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We study the strong gravity regime in viable models of so-called fðRÞ gravity that account for the

observed cosmic acceleration. In contrast with recent works suggesting that very relativistic stars might

not exist in these models, we find numerical solutions corresponding to static star configurations with a

strong gravitational field. The choice of the equation of state for the star is crucial for the existence of

solutions. Indeed, if the pressure exceeds 3 times the energy density in a large part of the star, static

configurations do not exist. In our analysis, we use a polytropic equation of state, which is not plagued

with this problem and, moreover, provides a better approximation for a realistic neutron star.
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One of the most challenging tasks for cosmology and
fundamental physics today is to try to understand the
apparent acceleration of the Universe. Among the many
models which have been proposed, a class which has
attracted a lot of attention is the so-called fðRÞ gravity
theories where the standard Einstein-Hilbert gravitational
Lagrangian, proportional to the scalar curvature R, is re-
placed by a function of R while the matter part of the
Lagrangian is left unchanged (see, e.g., [1] for a recent
review). After many detours, it has been realized that
viable fðRÞ theories must satisfy stringent conditions in
order to avoid instabilities and to be compatible with the
present laboratory and astrophysical constraints. A few
models [2–4] have been carefully constructed to meet these
requirements, using, in particular, the chameleon mecha-
nism [5] to satisfy the solar system constraints (the binary
pulsar constraints are, so far, weaker for these models [6]).

However, recent works [7,8] studying the strong gravity
limit of these models have questioned their viability by
suggesting that, inside neutron stars, where the effects of
general relativity are strong, one would easily reach the
singularity where R becomes infinite. In particular, in [8],
this impression seemed reinforced by the impossibility to
construct numerically relativistic stars beyond some criti-
cal value of the gravitational field.

In this paper, we reexamine this question and, unlike
these previous works, find that highly relativistic stars can
be obtained numerically. We also give qualitative argu-
ments to understand the existence of these solutions. An
important conclusion of our work is that the equation of
state must satisfy �� 3P> 0 in most of the star.
Otherwise, tachyonic instabilities associated with a nega-
tive effective squared mass develop and prevent the exis-
tence of a static star configuration. This problem affects, in
particular, the highly relativistic constant energy density
stars. This is why we have used a polytropic equation of
state, which has the additional advantage to be a better
approximation to a realistic neutron star.

Our starting point is the action

S ¼ M2
P

2

Z
d4x

ffiffiffiffiffiffiffi�~g
p

fð ~RÞ þ Sm½�m; ~g���; (1)

where Sm is the action for the matter, which is minimally
coupled to the so-called Jordan metric ~g��; ~R is the scalar

curvature associated with ~g�� and we have definedM
�2
P �

8�G. In contrast with [7,8], we reexpress the model as a
scalar-tensor theory in the so-called Einstein frame. The
two formulations are of course equivalent (at least on the
classical level), but the Einstein frame is useful to see that
the behavior of fðRÞ theories is quite analogous to chame-
leonlike scalar-tensor theories.
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ffiffi
3
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with the potential
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which can be expressed in terms of � by inverting the
definition of � as a function of ~R.
The first and second derivatives of the potential V in
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The function fðRÞ is severely constrained by observa-
tions. Here we will consider the model suggested by
Starobinsky [4],

fð ~RÞ ¼ R0½x� �ð1� ð1þ x2Þ�nÞ�; x � ~R

R0

: (4)

For this model the potential Vð�Þ is shown in Fig. 1.
Substituting this expression into (3) yields the minimum
of V corresponding to the asymptotic de Sitter solution
~R1 � x1R0. It is convenient to express the parameter � in
terms of x1:

� ¼ x1ð1þ x21Þnþ1

2½ð1þ x21Þnþ1 � 1� ðnþ 1Þx21�
:

In the strong gravity limit, corresponding to x � 1, we
have

fð ~RÞ � R0

�
x� �þ �

x2n

�
;

�

MP

� �
ffiffiffi
6

p
�n

x2nþ1
: (5)

The curvature singularity thus corresponds to a finite value
� ¼ 0 for the scalar field, as well as a finite value for the
potential V ¼ ð�=2ÞM2

PR0. However, the derivative
dV=d� becomes infinite in the limit � ! 0�.

