$\Upsilon(1S) \rightarrow \gamma f_2(1270)$ decay

Bing An Li

Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506, USA (Received 30 September 2009; published 21 December 2009)

Decay $\Upsilon(1S) \rightarrow \gamma f_2(1270)$ is studied by an approach in which the tensor meson, $f_2(1270)$, is strongly coupled to gluons. Besides the strong suppression of the amplitude $\Upsilon(1S) \rightarrow \gamma gg$, $gg \rightarrow f_2$ by the mass of the b-quark, d-wave dominance in $\Upsilon(1S) \rightarrow \gamma f_2(1270)$ is revealed from this approach, which provides a large enhancement. The combination of these two factors leads to larger $B(Y(1S) \rightarrow \gamma f_2(1270))$. The decay rate of $\Upsilon(1S) \to \gamma f_2(1270)$ and the ratios of the helicity amplitudes are obtained and they are in agreement with the data.

DOI: [10.1103/PhysRevD.80.117501](http://dx.doi.org/10.1103/PhysRevD.80.117501) PACS numbers: 13.20.Gd

The measurements

$$
B(Y(1S) \to \gamma f_2(1270)) = (10.2 \pm 0.8 \pm 0.7) \times 10^{-5},
$$

(1)

$$
B(Y(1S) \to \gamma f_2(1270))
$$

= (10.5 ± 1.6(stat)^{+1.9}_{-1.8}(syst)) × 10⁻⁵ (2)

have been reported by CLEO in the channel of $\Upsilon(1S) \rightarrow$ $\gamma f_2(1270)$, $f_2(1270) \rightarrow \pi^+ \pi^-$ [\[1](#page-2-0)], and $f_2 \rightarrow \pi^0 \pi^0$ [[2\]](#page-2-1), respectively It is known that respectively. It is known that

$$
B(J/\psi \to \gamma f_2(1270) = (1.43 \pm 0.11) \times 10^{-3}.
$$
 (3)

[\[3\]](#page-2-2) $B(Y(1S) \rightarrow \gamma f_2(1270))$ is about 1 order of magnitude smaller than $B(J/\psi \rightarrow \gamma f_2(1270))$. The CLEO Collaboration has reported the measurements of $B(Y(1S) \rightarrow \gamma \eta'(\eta))$ whose upper limits are smaller than $B(I/\psi \rightarrow \gamma \eta'(\eta))$ by almost 3 orders of magnitudes [4] $B(J/\psi \to \gamma \eta'(\eta))$ by almost 3 orders of magnitudes [[4\]](#page-2-3).
In Ref. [5] the dependences of $B(J/\psi Y(1S) \to \gamma \eta'(\eta))$ In Ref. [\[5](#page-2-4)] the dependences of $B(J/\psi, Y(1S) \to \gamma \eta'(\eta))$
on corresponding quark masses are found and an explanaon corresponding quark masses are found and an explanation of very small $B(Y \to \gamma(\eta', \eta))$ is presented. The question is why $B(Y \to \gamma f_0)$ is not too small in compariquestion is why $B(Y \rightarrow \gamma f_2)$ is not too small in comparison with $B(J/\psi, \Upsilon(1S) \to \gamma \eta'(\eta))$. $B(\Upsilon \to \gamma f_2)$ has been
studied by many authors. In Ref. [6] a OCD analysis for studied by many authors. In Ref. [\[6](#page-2-5)] a QCD analysis for $B(Y(1S) \rightarrow \gamma f_2(1270))$ has been done. In Ref. [[7\]](#page-2-6) the ratio $\frac{B(Y \rightarrow y f_2)}{B(J/\psi \rightarrow y f_2)}$ has been studied by using soft-collinear theory and nonrelativistic QCD. In 1983 we studied the radiative decay $J/\psi \rightarrow \gamma f_2(1270)$ [\[8](#page-2-7)]. In this paper the same ap-proach exploited in Ref. [[8](#page-2-7)] is used to study $Y \rightarrow \gamma f_2$.

