$\Upsilon(1S) \rightarrow \gamma f_2(1270)$ decay

Bing An Li

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA (Received 30 September 2009; published 21 December 2009)

Decay $Y(1S) \rightarrow \gamma f_2(1270)$ is studied by an approach in which the tensor meson, $f_2(1270)$, is strongly coupled to gluons. Besides the strong suppression of the amplitude $Y(1S) \rightarrow \gamma gg$, $gg \rightarrow f_2$ by the mass of the *b*-quark, *d*-wave dominance in $Y(1S) \rightarrow \gamma f_2(1270)$ is revealed from this approach, which provides a large enhancement. The combination of these two factors leads to larger $B(Y(1S) \rightarrow \gamma f_2(1270))$. The decay rate of $Y(1S) \rightarrow \gamma f_2(1270)$ and the ratios of the helicity amplitudes are obtained and they are in agreement with the data.

DOI: 10.1103/PhysRevD.80.117501

The measurements

$$B(\Upsilon(1S) \to \gamma f_2(1270)) = (10.2 \pm 0.8 \pm 0.7) \times 10^{-5},$$
(1)

$$B(\Upsilon(1S) \to \gamma f_2(1270)) = (10.5 \pm 1.6(\text{stat})^{+1.9}_{-1.8}(\text{syst})) \times 10^{-5}$$
(2)

have been reported by CLEO in the channel of $\Upsilon(1S) \rightarrow \gamma f_2(1270), f_2(1270) \rightarrow \pi^+ \pi^-$ [1], and $f_2 \rightarrow \pi^0 \pi^0$ [2], respectively. It is known that

$$B(J/\psi \to \gamma f_2(1270) = (1.43 \pm 0.11) \times 10^{-3}.$$
 (3)

[3] $B(\Upsilon(1S) \rightarrow \gamma f_2(1270))$ is about 1 order of magnitude smaller than $B(J/\psi \rightarrow \gamma f_2(1270))$. The CLEO Collaboration has reported the measurements of $B(\Upsilon(1S) \rightarrow \gamma \eta'(\eta))$ whose upper limits are smaller than $B(J/\psi \rightarrow \gamma \eta'(\eta))$ by almost 3 orders of magnitudes [4]. In Ref. [5] the dependences of $B(J/\psi, \Upsilon(1S) \rightarrow \gamma \eta'(\eta))$ on corresponding quark masses are found and an explanation of very small $B(\Upsilon \rightarrow \gamma(\eta', \eta))$ is presented. The question is why $B(\Upsilon \rightarrow \gamma f_2)$ is not too small in comparison with $B(J/\psi, \Upsilon(1S) \rightarrow \gamma \eta'(\eta))$. $B(\Upsilon \rightarrow \gamma f_2)$ has been studied by many authors. In Ref. [6] a QCD analysis for $B(\Upsilon(1S) \rightarrow \gamma f_2(1270))$ has been done. In Ref. [7] the ratio $\frac{B(Y \rightarrow \gamma f_2)}{B(J/\psi \rightarrow \gamma f_2)}$ has been studied by using soft-collinear theory and nonrelativistic QCD. In 1983 we studied the radiative decay $J/\psi \rightarrow \gamma f_2(1270)$ [8]. In this paper the same approach exploited in Ref. [8] is used to study $\Upsilon \rightarrow \gamma f_2$.

The study done in Ref. [8] is based on the arguments presented in Refs. [9] that the tensor meson $f_2(1270)$ contains glueball components

$$|f_2\rangle = \cos\phi |q\bar{q}\rangle + \sin\phi |gg\rangle. \tag{4}$$

Tensor glueballs have been studied by many authors [10]. The mass of 2^{++} glueball has been calculated by lattice QCD [11]. In Ref. [11(a)] $M(2^{++}) = 2390(30)(120)$ MeV is reported. On the other hand, besides $f_2(1270)$ and $f'_2(1525)$ other isoscalar 2^{++} mesons: $f_2(1565)$, $f_2(1640)$, $f_2(1810)$, $f_2(1910)$, $f_2(1950)$, $f_2(2010)$,

 $f_2(2150)...$ have been reported [3]. $f_2(1270), f'_2(1525),$

PACS numbers: 13.20.Gd

 $f_2(150)$... have been reported [5]. $f_2(1270)$, $f_2(1525)$, $f_2(1640)$, $f_2(1910)$, $f_2(1950)$ are observed in J/ψ radiative decays. $J/\psi \rightarrow \gamma f_2(1270)$, $\gamma f_2(1950)$ have greater branching ratios. Some of them are possible radial excitations of $f_2(1270)$ and $f'_2(1525)$. It is also possible that one of them is a 2⁺⁺ glueball.

