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Based on the Z12�I orbifold compactification of heterotic string theory, we construct a flipped-SU(5)

model with three families of standard model matter and ingredients for dynamical supersymmetry

breaking through the hidden sector matter 100 and 50 of SUð5Þ0, which are neutral under the visible

sector flipped-SU(5). The appearance of one chiral set 100 and 50 is the new feature of the present flipped-

SU(5) string model with sin2�0W ¼ 3
8 . As required, all the exotic states are shown to decouple from low

energy physics. Above the compactification scale, the flipped-SU(5) gauge symmetry is enhanced to

SO(10) gauge symmetry by including the Kaluza-Klein modes. The threshold correction is calculated by

counting Kaluza-Klein modes, and we show that the model allows a very wide range for the hidden-sector

confining scale (1011 GeV–1016 GeV).
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I. INTRODUCTION

The flipped-SU(5) model [ � SUð5Þ � Uð1ÞX], called
SUð5Þflip, was contrived for the alternative embedding of

the standard model (SM) SU(2) singlets in the irreducible
representations of SU(5) [1–3], in contrast to the well-
known Georgi-Glashow SUð5ÞGG grand unified theory
(GUT) [4]. As a result, the doublet/triplet splitting in the
Higgs representations, 5 and �5, is so easy in SUð5Þflip [3]. A
distinctive feature of the SUð5Þflip model is the GUT break-

ing mechanism by the Higgs representations 10 and 10 of
SU(5) rather than the adjoint 24, reducing the rank of the
SUð5Þflip by one unit. With the advent of string construc-

tions of the supersymmetric (SUSY) GUT models, and,
particularly, with the difficulty in obtaining an adjoint
Higgs for GUT breaking in the heterotic string, the GUT

breaking by 101 and 10�1 in the SUð5Þflip model becomes a

great advantage. Earlier string construction obtaining 4D
SUð5Þflip was done in the fermionic construction [5].

Recently, a realistic SUð5Þflip model was obtained in a

Z12�I orbifold construction [6].
SUSY breaking is one of the important issues that a

realistic model should address. Dynamical SUSY breaking
(DSB) in the hidden sector can be realized simply by the

representations 100 plus 50 of SUð5Þ0 [7], and 160 of SOð10Þ0
[8]. Other hidden-sector gauge groups may be possible.
Recent DSB models at unstable vacua are known to be
possible with vectorlike representations in the hidden sec-
tor [9]. However, we will concentrate on the simple SUð5Þ0
model with only one chiral set, i.e. 100 plus 50, because it
would be relatively easy to realize SUð5Þ0 compared to
SOð10Þ0, in the compactification of the heterotic string. In
this spirit, DSB at an unstable vacuum and at a stable
vacuum has been discussed already [10,11]. We note that
here the minimal supersymmetric standard model (MSSM)

with the SUð5Þ0 gauge group with one chiral set (100 � 50)

in the hidden sector was obtained, but the bare value of the
weak mixing angle was not 3

8 [11]. In principle, the weak

mixing angle could fit the observed one with the power-
law–type threshold effects from the Kaluza-Klein (KK)
towers, if relatively large extra dimensions are assumed
[12].
Even if SUð5Þ0 is a prominent example to clearly include

dynamical SUSY breaking (even in global SUSY), so far
the SUð5Þ0 hidden sector gauge group has not attracted
much attention. One reason may be that SUð5Þ0 is relatively
hard to obtain compared to the rank 4 gauge groups such as
SUð4Þ0 or SOð8Þ0 [13]. Moreover, the requirement that one

family, ð100 � 50Þ, in the hidden sector must be neutral
under the SM gauge group is much harder to satisfy
compared to obtaining just ð50 � �50Þ’s.
If the fundamental scale is 1016 GeV, where the visible-

and hidden-sector gauge couplings are unified,�v ¼ �h �
1=25, the SUð5Þ0 confining scale with one family (100 and
50) would be 1011 GeV, which may be useful for SUSY
breaking by gauge mediation. But it is quite lower than the
conventional hidden-sector scale of order 1013 GeV in
gravity mediation. In this paper, we will point out that
the confinement scale can be extremely sensitive to the
threshold correction by KK modes, and so including just a
few KK towers can lift the confinement scale up to
1016 GeV. Thus, if KK modes are considered, a very large
class of hidden-sector gauge groups that we did not yet
explore could be phenomenologically viable, allowing for
the possibility of the gauge coupling unification at the
fundamental scale.
The items discussed above from string compactifications

are obtained piecemeal: (1) the SM gauge group with three
families [14], (2) gauge coupling unification atMGUT [15],

