notation, the time dependence
will not be written explicitly. In the following, to simplify
the calculation, isotropy and homogeneity of the seismic
field are assumed, which entails that the seismic field is
characterized by a single correlation length L, independent
of direction and location. Whereas homogeneity is essen-
tial for the argument, a similar calculation can be carried
out for arbitrary seismic fields produced by distant sources.
From isotropy it follows that the average volume of each
cell is simply the cube of the correlation length of the field.
Since the correlation length is proportional to the wave-
length 
 of the field, the cell volume is also proportional to
the cube of the wavelength: Vi / 
3. Rescaling the cell
positions, ~r0i � ~ri=
, and volumes, V 0

i � Vi=

3, one ob-

tains

� ~að~0; tÞ ¼ G�0

X
i

V 0
i

1

r03i
ð ~�iðtÞ � 3ð ~ei � ~�iðtÞÞ � ~eiÞ: (12)

The distribution of directions ~ei is directly linked to the
degree of isotropy of the seismic field, which does not
explicitly depend on the lengths of seismic waves, and
which does not change under rescaling of the cell posi-
tions. For the moment, we also consider the distribution of

fiducial displacements ~�iðtÞ as independent of the correla-
tion lengths. Since the mean distance of cells is again
proportional to the correlation length L and therefore to
the wavelength 
, the rescaled cell positions ~r0i are inde-
pendent of 
. In total, the gravity-gradient sum Eq. (12) is
independent of 
.
Depending on the context of this discussion, it can be

inappropriate to consider the distribution of displacements
~�i as being independent of 
. A simple example is to relate
the wavelengths to frequencies through 
f ¼ c. Since in
reality the typical displacement depends on frequency, and
therefore in this context on wavelength, Eq. (12) also
depends on wavelength. The conclusion from the last para-

FIG. 3. Density perturbations are characterized by a correla-
tion length. If the correlation length is high as represented by the
sphere on the right-hand side, then larger volumes of rock are
perturbed in a similar way and fewer of those coherent volumes
fill the spherical shell. Therefore, integrating density perturba-
tions over shells around the test mass, one would expect that
fields with smaller correlation lengths generate less GGN since
perturbations add up incoherently. However, as explained in the
text, this conclusion is wrong for most of the fields met in nature.

TABLE I. The lengths of shear and Rayleigh waves are deter-
mined by 
P and the Poisson ratio �. The reason why we can
present the results for a specific wavelength for each mode and
do not need to consider a range of wavelengths is explained in
the following subsection. Also, most results are weakly depen-
dent on the number of plane waves nP, nS, nR that are used to
construct the (isotropic) fields from distant sources.

Parameter Value

P wavelength 
P 1000 m

S wavelength 
S 577 m

Rayleigh wavelength 
R 531 m

Poisson ratio � 0.25

Mean rock density �0 2:5 g=cm3

Composition of isotropic field nP, nS 50, 100

Composition of Rayleigh field nR 20

Grid size ð2 to 6 kmÞ3
Number of grid points ð100 to 150Þ3
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graph would have to be modified: the spectrum of the
gravity gradient � ~a adopts the frequency dependence of

the spectrum of the displacement field ~�. Note that one
could add more complexity to the problem by investigating
other frequency dependencies like a frequency-dependent
degree of isotropy, etc. Finally, we want to point out that
the requirement of homogeneity also includes the absence
of surfaces. A surface introduces an independent length
scale H that corresponds to the depth of the test mass, and
which makes the sum Eq. (12) dependent on the ratioH=
.

B. The isotropic body field

The first question that we address is how large the rock
volume is that needs to be monitored with seismic instru-
ments to predict gravity gradients from the isotropic body
field with 99% accuracy for subtraction of GGN. The
answer depends on symmetries of the seismic field. For
example, if the field was spherically symmetric around the
test mass where GGN is calculated, the gravity gradients
would vanish. This symmetry property is the reason why P
waves have a negligible influence on horizontal GGN near
large plane surfaces, since in order to produce surface
displacement in the sense of Eq. (3), longitudinal P waves
have to propagate almost perpendicularly to the surface;
otherwise, most of the displacement would be in horizontal
directions (one has to keep in mind, though, that the
incident P wave would be converted partially into an SV
wave). Any such wave produces similar displacement over
a large area of the surface, which is determined by the
radius of curvature of the wave front and the angle of
inclination. Integrating gravity gradients over circles on
the surface around the test mass, horizontal gravity gra-
dients from opposite sides of the test mass partially cancel.
Therefore, horizontal surface GGN as described by Eq. (3)
is almost entirely produced by SV waves.

