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We show how to match the Isgur-Karl model to the spin-flavor quark operator expansion used in the

1=Nc studies of the nonstrange negative parity L ¼ 1 excited baryons. Using the transformation properties

of states and interactions under the permutation group S3 we are able to express the operator coefficients

as overlap integrals, without making any assumption on the spatial dependence of the quark wave

functions. The general mass operator leads to parameter free mass relations and constraints on the mixing

angles that are valid beyond the usual harmonic oscillator approximation. The Isgur-Karl model with

harmonic oscillator wave functions provides a simple counterexample that demonstrates explicitly that the

alternative operator basis for the 1=Nc expansion for excited baryons recently proposed by Matagne and

Stancu is incomplete.
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I. INTRODUCTION

Excited baryons are the natural playground to test the
spin-flavor structure of quark interactions in the low-
energy regime and provide useful information about the
nonperturbative aspects of quantum chromodynamics. A
simple model used to study the masses and mixing angles
of excited baryons is the Isgur-Karl (IK) model [1]. In this
model the interaction Hamiltonian of two quarks contains
two components: a contact spin-spin term and a tensor
interaction. This is an approximation to the Breit interac-
tion of two quarks mediated by one-gluon exchange [2]
(the one-gluon exchange [OGE] model), obtained by ne-
glecting the spin-orbit interaction. The physical motivation
for neglecting the spin-orbit interaction is debatable; we
will assume it from the start as defining the model consid-
ered here.

The predictions of the IK model have been obtained
assuming a harmonic oscillator basis for the orbital wave
functions [1]. With this assumption the model is very
predictive: the entire mass spectrum of the L ¼ 1 negative
parity baryons is determined in terms of two free parame-
ters, and the mixing angles are independent of the hadron
masses.

In this paper we concentrate on these states and show
how to rewrite the IK model predictions in an equivalent
way, constructing its effective mass operator in terms of a
spin-flavor quark operator expansion. This type of operator
expansion is used in a systematic manner in the 1=Nc

studies of excited baryons [3,4], where more general
spin-flavor quark-quark interactions are allowed for.

The motivation for performing the matching of the IK
model to the more general 1=Nc expansion is twofold: In
the IK model the computation of the coefficients of the
operator expansion is straightforward and illustrates the
connection of a model calculation with the 1=Nc expansion

explicitly. The second reason is that it provides a simple
counterexample that shows the incompleteness of the alter-
native operator basis advocated recently by Matagne and
Stancu in Ref. [5]. The usual basis with excited quark and
core operators can reproduce the IK predictions, while a
basis of symmetric operators as proposed in Ref. [5] cannot
do it.
To compute the matching we use the method proposed in

a recent paper [6], which considers the transformation
properties of the states and operators under S3, the permu-
tation group of three objects acting on the spatial and spin-
flavor degrees of freedom. Using these transformation
properties under S3 the coefficients of the operator expan-
sion can be expressed as overlap integrals, without making
any assumption on the spatial dependence of the quark
wave functions. This allows one to obtain mass relations
and constraints on the mixing angles that are valid beyond
the harmonic oscillator approximation of the IK model.
Examining the transformation properties of states and

operators under the permutation group S3 also allows to
count the number of unknown parameters (reduced matrix
elements) that follow from a specific form of the quark-
quark interaction, as was already discussed in Ref. [7]. In
the IK model the spatial and spin-flavor components of the
spin-spin and tensor interactions are both two-body sym-
metric interactions of dimension three that decompose as1

S �MS under S3. The spatial and spin-flavor part of the
L ¼ 1 excited baryons states we consider here transform
both as MS. In the matrix elements only operators that
transform as irreps contained in the decomposition of
MS �MS can contribute. S and MS appear once in the
decomposition of MS �MS ¼ S �MS � A, which indi-

1In the following S, MS, and A are the symmetric, mixed
symmetric and antisymmetric irreps of S3 of dimensions one,
two and one, respectively.
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cates that there will be two unknown reduced matrix
elements for each of the spin-spin and tensor interactions.
The unit operator coming from the confinement potential is
also present and transforms as S under S3. This leads to five
unknowns in the most general case. We will show in
Sec. III that for a spin-spin contact interaction the two
reduced matrix elements are related, and the most general
mass operator depends then on four unknown coefficients,
as shown in Eq. (24). In the particular case of the harmonic
oscillator approximation taken in the original formulation
of the IK model, all the reduced matrix elements that
contribute to the splittings are related and can be parame-
terized by a single parameter, as will be shown in deriving
Eq. (59).

The paper is organized as follows: In Sec. II, we present
the excited baryon states, in Sec. III, we discuss the general
form of the matrix elements using S3, and in Sec. IV we
give the general mass relations and constraints on the
mixing angles. In Sec. V, we discuss the predictions of
the IK model with harmonic oscillator wave functions.
Finally, in Sec. VI we relate the mass operator of the IK
model to the 1=Nc expansion and discuss the alternative
basis proposed in [5]. In Sec. VII we give our conclusions.