(3) DSB with one set of 100 and 50 [11], (4) the contribution
of the KK spectrum to the threshold correction [12], and
(5) all the exotics being vectorlike under SM gauge sym-
metry. In particular, the specific model presented in
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Ref. [11] has the Lee-Weinberg electroweak gauge group
with sin2�0W ¼ 1

4 , which needs two scales of the gauge

group breaking by the Higgs mechanism.
In fact, the string models of SUð5Þflip satisfying condi-

tions (1), (2), and (5) are not known, except for those of

Refs. [5,6]. Actually, it is nontrivial to obtain 10H and 10H
from string theory, which are essential for breaking the
SUð5Þflip down to the SM gauge group.1 In this paper, we

present an interesting model which satisfies not only (1),
(2), and (5) but also all the above features, in particular,
sin2�0W ¼ 3

8 at the string or GUT scale. The model is based

on the Z12�I orbifold compactification of the heterotic
string [6,11,12,16]. So, we give most of the construction
technique in a succinct form in the Appendix.

This paper is organized as follows. In Secs. II and III, we
will construct a SUSY GUT model SUð5Þflip � SUð5Þ0 and
present the massless spectra from the untwisted and twisted
sectors. In Sec. IV, we will discuss the Yukawa couplings
needed for the realization of the MSSM. Section V is
devoted to the derivation of the KK spectrum and the
discussion of its effect on the gauge couplings of the visible
and hidden sectors. Section VI gives our conclusion. In the
Appendix, we sketch the technique for obtaining the mass-
less spectrum and Yukawa couplings.

II. Z12�I ORBIFOLD MODEL AND U SECTOR
FIELDS

We employ the Z12�I orbifold compactification scheme
for the extra 6D space, which preservesN ¼ 1 SUSY in the
noncompact 4D spacetime [17,18]. Z12�I orbifolds are
known to give phenomenologically interesting MSSMs
[6,12,16,18].

The Z12�I orbifold is an SOð8Þ � SUð3Þ lattice, and the
Wilson lines W3 and W4 ( ¼ W3) can be introduced in the
2D SU(3) lattice [17,18]. We take the following shift vector
V and the Wilson line W3,

V ¼ ð0 0 0 0 0;�1
6

�1
6

�1
6 Þð0 0 0 0 0 1

4
1
4
�2
4 Þ0;

W3 ¼ W4 � W ¼ ð23 2
3
2
3
2
3
2
3; 0

�2
3

2
3Þð23 2

3
2
3
2
3 0

�2
3 0 0Þ0; (1)

which are associated with the boundary conditions of the
left-moving bosonic string. For modular invariance in
Z12�I orbifold compactification, V and W should be spe-
cially related to the twist vector � ¼ ð 512 4

12
1
12Þ. � is

associated with the boundary conditions of the right-
moving superstrings, preserving only N ¼ 1 SUSY in
4D. The twist vector � ¼ ð 512 4

12
1
12Þ specifies the Z12�I

orbifold. This model gives

V2 ��2 ¼ 1

6
; W2 ¼ 16

3
; V �W ¼ �1

6
: (2)

Hence, the modular invariance conditions inZ12�I orbifold
compactification are satisfied [18]: 12 � ðV2 ��2Þ ¼
even integer, 12 �W2 ¼ even integer, and 12V �W ¼
integer.
The massless gauge sector corresponds to the states

satisfying P � V ¼ integer and P �W ¼ integer, where P
is the E8 � E0

8 root vector. They are

SU ð5Þ: ð1 � 1 0 0 0; 03Þð08Þ0; (3)

SU ð5Þ0:
� ð08Þ ð1 � 1 0 0 0 0 0 0Þ0
� ð08Þ ðþ � � � � þ þ þÞ0; (4)