The study done in Ref. [[8](#page-2-7)] is based on the arguments presented in Refs. [[9](#page-2-8)] that the tensor meson $f_2(1270)$ contains glueball components

$$
|f_2\rangle = \cos\phi|q\bar{q}\rangle + \sin\phi|gg\rangle. \tag{4}
$$

Tensor glueballs have been studied by many authors [\[10\]](#page-2-9). The mass of 2^{++} glueball has been calculated by lattice QCD [[11](#page-2-10)]. In Ref. [\[11\(a\)](#page-2-10)] $M(2^{++}) = 2390(30)(120)$ MeV is reported. On the other hand, besides $f_2(1270)$ and $f_2'(1525)$ other isoscalar 2^{++} mesons: $f_2(1565)$,
 $f_3(1640)$ $f_4(1810)$ $f_5(1910)$ $f_6(1950)$ $f_6(2010)$ $f_2(1640)$, $f_2(1810)$, $f_2(1910)$, $f_2(1950)$, $f_2(2010)$,

 $f_2(2150)$... have been reported [\[3](#page-2-2)]. $f_2(1270)$, $f_2'(1525)$,
 $f_2(1640)$, $f_2(1910)$, $f_2(1950)$ are observed in I/ψ radia $f_2(1640)$, $f_2(1910)$, $f_2(1950)$ are observed in J/ψ radiative decays. $J/\psi \rightarrow \gamma f_2(1270)$, $\gamma f_2(1950)$ have greater branching ratios. Some of them are possible radial excitations of $f_2(1270)$ and $f_2'(1525)$. It is also possible that one
of them is a 2⁺⁺ glueball of them is a 2^{++} glueball.

According to Ref. [\[3\]](#page-2-2), $f_2(1270)$ is closer to a flavor singlet. Therefore, it is natural that there is a mixing between $f_2(1270)$ and the 2^{++} glueball ([4](#page-0-0)).

According to Ref. [[3\]](#page-2-2), the mixing angle of f'_2 (1525) and
(1270) is $\theta = 29.6^\circ$ The decays of f_2 , $f'_1 \rightarrow 22.0^\circ$ $f_2(1270)$ is $\theta_{\text{quad}} = 29.6^\circ$. The decays of $f_2, f_2^{\dagger} \rightarrow \gamma \gamma$ can
be used to estimate the mixing angle ϕ (4) be used to estimate the mixing angle ϕ [\(4\)](#page-0-0)

$$
Rth = \frac{\Gamma(f_2(1270) \to 2\gamma)}{\Gamma(f_2'(1525) \to 2\gamma)}
$$

= $\cos^2 \phi \frac{(5 \sin \alpha + \sqrt{2} \cos \alpha)^2}{(5 \cos \alpha - \sqrt{2} \sin \alpha)^2} \frac{m_{f_2'(1525)}}{m_{f_2(1270)}}$
= 37.87cos² ϕ ,

where $\alpha = 84.3^{\circ}$ $\alpha = 84.3^{\circ}$ $\alpha = 84.3^{\circ}$ [3]. The experimental value of this ratio is 32.18 (1 ± 0.22) [\[3](#page-2-2)]. Therefore, the mixing angle is estimated to be $\phi \sim 22.81^{\circ}$. If the linear mixing angle of $f_2(1525)$ and $f_2(1270)$ $\theta_{\text{lin}} = 28^\circ$ is taken [\[3](#page-2-2)], $R^{\text{th}} =$
29.04cos²φ. Therefore, only the lower values of the ex- $29.04\cos^2 \phi$. Therefore, only the lower values of the ex-perimental ratio [3](#page-2-2)2.18 (1 ± 0.22) [3] can be used to estimate the angle ϕ . The contribution of the glueball component ([4\)](#page-0-0) to the two photon decay is suppressed by $O(\alpha_s^2)$ and is ignored.
In the radiative decay

In the radiative decay $J/\psi \rightarrow \gamma f_2$ the $q\bar{q}$ component of (1270) is suppressed by $O(\alpha^2(m))$ [9] $f_2(1270)$ is suppressed by $O(\alpha_s^2(m_c))$ [[9](#page-2-8)]

$$
\frac{\Gamma(J/\psi \to \gamma + (q\bar{q}))}{\Gamma(J/\psi \to \gamma + (gg))} \sim \alpha_s^2(m_c). \tag{5}
$$