II. THE STATES

The L ¼ 1 quark model states for the excited baryons
we will consider here, have both the spatial and the spin-
flavor wave functions transforming in the mixed symmetric
irreducible representation of S3. A two-dimensional basis
for the representation can be chosen as �ið ~r1; ~r2; ~r3Þ, for the
spatial wave functions, and �j for the spin-flavor wave

functions, with i, j ¼ 2, 3. The total wave function jBi is
the tensor product of the spatial-spin-flavor wave functions
which is completely symmetric (and antisymmetric in
color).

A special choice of the MS basis wave functions was
adopted in Ref. [6] (from here on referred to as I), moti-
vated by computational ease in the arbitrary Nc case. This
choice is defined by the transformation properties of the
basis under permutations, given by Eqs. (6)–(8) in I. For
Nc ¼ 3 the defining properties of the basis states are

P12�2 ¼ ��2; P12�3 ¼ �3 � �2;

P13�2 ¼ �2 � �3; P13�3 ¼ ��3;

P23�2 ¼ �3; P23�3 ¼ �2:

(1)

Wewill relate this basis to the �, � basis commonly used in
the IK model in Sec. V. The basis of spin-flavor wave
functions �j can be chosen to have the same properties

under permutations as �i. An explicit example for the �j

basis can be found in Appendix B of Ref. I for the
N5=2ð1675Þ state. We will use the same basis here, which

will allow us to use the results for matrix elements derived
in I.

With the basis choice defined by Eq. (1), the complete
baryon wave function is given by Eq. (10) of I

jBðJ;mJÞi ¼
ffiffiffi
2

p
3

X3
i;j¼2

�iðL;mLÞ�jðS;mS; I; I3Þ

� 1 � 1
2

� 1
2 1

 !
ij

hJ;mJjL; S;mL;mSi: (2)

We made here explicit the angular momentum quantum
numbers of the spatial �i and spin-flavor �j states,

although for reasons of simplicity they will be omitted in
the following. We also included a normalization factor that
normalizes the states as hBjBi ¼ 1. These spatial (and
similarly the spin-flavor) MS basis is normalized as
h�ij�ji ¼ 2, if i ¼ j, and h�ij�ji ¼ 1 if i � j. It is easy

to verify using Eqs. (1) that the state jBi is indeed invariant
under any permutation of two quarks.
The quark spin can be S ¼ 1=2, 3=2, which is combined

with the orbital angular momentum L ¼ 1 to give the
following N states: two states with J ¼ 1=2 denoted
N1=2, N

0
1=2, two states J ¼ 3=2 denoted N3=2, N

0
3=2, and

one state with J ¼ 5=2 denoted N5=2. In addition, there are

also two � states, denoted as �J with J ¼ 1=2, 3=2.
States with the same quantum numbers mix, and we

define the relevant mixing angles in the nonstrange sector
as

Nð1535Þ ¼ cos�N1N1=2 þ sin�N1N
0
1=2; (3)

Nð1650Þ ¼ � sin�N1N1=2 þ cos�N1N
0
1=2; (4)

for the spin-1=2 nucleons, and

Nð1520Þ ¼ cos�N3N3=2 þ sin�N3N
0
3=2; (5)

Nð1700Þ ¼ � sin�N3N3=2 þ cos�N3N
0
3=2; (6)

for the spin-3=2 nucleons. The quark model basis states
ðNJ;N

0
JÞ have quark spin S ¼ ð1=2; 3=2Þ, respectively. It is

possible to bring the mixing angles into the range
(0�,180�) by appropriate phase redefinitions of the physi-
cal states. We will use in the numerical analysis the had-
ronic masses in Table I, taken from Ref. [8].

III. THE MASS OPERATOR OF THE ISGUR-KARL
MODEL

The Isgur-Karl model is defined by the quark Hamil-
tonian

H IK ¼ H0 þH hyp; (7)

where H0 contains the confining potential and kinetic
terms of the quark fields, and is symmetric under spin
and isospin. The hyperfine interaction H hyp is given by
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H hyp ¼ A
X
i<j

�
8�

3
~si � ~sj�ð3Þð~rijÞ

þ 1

r3ij
ð3~si � r̂ij ~sj � r̂ij � ~si � ~sjÞ

�
; (8)

where A determines the strength of the interaction, and
~rij ¼ ~ri � ~rj is the distance between quarks i, j. The first

term is a local spin-spin interaction, and the second de-
scribes a tensor interaction between two dipoles. This
interaction Hamiltonian is an approximation to the gluon-
exchange interaction, neglecting the spin-orbit terms.2

In the original formulation of the IK model [1] the
confining forces are harmonic and we will refer to this
model as IK-h.o. (harmonic oscillator). We will derive in
the following the form of the mass operator without mak-
ing any assumption on the form of the confining quark
forces. We refer to this version of the model as IK-V(r).