SU ð2Þ0: � ð08Þðþ þ þ þ þ þ þ þÞ0; (5)

where the underline means all possible permutations. Thus,
the gauge group is

½fSUð5Þ � Uð1ÞXg � Uð1Þ3� � ½SUð5Þ � SUð2Þ � Uð1Þ3�0;
(6)

where SUð5Þ � Uð1ÞX is identified with the flipped-SU(5).
The Uð1ÞX charge operator of the flipped-SU(5) is [6]

X ¼ 1ffiffiffiffiffiffi
40

p ð�2 � 2 � 2 � 2 � 2; 03Þð08Þ0: (7)

The normalization factor 1ffiffiffiffi
40

p is determined such that the

norm of the X [in general, all U(1) charge operators in the
level-one heterotic string theory [18]] is 1ffiffi

2
p . This value is

exactly the one given as the normalization required for the
SUð5Þ � Uð1ÞX embedded in SO(10). Since the standard
model hypercharge is defined as

Y ¼
ffiffi
3
5

q
ð13 1

3
1
3
1
2

1
2; 0

3Þð08Þ0; (8)

the weak mixing angle at the string scale is sin2�0W ¼ 3
8 .

From now on, we will drop the normalization factors ‘‘ 1ffiffiffiffi
40

p ’’

and ‘‘
ffiffi
3
5

q
’’ just for simplicity.

The massless states of chiral matter in the U sector (U)
are the states satisfying P � V ¼ f�5

12 or 4
12 or 1

12g, and P �
W ¼ integer. In Table I, the chiral fields in theU sector are
tabulated. Note that there does not appear to be any flipped-
SU(5) singlets in U. From the U sector, we obtain one
family of the MSSM matter,

TABLE I. The U sector chiral states. There are no hidden-
sector chiral states and no flipped-SU(5) singlets.

Visible states P � V � SUð5ÞX
ðþ � � � �;þ � �Þð08Þ0 1

12 L 53
ðþ þ þ � �;� � þÞð08Þ0 1

12 L 10�1

ðþ þ þ þ þ;� þ �Þð08Þ0 1
12 L 1�5

1In the flipped-SU(5), the R-parity violating operators do not
appear at the renormalizable Lagrangian level. If an exact R
parity is also required in the compactification, the number of
phenomenologically viable string SM models becomes drasti-
cally reduced.
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10�1 þ 53 þ 1�5 ðand their CT P conjugatesÞ; (9)

where 10�1, 53, 1�5 contain fdcL; qL; �c
Lg, fucL; lLg, and ecL,

respectively. It is tempting to interpret this as the third (top
quark) family, but the low dimensional Yukawa couplings
prefer one family in the twisted sector as the third family.

III. TWISTED SECTOR FIELDS

There are 11 twisted sectors, Tk with k ¼ 1; 2; . . . ; 11.
The CT P conjugates of the chiral states in Tk are provided
in T12�k. Thus, it is sufficient to consider k ¼ 1; 2; . . . ; 6.
While the U and T6 sectors contain both chiral states and
their CT P conjugates, T1, T2, T4, and T7 (T11, T10, T8, and
T5) sectors yield only the left-handed (right-handed) chiral
states. The T3 (and T9) sector includes both left- and right-
handed chiral states. So, to obtain the left-handed states we
will take CT P conjugations for the right-handed states of
the T3 and T5 sectors. All the twisted sector fields are listed
in [19].

From untwisted and twisted sectors, altogether there
appear six pairs of Higgs doublets from T4, T7, and T6,
among which the MSSM Higgs doublet pair is chosen. We
will explain in Sec. IV that, except one pair of f5�2; �52g, the
other pairs of five-plets with X ¼ �2 in the T4, T7, and T6

sectors achieve superheavy masses, when some singlets
under ½SUð5Þ � Uð1ÞX� � ½SUð5Þ � SUð2Þ�0 obtain vac-
uum expectation values (VEVs) of order the string scale.
There, we will also explain how to decouple the color
triplets from the electroweak doublets in the Higgs
quintets.