Therefore, the glueball component of f_2 is dominant in the decay $J/\psi \rightarrow \gamma f_2$. Similarly, the glueball component of f_2 is expected to be dominant in the decay $\Upsilon(1S) \rightarrow \gamma f_2$. In QCD the radiative decays J/ψ , $\Upsilon \rightarrow \gamma f_2$ are described as J/ψ , $\Upsilon \rightarrow \gamma gg$, $gg \rightarrow f_2$. The coupling between f_2 and two gluons is written as [[8\]](#page-2-7)

$$
G^{ab}_{\alpha\beta,\lambda_2}(x_1, x_2) = \langle f_{gg\lambda_2} | T \{ A^a_{\alpha}(x_1) A^b_{\beta}(x_2) \} | 0 \rangle
$$

= $\delta_{ab} e^{(i/2)p_f(x_1x_2)} G(0) \sum_{m_1 m_2} c^{2\lambda_2}_{1m_1 1m_2} e^{\ast m_1}_{\alpha} e^{\ast m_2}_{\beta},$
(6)

where $G(0)$ is taken as a parameter and $c_{1m_11m_2}^{2\lambda_2}$ is a Globech Cordan coefficient. Using Eq. (6) the holigity Clebsch-Gordan coefficient. Using Eq. ([6](#page-1-0)), the helicity amplitudes of $J/\psi \rightarrow \gamma f_2$ are presented in Ref. [[8\]](#page-2-7). Replacing m_c by m_b in Eqs. (3, 4, 11) of Ref. [\[8\]](#page-2-7), the helicity amplitudes of $\Upsilon(1S) \rightarrow \gamma f_2$ are obtained

$$
T_0 = -\frac{2}{\sqrt{6}} (A_2 + p^2 A_1),
$$

\n
$$
T_1 = -\frac{\sqrt{2}}{m_\Upsilon} (EA_2 + m_f p^2 A_3),
$$

\n
$$
T_2 = -2A_2,
$$
\n(7)

$$
E = \frac{1}{2m_f}(m_Y^2 + m_f^2), \qquad p = \frac{1}{2m_f}(m_Y^2 - m_f^2), \quad (8)
$$

where

$$
A_1 = -a \frac{2m_f^2 - m_Y(m_Y - 2m_b)}{m_b m_Y[m_b^2 + \frac{1}{4}(m_Y^2 - 2m_f^2)]},
$$

\n
$$
A_2 = -a \frac{1}{m_b} \left\{ \frac{m_f^2}{m_Y} - m_Y + 2m_b \right\},
$$

\n
$$
A_3 = -a \frac{m_f^2 - \frac{1}{2}(m_Y - 2m_b)^2}{m_b m_Y[m_b^2 + \frac{1}{4}(m_Y^2 - 2m_f^2)]},
$$

\n
$$
a = \frac{16\pi}{3\sqrt{3}} \alpha_s(m_b) G(0) \psi_Y(0) \frac{\sqrt{m_Y}}{m_b^2},
$$

\n(9)

where $\psi_Y(0)$ is the wave functions of Y at origin. The decay width of $Y \rightarrow \gamma f_2$ is derived as

$$
\Gamma(\Upsilon \to \gamma f_2) = \frac{32\pi\alpha}{81} \sin^2 \phi \alpha_s^2(m_b) G^2(0) \psi_\Upsilon^2(0)
$$

$$
\times \frac{1}{m_b^4} \left(1 - \frac{m_f^2}{m_\Upsilon^2}\right) \left\{T_0^2 + T_1^2 + T_2^2\right\}.
$$
 (10)

The ratios of the helicity amplitudes are defined as

$$
x = \frac{T_1}{T_0}, \qquad y = \frac{T_2}{T_0}.
$$
 (11)

The expressions for these quantities for $J/\psi \rightarrow \gamma f_2$ can be found in Ref. [[8](#page-2-7)].

The wave functions of Y or J/ψ at the origin are related to their leptonic decay rates:

$$
\frac{\psi_Y^2(0)}{\psi_J^2(0)} = 4 \frac{\Gamma_{Y \to e^+e^-}}{\Gamma_{J/\psi \to e^+e^-}} \frac{m_Y^2}{m_{J/\psi}^2}.
$$
 (12)

The parameters $\sin^2 \phi G^2(0)$ are canceled in the ratio

$$
R = \frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)}.
$$

Taking $\alpha_s(m_c) = 0.3$, $\alpha_s(m_b) = 0.18$ [\[6](#page-2-5)], and $m_c =$ 1.29 GeV (the experimental value is $m_c = 1.27^{+0.07}_{-0.11}$ GeV [\[3\]](#page-2-2)), $m_b = (5.04 \pm 0.075 \pm 0.04)$ GeV [[3](#page-2-2)]. It is obtained

$$
R = 0.071(1 \pm 0.17) \tag{13}
$$

which agrees with the experimental data [see, Eqs. (1) (1) (1) – (3)]].