We obtain in the following the explicit form of the mass
operator of this model in the system of the L ¼ 1 negative
parity baryons, following the method based on the permu-
tation group S3 presented in I. The interaction Hamiltonian
Eq. (8) has the general form

H hyp ¼
X
i<j

Rij �Oij; (9)

where Rij are orbital operators acting on the coordinates

of the quarks i, j, and Oij are spin-flavor operators. Both

can also carry spatial indices, which are contracted to form
a scalar inH hyp, as indicated by the dot product in Eq. (9).

The orbital and spin-flavor operators for the contact and
tensor interactions are

Rij ¼ 8�

3
A�ð3Þð~rijÞ; Oij ¼ si � sj;

Qab
ij ¼ A

r3ij
ð3r̂aijr̂bij � �abÞ; Oab

ij ¼ 1

2
ðsai sbj þ sbi s

a
j Þ;

(10)

where a, b are spatial indices. All these operators are
symmetric under the permutation of the two quark indices
i, j, but belong to the reducible representation 3 under the
permutation of the three quarks.

It has been shown in I that the hadronic matrix elements
of the Hamiltonian H hyp can be expressed in terms of

matrix elements of spin-flavor operators Oi that are related
to the decomposition of Oij into irreducible representa-

tions of S3, the permutation group of three objects

hBjH hypjBi ¼
X
i

cih�ðJSIÞjOij�ðJSIÞi; (11)

where the coefficients ci contain the reduced matrix ele-
ments of the orbital operators Rij, and can be written in

terms of overlap integrals of the quark model wave func-
tions. The matrix elements of the spin-flavor operators in
Eq. (11) are a convenient way to obtain the reduced matrix
elements of the projections of Oij onto irreducible repre-

sentations of S
sp-fl
3 . They have been computed in I, and are

taken between the states j�ðJSIÞi constructed in Ref. [4] as
the tensor product of the ‘‘excited’’ quark 1 with a core of
unexcited quarks 2, 3, and projected onto the MS irrep of
spin-flavor SU(4). The advantage of this representation is
that the relevant matrix elements can be immediately read
off from the tables in Ref. [4].
The general form of the matrix element of H hyp can be

taken from Eq. (37) of I, which we repeat here for the
convenience of the reader:

hBjH hypjBi ¼ 1
3hRSihOSi þ 1

3hRMSihOMSi: (12)

The reduced matrix elements hOSi and hOMSi for the spin-
spin and tensor interaction are written in terms of matrix
elements of spin-flavor operators taken between the
j�ðJSIÞi states. The corresponding expressions for arbi-
trary Nc can be found in Eqs. (39), (42), (49), and (55) of I.
Here, we present the Nc ¼ 3 expression, where the spin-
flavor operators are understood as their corresponding
matrix elements

hBjH hypjBi ¼ 1
3hRSið12 ~S2 � 9

8Þ
þ 1

3hRMSið� ~S2 þ 3~s1 � ~Sc þ 9
4Þ

þ 1
3hQSið14Lab

2 fSa; SbgÞ
þ 1

3hQMSið32Lab
2 fsa1 ; Sbcg � 1

2L
ab
2 fSa; SbgÞ:

(13)

The first two lines correspond to the contact term,
and the last two lines to the tensor term, with
Lab
2 ¼ 1

2 fLa; Lbg � 1
3LðLþ 1Þ�ab. The reduced matrix

elements of the orbital operators hRSi, hRMSi, hQSi,
hQMSi are given by (unknown) overlap integrals of the
corresponding operators with the wave functions of the
states of interest. This is shown below in Eq. (21) for the
orbital operator R12 appearing in the definition of the spin-
spin interaction, and in Eq. (22) for the orbital operatorQab

12

appearing in the definition of the quadrupole interaction.
We now examine closer the structure of the orbital

matrix elements. There are three orbital operators Rij,

which transform as a combination of S and MS under S3.
The symmetric projection is

R S ¼ R12 þR13 þR23; (14)

and the MS operators are

R 2
MS ¼ R13 �R23; (15)

R 3
MS ¼ R12 �R23: (16)

Their matrix elements on a two-dimensional basis of MS2In Ref. [1] A is taken as A ¼ 2�S

3m2 .
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wave functions ð�2; �3Þwith their reduced matrix elements
defined by Eqs. (34)–(36) in I, are given by

h�ijRSj�ji ¼ hRSi 2 1
1 2

� �
ij
; (17)

h�ijR2
MSj�ji ¼ hRMSi 0 1

1 1

� �
ij
; (18)

h�ijR3
MSj�ji ¼ hRMSi 1 1

1 0

� �
ij
: (19)