A. The flipped-SU(5) spectrum

The visible sector chiral states of the twisted sectors are

T4: 2ð10�1 þ 53 þ 1�5Þ; 2ð5�2 þ �52Þ; (10)

T3; T9: ð101 þ 10�1Þ; (11)

T7: ð5�2 þ �52Þ; (12)

T6: 3ð5�2 þ �52Þ: (13)

To get the left-handed states from the T9 and T7 sectors, we
applied the CT P conjugations to the right-handed states of
the T3 and T5 sectors. From Eq. (10), we note that two
families of the MSSM matter fields appear from T4. The
additional family needed appears from the U sector we
presented above.

To break the flipped-SU(5) down to the SM, we need 101
( � 10H) and 10�1 ( � 10H), which appear from T3 and
T9. As explained later, they couple to the f5�2; �52g ( �
f5h; �5hg) so that the pseudo-Goldstone mode fD;Dcg in-
cluded in f10H; 10Hg pairs up with the triplets contained in
f5�2; �52g and becomes superheavy.

B. The hidden-sector SUð5Þ0 spectrum
The hidden-sector fields appear from twisted sectors.

The chiral multiplets under SUð5Þ0 � SUð2Þ0 are listed as
follows.

T4: 3ð50; 10Þ�5=3; 3ð�50; 10Þ5=3; 2ð10; 20Þ�5=3; 2ð10; 20Þ5=3;
(14)

T2: ð10; 20Þ5=3; ð10; 20Þ�5=3; (15)

T1: ð100; 10Þ0; ð50; 20Þ0; ð�50; 10Þ0; ð10; 20Þ0; ð�50; 10Þ�5=3;

ð10; 20Þ�5=3; 2ð10; 20Þ5=3; (16)

T7: ð50; 10Þ5=3; 2ð10; 20Þ�5=3; ð10; 20Þ5=3: (17)

Again, we replaced the right-handed states in the T5 sector
by the left-handed ones in T7 by CT P conjugations. Yet
we have not included non-Abelian group singlets. The
vectorlike representations are assumed to obtain super-
heavy masses when the neutral singlet under the flipped-
SU(5) develops VEVs of order the string scale. We will
discuss this in Sec. IV.
Removing vectorlike representations from Eqs. (14)–

(17), we still have

ð100; 10Þ0; ð50; 20Þ0; ð�50; 10Þ0; ð10; 20Þ0: (18)

The hidden-sector SUð2Þ0 is broken by a GUT scale VEVof
ð10; 20Þ0 of (18). Then, out of the representations of (18),
one hidden-sector chiral set remains,

10 0
0; 500; (19)

which is the key toward the DSB with SUð5Þ0 [7].
Representations in (19) do not carry any visible sector

quantum numbers, and the flipped-SU(5) is not broken by
the DSB in the hidden sector. Our construction of one

hidden-sector chiral set 100 þ 50 with additional vectorlike
pairs of 50 and �50 does not change the fate of DSB as noted
in [20]. But inclusion of supergravity effects gives a run-
away solution at large values of the dilaton field [21]. The
barrier separation between the SUSY breaking minimum
and the runaway point must be very high.

C. The other vectorlike exotic states

The remaining charged states under the flipped-SU(5)
are the singlets of SUð5Þ � SUð5Þ0 � SUð2Þ0. They are
listed as follows.

T4: 4 � 1�5=3; 4 � 15=3; (20)

T2: 1�10=3; 2 � 15=3; 110=3; 2 � 1�5=3; (21)

T1: 110=3; 3 � 1�5=3; 1�10=3; 2 � 15=3; (22)

T7: 110=3; 2 � 1�5=3; 1�10=3; 3 � 15=3: (23)
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These are singlet exotics. Since they are also vectorlike
under the flipped-SU(5), they could obtain superheavy
masses if the needed neutral singlets develop VEVs of
order the string scale. Hence, we can get the same low
energy field spectrum as that of the MSSM. Such vector-
like superheavy exotics could be utilized [22] to explain
the recently reported high energy cosmic positron excess
[23–26].

IV. SINGLETS AND YUKAWA COUPLINGS

It is necessary to make exotics vectorlike and heavy. For
this purpose, many singlets are required to develop large
VEVs. In Table II, we list singlet fields. At least the
following fields are given large VEVs at the string scale,

S2; S3; S4; S5; S7; S11; S12; S15; S16; S17; S18; S21; S22:

(24)

These VEVs are possible through higher dimensional
terms in the superpotential. The selection rules for the
allowed superpotential are summarized in the Appendix.