According to Ref. [3], $f_2(1270)$ is closer to a flavor singlet. Therefore, it is natural that there is a mixing between $f_2(1270)$ and the 2^{++} glueball (4).

According to Ref. [3], the mixing angle of $f'_2(1525)$ and $f_2(1270)$ is $\theta_{quad} = 29.6^\circ$. The decays of $f_2, f'_2 \rightarrow \gamma \gamma$ can be used to estimate the mixing angle ϕ (4)

$$R^{\text{th}} = \frac{\Gamma(f_2(1270) \to 2\gamma)}{\Gamma(f'_2(1525) \to 2\gamma)}$$

= $\cos^2 \phi \frac{(5\sin\alpha + \sqrt{2}\cos\alpha)^2}{(5\cos\alpha - \sqrt{2}\sin\alpha)^2} \frac{m_{f'_2(1525)}}{m_{f_2(1270)}}$
= $37.87\cos^2 \phi$,

where $\alpha = 84.3^{\circ}$ [3]. The experimental value of this ratio is 32.18(1 ± 0.22) [3]. Therefore, the mixing angle is estimated to be $\phi \sim 22.81^{\circ}$. If the linear mixing angle of $f'_2(1525)$ and $f_2(1270)$ $\theta_{\text{lin}} = 28^{\circ}$ is taken [3], $R^{\text{th}} =$ 29.04cos² ϕ . Therefore, only the lower values of the experimental ratio 32.18(1 ± 0.22) [3] can be used to estimate the angle ϕ . The contribution of the glueball component (4) to the two photon decay is suppressed by $O(\alpha_s^2)$ and is ignored.

In the radiative decay $J/\psi \rightarrow \gamma f_2$ the $q\bar{q}$ component of $f_2(1270)$ is suppressed by $O(\alpha_s^2(m_c))$ [9]

$$\frac{\Gamma(J/\psi \to \gamma + (q\bar{q}))}{\Gamma(J/\psi \to \gamma + (gg))} \sim \alpha_s^2(m_c).$$
(5)

Therefore, the glueball component of f_2 is dominant in the decay $J/\psi \rightarrow \gamma f_2$. Similarly, the glueball component of f_2 is expected to be dominant in the decay $Y(1S) \rightarrow \gamma f_2$. In QCD the radiative decays J/ψ , $Y \rightarrow \gamma f_2$ are described as J/ψ , $Y \rightarrow \gamma gg$, $gg \rightarrow f_2$. The coupling between f_2 and two gluons is written as [8]

$$G^{ab}_{\alpha\beta,\lambda_2}(x_1, x_2) = \langle f_{gg\lambda_2} | T\{A^a_{\alpha}(x_1)A^b_{\beta}(x_2)\} | 0 \rangle$$

= $\delta_{ab} e^{(i/2)p_f(x_1x_2)} G(0) \sum_{m_1m_2} c^{2\lambda_2}_{1m_11m_2} e^{*m_1}_{\alpha} e^{*m_2}_{\beta},$
(6)

where G(0) is taken as a parameter and $c_{1m_11m_2}^{2\lambda_2}$ is a Clebsch-Gordan coefficient. Using Eq. (6), the helicity amplitudes of $J/\psi \rightarrow \gamma f_2$ are presented in Ref. [8]. Replacing m_c by m_b in Eqs. (3, 4, 11) of Ref. [8], the helicity amplitudes of $\Upsilon(1S) \rightarrow \gamma f_2$ are obtained

$$T_{0} = -\frac{2}{\sqrt{6}}(A_{2} + p^{2}A_{1}),$$

$$T_{1} = -\frac{\sqrt{2}}{m_{Y}}(EA_{2} + m_{f}p^{2}A_{3}),$$

$$T_{2} = -2A_{2},$$
(7)

$$E = \frac{1}{2m_f} (m_Y^2 + m_f^2), \qquad p = \frac{1}{2m_f} (m_Y^2 - m_f^2), \quad (8)$$

where

$$A_{1} = -a \frac{2m_{f}^{2} - m_{Y}(m_{Y} - 2m_{b})}{m_{b}m_{Y}[m_{b}^{2} + \frac{1}{4}(m_{Y}^{2} - 2m_{f}^{2})]},$$

$$A_{2} = -a \frac{1}{m_{b}} \left\{ \frac{m_{f}^{2}}{m_{Y}} - m_{Y} + 2m_{b} \right\},$$

$$A_{3} = -a \frac{m_{f}^{2} - \frac{1}{2}(m_{Y} - 2m_{b})^{2}}{m_{b}m_{Y}[m_{b}^{2} + \frac{1}{4}(m_{Y}^{2} - 2m_{f}^{2})]},$$

$$a = \frac{16\pi}{3\sqrt{3}} \alpha_{s}(m_{b})G(0)\psi_{Y}(0)\frac{\sqrt{m_{Y}}}{m_{b}^{2}},$$
(9)

where $\psi_{\Upsilon}(0)$ is the wave functions of Υ at origin. The decay width of $\Upsilon \rightarrow \gamma f_2$ is derived as

$$\Gamma(\Upsilon \to \gamma f_2) = \frac{32\pi\alpha}{81} \sin^2 \phi \, \alpha_s^2(m_b) G^2(0) \psi_{\Upsilon}^2(0) \\ \times \frac{1}{m_b^4} \left(1 - \frac{m_f^2}{m_{\Upsilon}^2} \right) \{T_0^2 + T_1^2 + T_2^2\}.$$
(10)