The ratios of the helicity amplitudes are found to be

$$
x^2 = 0.058, \qquad y^2 = 5.9 \times 10^{-3}. \tag{14}
$$

They are consistent with the experimental values [[1\]](#page-2-0)

$$
x^2 = 0.00^{+0.02+0.01}_{-0.00-0.00}, \qquad y^2 = 0.09^{+0.08+0.04}_{-0.07-0.03}.\tag{15}
$$

Equation [\(14\)](#page-1-1) shows that the helicity amplitudes $T_{1,2}$ are small and the amplitude T_0 makes the dominant contribution to the decay rate of $Y \rightarrow \gamma f_2$. On the other hand, Eq. ([13](#page-1-2)) indicates that the $B(Y \rightarrow \gamma f_2)$ is not too small in comparison with $B(Y \to \gamma \eta')$. These two results [\(13\)](#page-1-2) and (14) are obtained by the approach studied in Ref. [8]. In [\(14\)](#page-1-1) are obtained by the approach studied in Ref. [\[8\]](#page-2-7). In this approach there are two processes for the decay $Y \rightarrow$ γf_2 : $\Upsilon \rightarrow \gamma + gg$ and the two gluons are coupled to the f_2 meson. The process $Y \rightarrow \gamma + gg$ leads to very strong suppression by the mass of the b quark in the amplitudes [\(9\)](#page-1-3). The same suppression appears in $Y \rightarrow \gamma \eta'$ [[5\]](#page-2-4) too. On the other hand, the coupling between the two gluons and the f_2 meson leads to enhancements in the helicity ampli-tudes ([7\)](#page-1-4) and ([8\)](#page-1-5). From Eq. [\(8\)](#page-1-5) $E = 35.9$ GeV and $p =$ 34.6 GeV are determined. The E and the p with large values appear in the helicity amplitudes $T_{0,1}$ and not in T_2 . That is why the ratio y is so small [\(14\)](#page-1-1). In T_1 ([7](#page-1-4)) there is a factor $\frac{1}{m_Y}$ which makes T_1 smaller. Therefore, the helicity amplitude T_0 makes the dominant contribution. In the helicity amplitude T_0 p^2A_1 is much greater than A_2 , therefore,

$$
T_0 \cong -\frac{2}{\sqrt{6}} p^2 A_1.
$$
 (16)

The combination of the T_0 dominance and Eq. [\(16](#page-1-6)) leads to

$$
\Gamma(\Upsilon \to \gamma f_2) \propto p^4. \tag{17}
$$

The T_0 dominance has been found in Ref. [[6\]](#page-2-5) and $R \sim$ 0.059 is obtained. $m_c = 1.5$ GeV is taken in Ref. [\[6](#page-2-5)]. In this paper, a not too small $B(Y \rightarrow \gamma f_2)$ in comparison with $B(\hat{Y} \rightarrow \gamma \eta')$ results in the competition between the suppression and the enhancement in the decay $\hat{Y} \rightarrow \gamma f$. pression and the enhancement in the decay $Y \rightarrow \gamma f_2$.

In QCD J/ψ , $Y \rightarrow$ light hadrons are described as J/ψ , $Y \rightarrow 3g$ whose decay width is proportional to $\alpha_s^3 m_V$,
where m_V is the mass of $I/u \rightarrow Y$ respectively Putting where m_V is the mass of J/ψ , Y, respectively. Putting these factors together, the ratio is expressed as

$$
R = \frac{B(\Upsilon \to \gamma f_2)}{B(J/\psi \to \gamma f_2)}
$$

=
$$
\frac{\Gamma(\Upsilon \to \gamma f_2)}{\Gamma(J/\psi \to \gamma f_2)} \frac{\Gamma(J/\psi \to lh)}{\Gamma(\Upsilon \to lh)} \frac{B(\Upsilon \to lh)}{B(J/\psi \to lh)}
$$