These equations can be solved for the matrix elements of

R12, acting on quarks 1, 2, with the result

h�ijR12j�ji ¼ 1

3

2ðhRSiþ hRMSiÞ hRSiþ hRMSi
hRSiþ hRMSi 2hRSi� hRMSi

� �
ij
:

(20)

The spatial MS basis, as well as the operators, also carry
angular momentum indices. Applying the Wigner-Eckart
theorem for SU(2) one can factor the dependence on the
magnetic quantum numbers m, m0. In the case of a scalar
operator like the spin-spin interaction one obtains

h�ið1m0ÞjR12j�jð1mÞi ¼ 1

3

2ðhRSi þ hRMSiÞ hRSi þ hRMSi
hRSi þ hRMSi 2hRSi � hRMSi

� �
ij
�mm0 : (21)

In the case of a tensor operator one obtains

h�ið1m0ÞjQab
12 j�jð1mÞi ¼ 1

3

2ðhQSi þ hQMSiÞ hQSi þ hQMSi
hQSi þ hQMSi 2hQSi � hQMSi

� �
ij

�
1

2
fLa; Lbg � 2

3
�ab

�
m0;m

: (22)

The basis for the MS orbital wave functions in I is
chosen such that �2 satisfies P12�2 ¼ ��2, and is thus
odd under a permutation of the quarks 1, 2. This implies
that �2ðriÞ vanishes for r12 ¼ 0, giving

h�2j�ð3Þð ~r12Þj�2i ¼ 2ðhRSi þ hRMSiÞ ¼ 0; (23)

which implies a relation among the RS and RMS reduced
matrix elements, generally valid for any local interaction,
hRMSi ¼ �hRSi.

Using this relation in Eq. (13), one finds that for Nc ¼ 3
the most general mass operator in the IK model depends
only on three unknown orbital overlap integrals, plus an
additive constant c0 related to the matrix element of H0,
and can be written as

M̂ ¼ c0 þ aS2c þ bLab
2 fSac; Sbcg þ cLab

2 fsa1 ; Sbcg; (24)

where the spin-flavor operators are understood to act on the
state j�ðJSIÞi constructed as a tensor product of the core of
quarks 2, 3 and the ‘‘excited’’ quark 1. The coefficients are
given by

a ¼ 1
2hRSi; (25)

b ¼ 1
12hQSi � 1

6hQMSi; (26)

c ¼ 1
6hQSi þ 1

6hQMSi: (27)

Evaluating the matrix elements using the tables in
Ref. [4] we find the following explicit result for the mass
matrix

M1=2 ¼ c0 þ a � 5
3 bþ 5

6 c� 5
3bþ 5

6 c c0 þ 2aþ 5
3 ðbþ cÞ

 !
; (28)

M3=2 ¼ c0 þ a
ffiffiffiffi
10

p
6 b�

ffiffiffiffi
10

p
12 cffiffiffiffi

10
p
6 b�

ffiffiffiffi
10

p
12 c c0 þ 2a� 4

3 ðbþ cÞ

 !
; (29)

M5=2 ¼ c0 þ 2aþ 1

3
ðbþ cÞ; (30)

�1=2 ¼ �3=2 ¼ c0 þ 2a: (31)

In the next section we study the implications of these
results.

IV. PREDICTIONS FROM THE IK-V(R) MODEL

The IK model makes several predictions that are inde-
pendent of the values of the overlap integrals c0, a, b, c and
are valid beyond the harmonic oscillator approximation.
First, the masses of the �1=2 and �3=2 states are pre-

dicted to be equal. Experimentally, they are split by�3=2 �
�1=2 ¼ 80� 50 MeV. This mass splitting is introduced by

the spin-orbit coupling, which is neglected in the Isgur-
Karl model.
Second, the splittings h�i � N5=2 and hN3=2i � hN1=2i

are due to the tensor interaction and are predicted to be
related as

h�i � N5=2 ¼ 2

9
ðhN3=2i � hN1=2iÞ: (32)

The angular brackets denote spin-weighted averaging over
the corresponding doublets
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h�i ¼ 1
3�1=2 þ 2

3�3=2 ¼ 1683� 29 MeV; (33)

hN1=2i ¼ 1
2ðNð1535Þ þ Nð1650ÞÞ ¼ 1597� 8 MeV;

(34)

hN3=2i ¼ 1
2ðNð1520Þ þ Nð1700ÞÞ ¼ 1610� 25 MeV:

(35)

The experimental values of the two sides of Eq. (32) are (in
MeV)

8� 29 ¼ 3� 6; (36)

which is well satisfied within errors.
Finally, there are also relations among hadronic parame-

ters that do not involve the� states. These relations depend
also on the splittings within the J ¼ 1=2, 3=2 pair of states,
defined as

�N1=2 ¼ Nð1535Þ � Nð1650Þ ¼ �123� 16 MeV; (37)