For matter we consider a perfect fluid characterized by
the energy density ~� and pressure ~P, defined in the Jordan
frame (i.e., with respect to the metric ~g��). In the Einstein

frame, the corresponding energy density and pressure are
respectively � ¼ �4~� and P ¼ �4 ~P. Inside the star, �
will be extremely close to zero and therefore, the quantities
defined in the two frames will be numerically
indistinguishable.

We consider a static and spherically symmetric metric
(in the Einstein frame)

ds2 ¼ �e�dt2 þ e�dr2 þ r2ðd�2 þ sin2�d’2Þ:
Introducing the radial function mðrÞ so that e�� ¼
1� 2m=r, the time and radial components of Einstein’s
equations yield

m0 ¼ r2

2M2
P

�
�4~�þ 1

2
e���02 þ Vð�Þ

�
; (6)
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�
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P

�
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where a prime denotes a derivative with respect to the
radial coordinate, and one recognizes the total energy
density in the brackets on the right-hand side of the first
equation. Instead of the angular component of Einstein’s
equations, one can use the conservation of the energy-

momentum conservation, ~r�
~T�

� ¼ 0, which reads

~P 0 ¼ � 1

2
ð~�þ ~PÞ

�
�0 þ 2

��

�
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�
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where �� � d�=d�. The Klein-Gordon equation for the

scalar field reads,

�00 þ
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�0 ¼ e�
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dV
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þ�3��ð~�� 3 ~PÞ

�
:

(9)

In order to close the system of Eqs. (6)–(9), one should
finally specify the equation of state for the matter. In [8],
relativistic stars with constant energy density were consid-
ered. The advantage is that the pressure can be easily
determined analytically in general relativity (i.e., ignoring
the backreaction of the scalar field) and is given by

PðrÞ ¼ �0

ð1� 2GM
r�

Þ1=2 � ð1� 2GMr2

r3�
Þ1=2

ð1� 2GMr2

r3�
Þ1=2 � 3ð1� 2GM

r�
Þ1=2 ;

whereM is the mass of the star and r� its radius. However,
this implies that, in the innermost regions of the star, the
quantity �� 3P, i.e., the opposite of the trace of the
energy-momentum tensor, becomes negative as soon as

��� � GM

r�
>

5

18
:

In stars with a large region where ~�� 3 ~P< 0, we were
unable to find numerically solutions for the scalar field.
This is not related to the presence of the curvature singu-
larity, since it occurs in chameleon type models as well [9].
The reason is the presence of instabilities, because the
matter contribution to the effective squared mass is pro-
portional to ~�� 3 ~P and thus becomes negative. Note that a
similar effect has been observed in [10] for another class of
scalar-tensor theories, where ln� depends quadratically on
the scalar field.
The equation of state deep inside a neutron star is not

known but most realistic equations of state satisfy the
condition ~�� 3 ~P> 0. This is why we have chosen for
the present analysis a polytropic equation of state, given by

~�ð~nÞ ¼ mB

�
~nþ K

~n2

n0

�
; ~Pð~nÞ ¼ KmB

~n2

n0
; (10)
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FIG. 1 (color online). Potential V (in units of M2
PR0) as a

function of � (in Planck units) for n ¼ 1 and x1 ¼ 3:6. The
lower black dot corresponds to the de Sitter attractor while the
upper-right dot shows the curvature singularity.
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with mB ¼ 1:66� 10�27 kg, n0 ¼ 0:1 fm�1, and K ¼
0:1. In Fig. 2, the radial profile of the energy density and
pressure, together with ~�� 3 ~P, is plotted for a star with the
central particle number density ~nc ¼ 0:4 fm�3. This cor-
responds to j��j ’ 0:25, which is more than twice higher
than the value reached in [8].