Our strategy is to construct composite singlets (CSs)
which have H-momenta, (1 0 0), ð�1 0 0Þ, (0 1 0), ð0 �
1 0Þ, (0 0 1), ð0 0 � 1Þ. Then, using only singlets devel-
oping VEVs at the string scale Mstring with any integer set

ðl m nÞ, we can attach an appropriate number of CSs such
that they make the total H-momentum ð�1 1 1Þ. Since

their VEVs are of order Mstring, generically the Yukawa

couplings multiplied by them are not suppressed.

A. Composite singlets

Specifically, let us consider a CS composed of S2 with
ðNLÞj ¼ 1�1, S21 with ðNLÞj ¼ f23; 12g, and S22 with

ðNLÞj ¼ 2�1 from T0
4 , T

0
1 , and T0

7 , respectively. The CS

‘‘S2S21S22’’ fulfills selection rules (a) and (c) of the
Appendix, and its H-momentum is calculated as
½ð�1

3
1
3

1
3Þ þ ð1 0 0Þ� þ ½ð�7

12
4
12

1
12Þ þ ð0 � 1 � 2Þ� þ

½ð�1
12

4
12

7
12Þ þ ð2 0 0Þ� ¼ ð2 0 � 1Þ. S3 with ðNLÞj ¼ 1�1,

12, or 13 from T0
4 , S5 [ðNLÞj ¼ 0] from T6, and S17

[ðNLÞj ¼ 23] from T0
2 form another useful set. ‘‘S3S5S17’’

also fulfills (a) and (c), and its H-momentum is given by
ð0 1 � 1Þ, ð�1 0 � 1Þ, or ð�1 1 � 2Þ. Similarly,
‘‘S5S7’’ satisfies (a) and (c) and gives the H-momentum
of ð�1 0 1Þ. By properly multiplying S2S21S22, S3S5S17,
S5S7 (and their higher powers), one can indeed construct
CSs whoseH-momenta are (1 0 0), ð�1 0 0Þ, (0 1 0), ð0 �
1 0Þ, (0 0 1), ð0 0 � 1Þ. For instance, (1, 0, 0) can be
obtained from ð2 0 � 1Þ þ ð�1 0 1Þ, namely,
ðS2S21S22ÞðS5S7Þ, and (0 0 1) is achieved from
ðS2S21S22ÞðS5S7Þ2.
One can easily see that all the states in Tþ

4 and T�
4

achieve string scale masses via hS4i. The states in
fTþ

2 ; T
�
2 g, fTþ

1 ; T
�
7 g, and fT�

1 ; T
þ
7 g pair up to be superheavy

TABLE II. Left-handed SUð5Þ � Uð1ÞX � SUð5Þ0 � SUð2Þ0 singlet states. The right-handed states in T3 and T5 are converted to the
left-handed ones of T9 and T7, respectively.