�N3=2 ¼ Nð1520Þ � Nð1700Þ ¼ �180� 50 MeV: (38)

There are three such relations:

ðIÞ: � 5
18�N1=2 cos2�N1 � 2

9�N3=2 cos2�N3

¼ N5=2 � 5
9hN1=2i � 4

9hN3=2i; (39)

ðIIÞ: 1
2�N1=2 cos2�N1 � 1

2�N3=2 cos2�N3

¼ �hN1=2i þ hN3=2i; (40)

ðIIIÞ: �N1=2 sin2�N1 þ
ffiffiffiffiffiffi
10

p
�N3=2 sin2�N3 ¼ 0: (41)

Any two of these equations fix the mixing angles
ð�N1; �N3Þ, with different results for the three ways of
choosing two equations. In particular, the first two equa-
tions give

�N1=2 cos2�N1 ¼ 2
9hN1=2i þ 16

9 hN3=2i � 2N5=2; (42)

�N3=2 cos2�N3 ¼ 20
9 hN1=2i � 2

9hN3=2i � 2N5=2: (43)

Using the experimental values for the masses, these
equations give cos2�N1 ¼ 1:081� 0:401, cos2�N3 ¼
0:889� 0:246, which leads to the allowed ranges for the
mixing angles �N1 ¼ ð0�; 23:6�Þ, (156.4�, 180�) and
�N3 ¼ ð0�; 25:0�Þ, (155.0�, 180�). These ranges are shown
in Fig. 1 as rectangles, along with the constraint from
Eq. (41) [the yellow bands]. The three constraints intersect
in the upper left and lower right corners of the figure.
The results for the mixing angles in the upper left region

are close to the values determined from N� ! N� strong
decays [9]. The analysis of the strong decays in Ref. [10]
gave ð�N1; �N3Þ ¼ ð22:3�; 136:4�Þ and (22.3�, 161.6�).
The second point is favored by a 1=Nc analysis of the
photoproduction amplitudes in Ref. [11].
In a recent paper [12] we presented the determination of

the mixing angles in the OGE model, where we allow for a
more general spatial dependence of the hyperfine interac-
tion and also include the spin-orbit interaction. We com-
ment on these results briefly, since the Isgur-Karl model
considered here is a limiting case of the OGE model.
Considering only the nonstrange states, the mixing angles
of the OGE model are in agreement, within errors, with
those extracted from strong decays; however, the predicted
SU(3) splitting �3=2ð1520Þ ��1=2ð1405Þ is in disagree-

ment with the observed splitting. To correctly reproduce
the splitting of these states one also needs flavor dependent

30 60 90 120 150 180

30

60

90

120

150

180

0
0

harm.osc.

θ
N1

N3
θ

FIG. 1 (color online). Constraints on the mixing angles
ð�N1; �N3Þ in the general IK model, without any assumptions
about the spatial wave functions. The four rectangles give the
constraints from Eqs. (42) and (43), and the yellow bands
represent the constraint Eq. (41). The red dot shows the mixing
angles Eq. (64) obtained in the IK model with harmonic oscil-
lator wave functions.

TABLE I. The experimental values for the masses of the nonstrange negative parity L ¼ 1 baryons used as inputs (from Ref. [8]).
The second and third lines give the predictions for these masses from fits to the IK model: IK-V(r) is the fit to the most general IK
model, without assuming a specific form for the confining forces, and IK-h.o. is the fit to the IK model assuming a harmonic oscillator
basis.

N1=2ð1535Þ N1=2ð1650Þ N3=2ð1520Þ N3=2ð1700Þ N5=2ð1675Þ �1=2ð1620Þ �3=2ð1700Þ �2

PDG(2008) 1535� 10 1658� 13 1520� 5 1700� 50 1675� 5 1630� 30 1710� 40 -

IK-V(r) 1523 1659 1523 1693 1674 1678 1678 5.0

IK-h.o. 1490 1657 1533 1749 1671 1686 1686 33.
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operators [13] that partially cancel out the spin-orbit inter-
action coming from the one-gluon exchange interaction.

Finally, we quote briefly the best fit values for the
coefficients c0, a, b, c

c0 ¼ 1368� 11 MeV; a ¼ 155� 8 MeV;

b ¼ �4þ9
�10 MeV; c ¼ �8þ11

�12 MeV:
(44)

The resulting masses are listed in Table I as IK-V(r). The fit
to the seven masses with four coefficients has 3 degrees of
freedom. The resulting chi squared by degree of freedom is
�2
dof ¼ 1:7. In this case we obtain �N1 ¼ ð0�; 8:4�Þ,

(171.6�,180�), and �N3 ¼ ð0�; 2:1�Þ, (177.9�,180�) for
the ranges of the mixing angles.