We have integrated numerically the system of Eqs. (6)–
(9), together with (10), to obtain the profile of the scalar
field inside and outside the star in the fðRÞ model (4) with
n ¼ 1. A key parameter is the ratio between the energy
density at infinity (i.e., the cosmological energy density)
and the energy density at the center of the star, which can
be parametrized by v0 ¼ M2

PR0=~�c. Realistic values of
this parameter are extremely small and are numerically
challenging to explore, because the scalar field value at the
center is proportional to v3

0, as we will see below. The

smallest value we considered is v0 ¼ 10�4, which is much
higher than the realistic one. However we believe that the
situation is qualitatively similar for smaller values. Instead
of the shooting method used in [8], we have resorted to a
relaxation method.

As is clear from Fig. 3, the scalar field tends to inter-
polate between an extremely high density regime, inside
the star, and a very low density regime, outside the star. In
the very high density regime, the scalar field is, numeri-
cally, very close to the singularity. This behavior is quite
analogous to that of the ‘‘chameleon’’ mechanism [5], as
we will discuss in more details in [9].

In order to understand intuitively our results, it is useful
to introduce the effective potential

Veff ¼ V þ 1
4�

4ð~�� 3 ~PÞ; (11)

which is obtained by integrating, with respect to �, the
terms between brackets on the right-hand side of the Klein-
Gordon Eq. (9) (and we have set the constant of integration
to zero). The local minimum of the effective potential,
which we will denote �minðrÞ, is characterized, if it exists,

by

dVeff

d�
¼ dV

d�
þ Q

MP

e4Q�=MP ð~�� 3 ~PÞ ¼ 0:

At high curvature (x � 1), dV=d� � MPR0x=
ffiffiffi
6

p
, accord-

ing to (5), and the minimum corresponds to

xmin ’ ~�� 3 ~P

M2
PR0

;

which is inversely proportional to v0 (the scalar field value
�min is thus proportional to v

3
0). This minimum exists only

if the matter term ~�� 3 ~P is positive. This implies that, for
a very compact constant density star, the effective potential
in the central layers of the star does not have any minimum.
One can also define a corresponding effective squared

mass as

m2
eff �

d2V

d�2
þ 4

Q2

M2
P

e4Q�=MPð~�� 3 ~PÞ; (12)

which can become negative, as discussed earlier, if the
second term dominates and ~�� 3 ~P< 0. In the regime
x � 1, if the minimum (12) exists, one finds by evaluating
(12) at the minimum, using (5),

m2
eff �

R0

6�nð2nþ 1Þ x
2nþ2
min :

In view of our results, which seem contradictory with the
conclusions of [7,8], it is worth reexamining in detail their
arguments against the existence of very relativistic stars.
Frolov’s argument is based on the nonrelativistic limit of
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FIG. 3 (color online). Profile of the scalar field � (in Planck
units), shown by the solid (blue) line, as a function of the radius

(in units of MP ~�
�1=2
c ), for the model (4) with n ¼ 1, x1 ¼ 3:6,

and v0 ¼ 10�4. The value �min for the minimum of the effective
potential is plotted by the dashed (gray) line.
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FIG. 2 (color online). Energy density ~� (upper solid line),
pressure ~P (lower solid line) and the combination ~�� 3 ~P (black
dotted line), in units of the central density �c, as functions of the

radial coordinate r (in units of MP ~�
�1=2
c ).
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the Klein-Gordon equation which can be written in the
form

�c ¼ � 8�G

3
~�� 2

Q

MP

dV

d�
;

for c ¼ f ~R � 1 � �2Q�=MP. If one neglects the second
term on the right-hand side, c then satisfies an equation
analogous to the Poisson equation �� ¼ 4�G� and is
thus related to the gravitational potential� by c ¼ c1 �
2�=3. Since c1 is small, this suggests that the curvature
singularity can be easily reached with a sufficiently strong
gravitational potential. However, inside the star, the energy
density is much higher than at infinity and this corresponds
precisely to the high curvature regime, where dV=d�
becomes very high and cannot be neglected.