Here, we will answer the first question for a test mass
located underground far away from the Earth’s surface and
assuming an isotropic stochastic field as defined in
Sec. III A. As mentioned before, except for a weak con-
tribution from the cavity surface, GGN is determined
entirely by the P-wave content of the field. As a first
step, let us determine the spatial coherence of the
P-wave field as a function of distance between two points
inside the rock. The spatial coherence as a function of
distance provides the length scale that governs the dis-
placement pattern of the isotropic field. It is well known
that displacement generated by the isotropic stochastic
field is coherent over cells of size ð
=2Þ3, which is in
agreement with our results displayed in Fig. 4. In other
words, the spatial correlation length is tightly linked to the
length of the seismic waves, and the question about the size
of the volume that needs to be monitored by a seismic array
can be answered using the wavelength as a pertinent length
scale. In the following, wewill use the P-wave length 
P as
a distance scale. With the help of Table I, the reader can

translate distances into multiples of the lengths of shear or
Rayleigh waves.
For a specific realization of the isotropic field, the grav-

ity gradient integrated over spherical mass shells around
the test mass as a function of the shell’s radius is plotted in
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Fig. 5. We see that the gravity gradient converges to its final
value within a sphere of radius 3 � 
P. Residual contribu-
tions beyond 3 � 
P are well below the 1% level. For the
isotropic field, it is possible to construct a 99% accurate
GGN model by monitoring a volume of rock that is con-
siderably smaller than ð3 � 
PÞ3. The convergence curves
of the gravity gradient as shown in Fig. 5 always assume
the same oscillatory shape. Instead of increasing the dis-
tance to high values to obtain the limit of the gradient, one
can also average the oscillation of the curve within some
distance interval closer to the test mass. Figure 6 shows a
contour plot of the relative error if the limit is estimated by
averaging a stretch of the convergence curve as a function
of the start distance and the length of the averaging inter-
val. The estimation error becomes sufficiently small, if the
convergence curve is averaged over stretches longer than
0:6
P starting at distances beyond one P wavelength from
the test mass. This means that for a subtraction goal of 2
orders of magnitude the minimal radius of the spherical
volume that needs to be monitored is about 1:6 � 
P.

The convergence curves also show that a passive sup-
pression of the GGN by means of a large cavity around the
test mass would be inefficient. Even if we assume that the
cavity has a radius of 100 m, only a small fraction of the
gravity gradient would be eliminated. This conclusion
stays true for any kind of rock that is hard enough to
provide the stability required to support such a cavity.

C. Contributions from the Rayleigh field to
underground gravity gradients

The contribution of Rayleigh waves to gravity gradients
at underground levels is difficult to model because the

Earth’s surface is often far from flat, and local sources of
surface waves are numerous and lead to complex seismic
fields. The ideal case is if gravity gradients from surface
waves could be neglected altogether. As a first step, we
look at the gravity gradients from 2D isotropic surface
Rayleigh fields shown in Fig. 7. Each value is an average
over 50 different realizations of the field. Gravity gradients
fall exponentially with increasing depth and reach a sup-
pression of 1000 at a depth of about 1:5 � 
P. Assuming
that amplitude spectral densities of surface displacement
are about a factor 10 to 30 higher than underground, the
suppression of surface GGN would have to be between
1000 to 3000 in order to be a negligible contribution to the
total GGN (down to the 1% level). In most hard rocks near
the surface, the P-wave speed is about 3–6 km=s, in which
case a surface GGN suppression of 3000 at 3 Hz is reached
at a depth of about 1.5–3 km. It is unlikely that a
gravitational-wave detector will be built at 3 km depth,
and therefore one would have to look for a place that has no
more than average surface seismicity, and/or deploy a
surface array of seismometers in addition to the under-
ground array to improve modeling of gravity gradients
from surface waves. Especially for the lowest frequencies,
surface features become less important and fewer sensors
would be needed.
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FIG. 7. Gravity gradients fall exponentially with increasing
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of the Rayleigh field, each composed of 20 plane Rayleigh
waves. Assuming that the surface GGN is difficult to model
from seismic data and that the surface seismicity is a factor of
10–30 stronger than the ambient body field, one needs to bring
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However, by means of a surface array of seismometers, it should
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We should mention that surface contributions to GGN
from an isotropic Rayleigh field are subject to canceling
effects when integrating over the entire surface. As was
pointed out to us by Jo van den Brand, localized sources at
the surface produce gravity gradients that can be significant
at underground levels. One of the challenges of future
experimental studies will be to investigate the nature and
strength of local surface sources and whether a sufficiently
simple model can be constructed to calculate their gravity-
gradient fields.