=
$$
1.06 \frac{\alpha_s(m_c)}{\alpha_s(m_b)} \frac{p_{\Upsilon}^4}{p_{J}^4} \frac{m_{J}m_{c}^6}{m_{\Upsilon}m_{b}^6} \frac{[m_c^2 + \frac{1}{4}(m_{J}^2 - 2m_{f}^2)]^2}{[m_b^2 + \frac{1}{4}(m_{\Upsilon}^2 - 2m_{f}^2)]^2} \frac{(1 - \frac{m_{f}^2}{m_{\Upsilon}^2})}{(1 - \frac{m_{f}^2}{m_{\Upsilon}^2})^2}
$$

$$
\times \frac{\{2m_{f}^2 - m_{\Upsilon}(m_{\Upsilon} - 2m_{b})\}^2}{\{2m_{f}^2 - m_{J}(m_{J} - 2m_{c})\}^2 + 6\frac{m_{f}^2}{m_{J}^2}\{m_{f}^2 - \frac{1}{2}(m_{J} - 2m_{c})^2\}^2}
$$
(18)

where

$$
p_J = \frac{m_J^2}{2m_f} \left(1 - \frac{m_f^2}{m_J^2} \right).
$$
 (19)

The competition between the suppression and the enhancement in the decay $Y \rightarrow \gamma f_2$ makes the dependence of $\frac{B(Y \rightarrow y f_2)}{B(J/\psi \rightarrow y f_2)}$ on quark masses much weaker than the ratio $\frac{B(Y \rightarrow \gamma \eta'(\eta))}{(L/d \rightarrow \gamma \eta'(\eta))}$ $\frac{B(Y \to \gamma \eta'(\eta))}{B(J/\psi \to \gamma \eta'(\eta))}$ [\[5](#page-2-4)].

In summary, very small ratios of the helicity amplitudes and the dominance of the enhanced amplitude T_0 are obtained by the approach [[8](#page-2-7)] in which the $f_2(1270)$ is strongly coupled to two gluons. These results agree with the data.

- [1] S. B. Athar et al. (CLEO Collaboration), Phys. Rev. D 73, 032001 (2006).
- [2] D. Besson et al. (CLEO Collaboration), Phys. Rev. D 75, 072001 (2007).
- [3] C. Amsler et al. (Particle Data Group), Phys. Lett. B 667, 1 (2008).
- [4] S. B. Athar et al. (CLEO Collaboration), Phys. Rev. D 76, 072003 (2007).
- [5] Bing An Li, Phys. Rev. D **77**, 097502 (2008).
- [6] J. P. Ma, Nucl. Phys. **B605**, 625 (2001).
- [7] S. Fleming, C. Lee, and A. K. Leibovich, Phys. Rev. D 71, 074002 (2005).
- [8] Bing An Li and Q. X. Shen, Phys. Lett. 126B, 125 (1983).
- [9] J.L. Rosner, Phys. Rev. D 24, 1347 (1981); J.F. Donoghue, Phys. Rev. D 25, 1875 (1982).
- [10] V. V. Anisovich et al., Phys. At. Nucl. **69**, 520 (2006); Int.

J. Mod. Phys. A 20, 6327 (2005); F. Giacosa, T. Gutsche, V. E. Lyubovitskij, and A. Faessler, Phys. Rev. D 72, 114021 (2005); S. R. Cotanch and R. A. Williams, Phys. Lett. B 621, 269 (2005); C. Amsler et al. (Crystal Barrel Collaboration), Phys. Lett. B 520, 175 (2001); A. Sarantsev, Nucl. Phys. A675, 193 (2000); K. F. Liu, B. A. Li, and K. Ishikawa, Phys. Rev. D 40, 3648 (1989); K. Ishikawa, I. Tanaka, K. F. Liu, and B. A. Li, Phys. Rev. D 37, 3216 (1988).

[11] (a) Y. Chen et al., Phys. Rev. D 73, 014516 (2006); (b) A. Hart and M. Teper (UKQCD Collaboration), Phys. Rev. D 65, 034502 (2002); (c) C. Liu, Chin. Phys. Lett. 18, 187 (2000); (d) C. J. Morningstar and M. J. Peardon, Phys. Rev. D 60, 034509 (1999); (e) S. A. Chin, C. Long, and D. Robson, Phys. Rev. Lett. **60**, 1467 (1988); (f) T.A. DeGrand, Phys. Rev. D 36, 3522 (1987).

;