V. THE ISGUR-KARL MODELWITH HARMONIC
OSCILLATOR WAVE FUNCTIONS

In the usual treatment of the IK model [1] (denoted here
as IK-h.o.), the leading order Hamiltonian H0 describes
three constituent quarks interacting by harmonic oscillator
potentials

H0 ¼ 1

2m

X
i

p2
i þ

K

2

X
i<j

r2ij: (45)

This can be diagonalized exactly in terms of the reduced

coordinates ~� ¼ 1ffiffi
2

p ð ~r1 � ~r2Þ, ~� ¼ 1ffiffi
6

p ð~r1 þ ~r2 � 2~r3Þ.
Expressed in terms of these coordinates, the Hamil-

tonian takes the form of two independent oscillators:

H ¼ p2
�

2m
þ p2

�

2m
þ 3

2
K�2 þ 3

2
K�2: (46)

The eigenstates �
�;�
Lm with L ¼ 1, m ¼ 1 are

��
11 ¼ �þ

�4

�3=2
exp

�
� 1

2
�2ð�2 þ �2Þ

�
; (47)

��
11 ¼ �þ

�4

�3=2
exp

�
� 1

2
�2ð�2 þ �2Þ

�
; (48)

where � ¼ ð3KmÞ1=4, �þ ¼ ��x � i�y, �þ ¼
��x � i�y and the combination �2 þ �2 is invariant under

permutations of the three quarks.
The relation to the � basis in Eq. (1) is

�2ð1mÞ ¼ ffiffiffi
2

p
��

1m; (49)

�3ð1mÞ ¼ 1ffiffiffi
2

p ��
1m þ

ffiffiffi
3

2

s
��

1m: (50)

It is easy to check that these states transform under permu-
tations as specified by the relations Eqs. (1), and are also
normalized correctly.

The reduced matrix elements of the orbital operators
hRSi, hQSi, hQMSi can be computed explicitly using the

basis of wave functions Eqs. (47) and (48), where the
expression for the 12 component of a general spatial op-
erator, Eq. (20), takes the diagonal form

h�i
11jR12j�j

11i ¼
1

3

hRSiþ hRMSi 0

0 hRSi� hRMSi

 !
ij

;

i; j¼ �;�: (51)

It is easy to understand that the off-diagonal matrix ele-
ments of R12 (which is symmetric under P12) are zero
because � and � are antisymmetric and symmetric under
P12, respectively.
The reduced matrix element hRSi of the spin-spin inter-

action can be extracted by considering the matrix element

h��
11j�ð3Þð ~r12Þj��

11i ¼
�8

23=2�3

Z
d3�d3��ð3Þð ~�Þð�2

x þ �2
yÞ

� e��2ð�2þ�2Þ ¼ �3

ð2�Þ3=2 (52)

which, using the definition of R12, Eq. (10), gives

hRSi ¼ A
2�3ffiffiffiffiffiffiffi
2�

p 	 �: (53)

It is convenient to define the parameter � as all the other
reduced matrix elements can be written in terms of this
single parameter.
The computation of the reduced matrix elements for the

tensor interaction hQSi, hQMSi is more involved. The ana-
log of Eq. (21) for the matrix element of the tensor inter-
action Qab

12 acting on the quarks 1, 2 is given by Eq. (22).
The reduced matrix elements hQSi and hQMSi can be

determined from the matrix elements ofQab
12 on the�

�,��

states. In this basis the matrix element of Qab
12 is diagonal

as in Eq. (51). The dependence on the angular momentum
projections [shown in Eq. (22)] is easy to compute by
choosing a ¼ b ¼ 3, which gives ð12 fL3; L3g �
2
3Þm0¼1;m¼1 ¼ 1

3 . The two matrix elements we need are

h��
11jQ33

12j��
11i ¼ 0; (54)

h��
11jQ33

12j��
11i ¼ �A

4�3

15
ffiffiffiffiffiffiffi
2�

p ¼ � 2

15
�: (55)

The first relation can be understood intuitively as fol-
lowing from the fact that the orbital angular momentum of
the quarks 1, 2 in the�� state vanishes, L� ¼ 0. The tensor

operator Qab
12 has L� ¼ 2 and thus its matrix element on

these states vanishes. Explicitly, the matrix element is ex-

pressed as an integral over ~�, ~� as

h��
11jQ33

12j��
11i ¼ A

�8

23=2�3

Z
d3�d3�

1

�5
ð3�2

z � �2Þ

� ð�2
x þ �2

yÞe��2ð�2þ�2Þ ¼ 0; (56)
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since the angular � integration vanishesR
1
�1 d cos�ð3cos2�� 1Þ ¼ 0.
The matrix element in Eq. (55) can be computed

straightforwardly with the result

h��
11jQ33

12j��
11i ¼ A

�8

23=2�3

Z
d3�d3�

1

�5
ð3�2

z � �2Þ

� ð�2
x þ �2

yÞe��2ð�2þ�2Þ ¼ �A
4�3

15
ffiffiffiffiffiffiffi
2�

p :