D. Coarse-grid errors and seismometer placement

In this subsection, we will investigate how errors build
up in gravity-gradient integrals, Eq. (4), depending on the
density of the simulation grid ngr ¼ dN=dV. The idea is to

start with a uniform grid of maximal possible density, and
then to compare the corresponding gravity gradient with
gravity gradients obtained from grids with fewer grid
points with uniform or nonuniform grid spacing. We will
interpret the displacement of the coarse grid as ideal, noise-
free seismic measurements, whereas the fine grid repre-
sents the real seismic field. Gravity gradients are compared
by producing curves as shown in Fig. 5 for the coarse and
fine grids, though leaving out the normalization to 100%,
and to evaluate the error from making the grid coarser.
Since part of the calculation involves interpolation of
coarse grids back to the original grid density, which is a
memory-consuming operation in MATLAB, a smaller num-
ber of grid points, 703, is used, and to preserve a suffi-
ciently high spatial resolution close to the test mass, we
choose a comparatively small grid volume, ð3 kmÞ3.

First, we consider the reduction to a coarse, uniform grid
with 153 grid points. Calculating the gravity gradients �gfi,
�gco from the fine and coarse grids for a particular real-
ization of the stochastic isotropic field—again neglecting
the Rayleigh surface field—the error as a percentage

e ¼ 100 �
���������gfi � �gco

�gfi

�������� (13)

is plotted in Fig. 8 for each of the components �gx, �gy,

�gz as a function of integration distance. More clearly,
gravity gradients are integrated up to some variable dis-
tance from the test mass, and for each integral the value of
the error curve is determined by Eq. (13). As one can see,
reduction to a uniform coarse grid leads to very large errors
which can easily exceed 100%. Details of the error curve
depend strongly on the realization of the displacement
field, but all error curves for the uniform grid have in
common that a large error builds up at close distance to
the test mass, which is sometimes compensated to some
extent by contributions from greater distances (as for �gx,
�gz in Fig. 8), but which can also stay at a very high level
like the �gy curve.

If we regard the position of grid points in the coarse grid
as locations of seismometers in a uniform seismometer

array and the displacement of those grid points as the
seismometer data, then this result means that one cannot
use the data of a uniform array to accurately predict the
gravity gradient, at least not without applying a more
sophisticated model of the seismic field. Also, the number
of seismometers, N ¼ 153 ¼ 3375, is very high. The ques-
tion is whether N can be reduced, simultaneously decreas-
ing the error.
One idea is to make use of the fact that the displacement

field varies smoothly between grid points and to interpolate
the coarse-grid displacement field back to the original grid
density before calculating the gravity-gradient integral.
The trend is that the error decreases by only a small
amount. For particular realizations of the seismic field,
we observed a much better improvement of the error by
interpolation, but according to Fig. 9, it is not guaranteed
that interpolation decreases the error to a sufficiently small
level. Now, the previous error curves and the 1=r3 depen-
dence of the integrand Eq. (4) suggest that increasing the
density of grid points near the test mass may flatten the
error curves close to the test mass and remove part of the
error. In this paper, we investigate two alternative selec-
tions of grid points which lead to nonuniform coarse grids:
the squared and the cubed selections. Figure 10 shows how
grid points are selected from the fine grid to obtain the
respective coarse grid. The squared selection corresponds
to ngr / r�1, and the cubed selection to ngr / r�2, which

means that grid density is increased close to the test mass
and decreased near the grid boundary. As a result, the
squared coarse grid contains 133 ¼ 2197 grid points (se-
lection is along Cartesian axes, and not spherically sym-
metric), and the cubed selection contains 113 ¼ 1331 grid
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points. In both cases, the displacement field is interpolated
back to a uniform fine grid with 703 grid points before
calculating the gravity gradient. The error curves in Fig. 11
for the cubed selection prove that increasing the density of