The ratios of the helicity amplitudes are defined as

$$x = \frac{T_1}{T_0}, \qquad y = \frac{T_2}{T_0}.$$
 (11)

The expressions for these quantities for $J/\psi \rightarrow \gamma f_2$ can be found in Ref. [8].

The wave functions of Y or J/ψ at the origin are related to their leptonic decay rates:

$$\frac{\psi_Y^2(0)}{\psi_J^2(0)} = 4 \frac{\Gamma_{Y \to e^+ e^-}}{\Gamma_{J/\psi \to e^+ e^-}} \frac{m_Y^2}{m_{J/\psi}^2}.$$
 (12)

The parameters $\sin^2 \phi G^2(0)$ are canceled in the ratio

$$R = \frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)}.$$

Taking $\alpha_s(m_c) = 0.3$, $\alpha_s(m_b) = 0.18$ [6], and $m_c = 1.29$ GeV (the experimental value is $m_c = 1.27^{+0.07}_{-0.11}$ GeV [3]), $m_b = (5.04 \pm 0.075 \pm 0.04)$ GeV [3]. It is obtained

$$R = 0.071(1 \pm 0.17) \tag{13}$$

which agrees with the experimental data [see, Eqs. (1)–(3)].

The ratios of the helicity amplitudes are found to be

$$x^2 = 0.058, \qquad y^2 = 5.9 \times 10^{-3}.$$
 (14)

They are consistent with the experimental values [1]

$$x^{2} = 0.00^{+0.02+0.01}_{-0.00-0.00}, \qquad y^{2} = 0.09^{+0.08+0.04}_{-0.07-0.03}.$$
 (15)

Equation (14) shows that the helicity amplitudes $T_{1,2}$ are small and the amplitude T_0 makes the dominant contribution to the decay rate of $\Upsilon \rightarrow \gamma f_2$. On the other hand, Eq. (13) indicates that the $B(\Upsilon \rightarrow \gamma f_2)$ is not too small in comparison with $B(\Upsilon \rightarrow \gamma \eta')$. These two results (13) and (14) are obtained by the approach studied in Ref. [8]. In this approach there are two processes for the decay $\Upsilon \rightarrow$ $\gamma f_2: \Upsilon \rightarrow \gamma + gg$ and the two gluons are coupled to the f_2 meson. The process $\Upsilon \rightarrow \gamma + gg$ leads to very strong suppression by the mass of the *b* quark in the amplitudes (9). The same suppression appears in $\Upsilon \rightarrow \gamma \eta'$ [5] too. On the other hand, the coupling between the two gluons and the f_2 meson leads to enhancements in the helicity amplitudes (7) and (8). From Eq. (8) E = 35.9 GeV and p =34.6 GeV are determined. The E and the p with large values appear in the helicity amplitudes $T_{0,1}$ and not in T_2 . That is why the ratio y is so small (14). In T_1 (7) there is a factor $\frac{1}{m_y}$ which makes T_1 smaller. Therefore, the helicity amplitude T_0 makes the dominant contribution. In the helicity amplitude $T_0 p^2 A_1$ is much greater than A_2 , therefore,

$$T_0 \cong -\frac{2}{\sqrt{6}} p^2 A_1.$$
 (16)

The combination of the T_0 dominance and Eq. (16) leads to

$$\Gamma(\Upsilon \to \gamma f_2) \propto p^4.$$
 (17)

The T_0 dominance has been found in Ref. [6] and $R \sim 0.059$ is obtained. $m_c = 1.5$ GeV is taken in Ref. [6]. In this paper, a not too small $B(\Upsilon \rightarrow \gamma f_2)$ in comparison with $B(\Upsilon \rightarrow \gamma \eta')$ results in the competition between the suppression and the enhancement in the decay $\Upsilon \rightarrow \gamma f_2$.