(57)

Comparing the results with Eq. (51), one finds that the
reduced matrix elements in the IK model with harmonic
oscillator wave functions are all related and can be ex-
pressed in terms of the single parameter � as

hQMSi ¼ hQSi ¼ � 3

5
�; hRSi ¼ �: (58)

This gives a relation among the coefficients a, b, c of the
mass matrix Eq. (24)

a ¼ 1
2�; b ¼ 1

20�; c ¼ �1
5�: (59)

We recover the well-known result that in the harmonic
oscillator model, the entire spectroscopy of the L ¼ 1
baryons is fixed by one single constant �, along with an
overall additive constant c0, and the model becomes very
predictive. The explicit mass matrix is

M1=2 ¼
�
c0 þ 3

4
�

�
1þ 1

4
�

�1 �1
�1 0

� �
; (60)

M3=2 ¼
�
c0 þ 3

4
�

�
1þ 1

4
�

�1 1ffiffiffiffi
10

p
1ffiffiffiffi
10

p 9
5

 !
; (61)

M5=2 ¼
�
c0 þ 3

4
�

�
þ 1

5
�; (62)

�1=2 ¼ �3=2 ¼
�
c0 þ 3

4
�

�
þ 1

4
�: (63)

This agrees with the mass matrix of Ref. [1]. Furthermore,
the agreement on the signs of the mixing terms indicates
that the phase convention of the states in Ref. [1] is the
same as the phase convention of Ref. [4] used here.

The mixing angles are independent of the hadron
masses, and are given by

�N1 ¼ arctan

�
1

2
ð ffiffiffi

5
p � 1Þ

�
¼ 31:7�;

�N3 ¼ arctan

�
�

ffiffiffiffiffiffi
10

p

14þ ffiffiffiffiffiffiffiffi
206

p
�
¼ 173:6�:

(64)

The arguments of the previous section show that this
prediction is specific to the harmonic oscillator model.
However, the more general predictions of the IK-V(r)

model for the mixing angles are close to this result, as
can be seen from Fig. 1, where the point given in Eq. (64) is
indicated as the red dot.

VI. RELATION TO THE 1=Nc EXPANSION

The predictions of the nonrelativistic quark model can
be understood from QCD within the large Nc expansion.
This method relies on a power counting scheme to organize
the contributions of the different operators according to
their order in 1=Nc. At leading order in 1=Nc the spin-
flavor contracted symmetry SUð4Þc emerges in the baryon
sector of QCD [14]. In the ground state baryon sector, the
predictions of this symmetry reproduce the spin-flavor
relations of the constituent quark model.
The situation is more complicated for the excited bary-

ons, where the leading Nc predictions of the contracted
symmetry do not generally agree with those of the quark
model [3,15,16]. For example, at leading order in 1=Nc the
masses of the nonstrange L ¼ 1 negative parity baryons
form three groups of degenerate states (towers), which
differs from the quark model prediction of a degenerate
20 multiplet of SU(4) [15,16].
The mass operator of the IK model, Eq. (24), matches a

subset of the operators that appear in the systematic 1=Nc

expansion. The complete basis was given in Ref. [4], and it
includes core and excited quark operators. The operators

S2c and Lij
2 fsi1; Sjcg contribute at order Oð1=NcÞ, and the

operator Lij
2 fSic; Sjcg appears only at order Oð1=N2

cÞ.
Using the notation of Ref. [4] the predictions of the IK
model encoded in Eq. (24) [supplemented by the relations
Eq. (59) in the particular case of the IK-h.o. model], can be
rewritten as

Heff ¼ c1O1 þ c6O6 þ c8O8 þ c17O17

¼ c1Nc1þ c6

�
1

Nc

S2c

�
þ c8

�
1

2Nc

Lab
2 fsa1 ; Sbcg

�

þ c17

�
1

2N2
c

Lab
2 fSac; Sbcg

�
: (65)

These coefficients are related to the coefficients c0, a, b, c
used in Sec. III as

c1 ¼ 1
3c0 ¼ 1

3m0 � 1
4� ¼ 462 MeV; (66)

c6 ¼ 3a ¼ 3
2� ¼ 450 MeV; (67)

c8 ¼ 6c ¼ �6
5� ¼ �360 MeV; (68)

c17 ¼ 18b ¼ 9
10� ¼ 270 MeV; (69)

where m0 ¼ 1610 MeV and � ¼ 300 MeV in the IK-h.o.
model. In Table II the coefficients are compared with the
result of the best fit made in Sec. IV. The success of the IK-
h.o. basically lies in the correct prediction of the value of c6
and the dominance of the operator O6 in the general
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expansion. The predicted values for c8 and c17 in the IK-
h.o. model are too large and spoil the fit. In the best
possible fit these two coefficients are compatible with
zero within errors.