grid points close to the test mass eliminates all of the low-
distance error seen in the uniform coarse grid. However,
even if the grid density of the cubed selection is increased
globally by a constant factor, a recurring problem is that
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FIG. 11. The cubed selection flattens the error curves com-
pared to the linear selection, but does not lead to a decreased
error of the gravity-gradient integral. The reason is that grid
density is too small starting at distances greater than about 
P=2.
Although the error is significantly better than in the uniform case
at intermediate distances (near 
P), convergence of the error
curves towards increasing distance is very poor. The cubed
selection does not produce satisfying results, at least not without
applying more sophisticated models (yet to be developed) of the
seismic field (instead of simple interpolation between grid
points).
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errors build up at greater distances due to the very low grid
density. Therefore, we introduce the squared selection, and
finally the error curves have an acceptable shape as dem-
onstrated in Fig. 12. Although it is tempting to conclude
from Fig. 12 that modeling of gravity gradients from iso-
tropic seismic fields (or any other field generated by distant
sources) is feasible, and even relatively simple, by clever
sensor positioning and interpolation of the seismic data,
one should not forget that these results are obtained from a
rather large number of grid points/seismometers. The hard-
ware cost of a high number of seismometers is secondary,
but the question is whether a suitable borehole system
around the test mass can be constructed to house the
seismic stations. This kilometer-size, dense array of seis-
mometers around each vertex of a 10 km triangle would
represent a seismic telescope of unprecedented capabil-
ities. In any case, at this point the results should be con-
sidered solely relevant for simulation purposes and maybe
to give an idea of the problems that will be encountered in
future theoretical and experimental studies. We are con-
vinced that the modeling methods will have to be devel-
oped to a much higher level than presented in this paper.

V. CONCLUSION

Mitigation of gravity-gradient noise is one of the major
challenges in the development of future-generation GW
detectors with sensitivity below 10 Hz. In order to extend
below 10 Hz strain sensitivities which are comparable to
those of surface detectors at 100 Hz, subtraction of GGN
from the interferometer data will be necessary. Gravity-
gradient noise cannot be directly measured by any other
instrument than a GW detector itself. Therefore, the GGN
prediction must be based on knowledge of its sources,
which is the seismic field (and atmospheric density fluctu-
ations if a surface location of the detector is considered).
Sources of the seismic field are either distant, in which case
a plane-wave model of the seismic field can be constructed,
or local, which requires more detailed understanding of the
source and its radiation characteristics. In this paper, we
constructed seismic fields from a plane-wave model and
investigated the associated underground gravity gradients.
We found that the isotropic, stochastic Rayleigh field pro-
duces small gravity gradients at depths comparable to the

length of pressure waves. Depending on the level of seis-
mic activity at the surface and of the frequency considered,
these gravity gradients can become totally negligible, i.e.
smaller than 1% of gravity gradients from the ambient
body-wave fields. More specifically, we showed that at a
depth corresponding to 3=2 of the length of a pressure
wave, gravity gradients from the Rayleigh field are sup-
pressed by a factor 1000. Neglecting the surface field, a key
question, which we addressed using our simplified model,
was how many seismometers need to be deployed to obtain
sufficient information about the seismic field for a suffi-
ciently accurate gravity-gradient model, and how large the
monitored rock volume needs to be. The scaling law
derived in this paper shows that for a certain (relative)
subtraction goal the volume that needs to be monitored
scales with the cube of the wavelength, and for each given
frequency the number of seismometers that need to be
deployed is independent of the length or frequency of the
seismic waves. For a very simple interpolation method of
seismic data, we found that good gravity-gradient model-
ing results can be obtained if the density of seismic instru-
ments in the array is proportional to the inverse of the
distance to the test mass with a total number of seismom-
eters of about 1500. Theoretically, this number is much
higher than the information content in the simulated seis-
mic field, so we expect that analyzing the seismic data with
a plane-wave model of the seismic field as opposed to
simple interpolation will achieve similar performance
with a considerably smaller number of seismometers. For
the future, our work needs to be developed further by
investigating the fields from local sources, including
Rayleigh scattering and reflections from fault planes, and
by implementation of a seismic model when it comes to
analyzing seismic data, not just to simulate the seismic
field. Investigation and comparison of local sources in
surface and underground environments are the key compo-
nents to understand the advantages and disadvantages of
building underground detectors.
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