One can also understand the scalar field profile, as in [8],
in terms of a kinematic analogy with the motion of a
particle in a potential Uð�Þ which is submitted to a force
F ¼ �ð8�G=3Þð~�� 3 ~PÞ, where the radius r is consid-
ered to be a ‘‘fictive’’ time parameter (see Fig. 4). The
radial profile of the scalar field can then be interpreted as
the ‘‘motion’’ of the particle from r ¼ 0 to r ¼ 1. At r ¼
0, the particle is at rest since �0 ¼ 0, but is submitted to a
leftward force that makes it roll uphill. The initial value for
� must be such that the scalar field reaches the top of the
potential with vanishing velocity. We find a stronger gravi-
tational potential in more compact stars with high energy
density. The amplitude ofF then tends to become stronger,
but there does not seem to be any critical value beyond
which the particle would necessarily fall into the singular-
ity or overshoot the top of the hill. As the density of the star
increases, the minimum �min of the effective potential

becomes closer to the singularity � ¼ 0, according to
(12). One thus expects that the initial value of � will
also be closer and closer to the singularity � ¼ 0. This is
confirmed by our numerical analysis, even if it becomes
more and more difficult numerically to distinguish the
extremely small value of � from zero.
Moreover, as the numerical solution plotted in Fig. 3

shows explicitly, the motion of the particle can be subtle. In
this case, it first starts to approach the singularity, it then
stops and moves and the opposite direction towards the top
of the potential. This complicated motion is a direct con-
sequence of the nonmonotonous dependence of ~�� 3 ~P,
which reaches its maximum value at some nonzero radius
of the star, as can be seen in Fig. 2.
To conclude, our work shows that it is possible to con-

struct highly relativistic stars in fðRÞ theories, despite
recent indications to the contrary. Numerically, the task
can be challenging as the scalar field value is extremely
close to the singularity in the center of the star. We have
also studied relativistic stars in chameleonlike models and
found a very similar behavior [9]. In both cases, a crucial
requirement for obtaining a static configuration is that the
equation of state satisfies the condition ~�� 3 ~P> 0 in
most of the star. Otherwise, the effective squared mass of
the scalar field becomes negative and the associated insta-
bilities prevent the construction of a static configuration.
This is problematic for constant energy density stars,
which have been used in several recent works because of
their analytical simplicity, since ~�� 3 ~P becomes negative
in the central part of very massive stars of this type. This
might explain why, beyond some critical value for the
gravitational field, no configuration was found in [11] for
chamelonlike models. Realistic neutron stars do not, how-
ever, suffer from this problem. Moreover, once the scalar
field configuration is stable, the (hydrodynamical) stability
of the stars should be very similar to that of their general
relativistic counterparts because the backreaction of the
scalar field on the star is extremely small. An open ques-
tion, which is far beyond the scope of this work, is whether
the static configurations described here can be reached
dynamically during the collapse of a very massive star
into a neutron star. It would also be interesting to study
whether and how black holes would form during the col-
lapse of matter, i.e., such has been done for instance in [12]
in the context of scalar-tensor theories without potential.
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J. Novak, I. Sawicki, A. Starobinsky, and S. Tsujikawa for
very instructive discussions. The work of E. B. was sup-
ported by the EU FP6 Marie Curie Research and Training
Network UniverseNet (MRTN-CT-2006-035863).

FIG. 4 (color online). Effective potential Uð�Þ ¼ �Vð�Þ in
which the scalar field � ‘‘moves’’ under the action of the force
F , in the picture of the classical mechanic analogy.
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