In QCD J/ψ , $\Upsilon \rightarrow$ light hadrons are described as J/ψ , $\Upsilon \rightarrow 3g$ whose decay width is proportional to $\alpha_s^3 m_V$, where m_V is the mass of J/ψ , Υ , respectively. Putting these factors together, the ratio is expressed as

$$R = \frac{B(Y \to \gamma f_{2})}{B(J/\psi \to \gamma f_{2})}$$

$$= \frac{\Gamma(Y \to \gamma f_{2})}{\Gamma(J/\psi \to \gamma f_{2})} \frac{\Gamma(J/\psi \to lh)}{\Gamma(Y \to lh)} \frac{B(Y \to lh)}{B(J/\psi \to lh)}$$

$$= 1.06 \frac{\alpha_{s}(m_{c})}{\alpha_{s}(m_{b})} \frac{p_{Y}^{4}}{p_{J}^{4}} \frac{m_{J}m_{c}^{6}}{m_{Y}m_{b}^{6}} \frac{[m_{c}^{2} + \frac{1}{4}(m_{J}^{2} - 2m_{f}^{2})]^{2}}{[m_{b}^{2} + \frac{1}{4}(m_{Y}^{2} - 2m_{f}^{2})]^{2}} \frac{(1 - \frac{m_{f}^{2}}{m_{Y}^{2}})}{(1 - \frac{m_{f}^{2}}{m_{Y}^{2}})}$$

$$\times \frac{\{2m_{f}^{2} - m_{Y}(m_{Y} - 2m_{b})\}^{2}}{\{2m_{f}^{2} - m_{J}(m_{J} - 2m_{c})\}^{2} + 6\frac{m_{f}^{2}}{m_{J}^{2}}\{m_{f}^{2} - \frac{1}{2}(m_{J} - 2m_{c})^{2}\}^{2}}$$
(18)

where

$$p_J = \frac{m_J^2}{2m_f} \left(1 - \frac{m_f^2}{m_J^2} \right).$$
(19)

The competition between the suppression and the enhancement in the decay $\Upsilon \rightarrow \gamma f_2$ makes the dependence of $\frac{B(\Upsilon \rightarrow \gamma f_2)}{B(J/\psi \rightarrow \gamma f_2)}$ on quark masses much weaker than the ratio $\frac{B(\Upsilon \rightarrow \gamma \eta'(\eta))}{B(J/\psi \rightarrow \gamma \eta'(\eta))}$ [5].

In summary, very small ratios of the helicity amplitudes and the dominance of the enhanced amplitude T_0 are obtained by the approach [8] in which the $f_2(1270)$ is strongly coupled to two gluons. These results agree with the data.

- [1] S. B. Athar *et al.* (CLEO Collaboration), Phys. Rev. D **73**, 032001 (2006).
- [2] D. Besson *et al.* (CLEO Collaboration), Phys. Rev. D 75, 072001 (2007).
- [3] C. Amsler *et al.* (Particle Data Group), Phys. Lett. B **667**, 1 (2008).
- [4] S. B. Athar *et al.* (CLEO Collaboration), Phys. Rev. D 76, 072003 (2007).
- [5] Bing An Li, Phys. Rev. D 77, 097502 (2008).
- [6] J. P. Ma, Nucl. Phys. **B605**, 625 (2001).
- [7] S. Fleming, C. Lee, and A. K. Leibovich, Phys. Rev. D 71, 074002 (2005).
- [8] Bing An Li and Q. X. Shen, Phys. Lett. 126B, 125 (1983).
- [9] J. L. Rosner, Phys. Rev. D 24, 1347 (1981); J. F. Donoghue, Phys. Rev. D 25, 1875 (1982).
- [10] V. V. Anisovich et al., Phys. At. Nucl. 69, 520 (2006); Int.

J. Mod. Phys. A **20**, 6327 (2005); F. Giacosa, T. Gutsche, V.E. Lyubovitskij, and A. Faessler, Phys. Rev. D **72**, 114021 (2005); S.R. Cotanch and R.A. Williams, Phys. Lett. B **621**, 269 (2005); C. Amsler *et al.* (Crystal Barrel Collaboration), Phys. Lett. B **520**, 175 (2001); A. Sarantsev, Nucl. Phys. **A675**, 193 (2000); K.F. Liu, B.A. Li, and K. Ishikawa, Phys. Rev. D **40**, 3648 (1989); K. Ishikawa, I. Tanaka, K.F. Liu, and B.A. Li, Phys. Rev. D **37**, 3216 (1988).

[11] (a) Y. Chen *et al.*, Phys. Rev. D **73**, 014516 (2006); (b) A. Hart and M. Teper (UKQCD Collaboration), Phys. Rev. D **65**, 034502 (2002); (c) C. Liu, Chin. Phys. Lett. **18**, 187 (2000); (d) C. J. Morningstar and M. J. Peardon, Phys. Rev. D **60**, 034509 (1999); (e) S. A. Chin, C. Long, and D. Robson, Phys. Rev. Lett. **60**, 1467 (1988); (f) T. A. DeGrand, Phys. Rev. D **36**, 3522 (1987).