In the IK model with harmonic oscillator wave functions
� is also related to the splitting of the ground state baryons
as mN ¼ m0

0 � �=2, m� ¼ m0
0 þ �=2. A simple calcula-

tion shows that the effective Hamiltonian for the ground
state baryons that reproduces these IK predictions is

Heff
gs ¼ g1Nc1þ g3

1

Nc

SiSi; (70)

where

g1 ¼ 1

3
m0

0 �
1

4
� ¼ 5MN �M�

12

 287 MeV; (71)

g3 ¼ � ¼ M� �MN 
 300 MeV: (72)

This explicit example is useful to discuss the alternative
approach to the 1=Nc expansion for excited baryons pre-
sented in Ref. [5]. The authors of Ref. [5] propose the
operator basis below, that differs from the one in Ref. [4] in
that only a subset of the operators are allowed, arguing that
the separation into excited quark and core quark operators
is not necessary

Q1 ¼ Nc1; (73)

Q2 ¼ Lisi; (74)

Q3 ¼ 1

Nc

SiSi; (75)

Q4 ¼ 1

Nc

TaTa; (76)

Q5 ¼ 15

Nc

Lð2ÞijGiaGja; (77)

Q6 ¼ 3

Nc

LiTaGia; (78)

Q7 ¼ 3

N2
c

SiTaGia: (79)

The first observation is that these seven operators are not
independent. We find that the matrix elements ofQ7 for the
states of interest can be rewritten in terms of those of Q1,

Q3, Q4 as Q7 ¼ � 3ð4Nc�9Þ
16N3

c
Q1 þ 3ðNc�1Þ

8Nc
ðQ3 þQ4Þ. Fur-

thermore, using the matrix elements from Table 3 in the
first of Ref. [5] and equating

P
6
i¼1 ciQi to the matrix

elements of the Isgur-Karl model, Eqs. (60)–(63) it is
easy to see that it is not possible to find coefficients ci
that reproduce the predictions of the IK model. This is an
explicit example that shows that the basis proposed in [5] is
incomplete.
For the completely symmetric ground state baryons the

fQig basis is correct, but overcomplete, as only Q1, Q3 are
needed. The fQig basis constructed with symmetric opera-
tors is only correct for symmetric spin-flavor states like the
[56, L ¼ 2], see, for example, Ref. [17].

VII. CONCLUSIONS

We showed in this paper how to construct the effective
mass operator of the Isgur-Karl model for the nonstrange
negative parity L ¼ 1 excited baryons. The effective mass
operator is written as an operator expansion in Eq. (24),
where the spatial dependence and spin-flavor dependence
are factorized. This form of the mass operator is valid
without making any assumptions about the spatial depen-
dence of the quark wave functions and allows to explore
the IK model beyond the harmonic oscillator approxima-
tion. The unknown spatial dependence is contained in the
three coefficients Eqs. (25)–(27) of the expansion, which
are written in terms of orbital overlap integrals in Eqs. (21)
and (22). These explicit expressions for the coefficients are
obtained exploiting the transformation properties of states
and interactions under the permutation group S3 acting on
the spatial and spin-flavor degrees of freedom [6]. The
spin-flavor structure of the model is manifest in the three
nontrivial operators that appear in the expansion, whose
matrix elements are calculable and can be conveniently
read off from Tables II and III in Ref. [4].
The general operator form Eq. (24) leads to parameter

free mass relations that also constrain the mixing angles
and are well satisfied by data. The most noticeable dis-
agreement is the prediction of the degeneracy of the two �
states. The experimental data seems to point to the pres-
ence of a spin-orbit interaction. Smaller experimental er-
rors on the masses of these two states would contribute to
determine its strength.
In the particular case of harmonic oscillator wave func-

tions the coefficients of the mass operator can be computed
and written in terms of a single parameter as shown in
Eq. (59). The mass operator Eq. (24) reproduces then
exactly the predictions of the IK model as formulated in
Ref. [1]. As is well known, in this approximation the
mixing angles are fixed, independently of the hadronic
parameters.
Recasting the predictions of the IK model in this way

makes clear its relation to the 1=Nc studies of excited
baryons, where the spin-flavor quark operator expansion
is used in a systematic way. In Eq. (65)–(69) we present the

TABLE II. The coefficients of the best fit in the IK-V(r) and
the predicted values for the coefficients in the IK-h.o. model.

c1 c6 c8 c17

IK-V(r) 456� 3:7 465� 23 �46þ63
�74 �69þ165

�186

IK-h.o. 462 450 �360 270
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result of the matching of the IK model to the operators of
the 1=Nc expansion, using the notation of Ref. [4].

The matching of the IK model is also a simple example
that shows that the alternative operator basis proposed in
Ref. [5] can not reproduce the mass operator of the IK
model with harmonic oscillator wave functions, and is thus
incomplete.
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