Sectors Singlet states � ðNLÞj P ðf0Þ Label

T0
4 ð0 0 0 0 0;�2

3
�2
3

�2
3 Þð08Þ0 L 0 3 S1

T0
4 ð0 0 0 0 0;�2

3
1
3

1
3Þð08Þ0 L 1�1, 12, 13 2, 3, 2 S2

T0
4 ð0 0 0 0 0; 13

�2
3

1
3Þð08Þ0 L 1�1, 12, 13 2, 3, 2 S3

T0
4 ð0 0 0 0 0; 13

1
3

�2
3 Þð08Þ0 L 1�1, 12, 13 2, 3, 2 S4

T6 ð0 0 0 0 0; 0 1 0Þð0 0 0 0 0 1
2

�1
2 0Þ0 L 0 2 S5

T6 ð0 0 0 0 0; 0 0 1Þð0 0 0 0 0 �1
2

1
2 0Þ0 L 0 2 S6

T6 ð0 0 0 0 0; 0 � 1 0Þð0 0 0 0 0 �1
2

1
2 0Þ0 L 0 2 S7

T6 ð0 0 0 0 0; 0 0 � 1Þð0 0 0 0 0 1
2

�1
2 0Þ0 L 0 2 S8

T3 ð0 0 0 0 0;�1
2

�1
2

�1
2 Þð0 0 0 0 0 3

4
�1
4

�1
2 Þ0 L 0 1 S9

T3 ð0 0 0 0 0;�1
2

1
2

1
2Þð0 0 0 0 0 3

4
�1
4

�1
2 Þ0 L 0 1 S10

T3 ð0 0 0 0 0; 12
1
2

�1
2 Þð0 0 0 0 0 �1

4
3
4

�1
2 Þ0 L 0 1 S11

T3 ð0 0 0 0 0; 12
1
2

�1
2 Þð0 0 0 0 0 �1

4
�1
4

1
2Þ0 L 11, 13 2, 1 S12

T9 ð0 0 0 0 0; 12
1
2

1
2Þð0 0 0 0 0 �3

4
1
4

1
2Þ0 L 0 1 S13

T9 ð0 0 0 0 0; 12
�1
2

�1
2 Þð0 0 0 0 0 �3

4
1
4

1
2Þ0 L 0 2 S14

T9 ð0 0 0 0 0;�1
2

�1
2

1
2Þð0 0 0 0 0 1

4
�3
4

1
2Þ0 L 0 2 S15

T9 ð0 0 0 0 0;�1
2

�1
2

1
2Þð0 0 0 0 0 1

4
1
4

�1
2 Þ0 L 1�1, 1�3 1, 1 S16

T0
2 ð0 0 0 0 0;�1

3
�1
3

�1
3 Þð0 0 0 0 0 �1

2
1
2 0Þ0 L 2�1, 23 1, 1 S17

T0
2 ð0 0 0 0 0;�1

3
�1
3

�1
3 Þð0 0 0 0 0 1

2
�1
2 0Þ0 L 2�1, 23 1, 1 S18

T0
1 ð0 0 0 0 0;�1

6
�1
6

�1
6 Þð0 0 0 0 0 �3

4
1
4

1
2Þ0 L 33 1 S19

T0
1 ð0 0 0 0 0;�1

6
�1
6

�1
6 Þð0 0 0 0 0 1

4
�3
4

1
2Þ0 L 33 1 S20

T0
1 ð0 0 0 0 0;�1

6
�1
6

�1
6 Þð0 0 0 0 0 1

4
1
4

�1
2 Þ0 L f11; 13g, f23; 12g, 63 1, 1, 1 S21

T0
7 ð0 0 0 0 0; 56

�1
6

�1
6 Þð0 0 0 0 0 �1

4
�1
4

1
2Þ0 L 2 1 S22

T0
7 ð0 0 0 0 0;�1

6
5
6

�1
6 Þð0 0 0 0 0 �1

4
�1
4

1
2Þ0 L 2 1 S23

T0
7 ð0 0 0 0 0;�1

6
�1
6

5
6Þð0 0 0 0 0 �1

4
�1
4

1
2Þ0 L 2�1 1 S24
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via hS2i, hS3i, and hS4i. Similarly, the singlet states in
fTþ

1 ; T
�
7 g and fT�

1 ; T
þ
7 g pair up to be superheavy.

In order to break the flipped-SU(5) to the SM gauge
group, we need GUT scale ( � string scale in our case)

VEVs for 10H and 10H, which we have from T3 and T9,

respectively. The �-type term 10H10H and terms with its
higher powers are allowed. Thus, SUSY vacua where

h10Hi ¼ h10Hi � Mstring � MGUT can, in principle, exist.

We regard a pair of 5h and �5h in T0
4 as the Higgs fields

containing two Higgs doublets of the MSSM. For the
missing partner mechanism, we need the couplings

10H10H �5h and 10H10H5h. These couplings are allowed
in the superpotential by multiplying CSs, S18S11S16 and
S17S12S15, respectively.

The vectorlike 5’s and �5’s appearing in the T6 sector
obtain string scale masses. Via hS21i one pair of five-plets
in T0

7 can pair up with one pair of five-plets in T0
4 to be

superheavy. The remaining pair of 5 and �5 in T0
4 , i.e.f5h; �5hg, can get a mass term (or � term) via S17S18 and

S1. Note that while a VEV S17S18 has been assumed, a
VEV S1 is not yet assumed. But it can be determined by
soft terms such that � � hS17S18 þ S1i � m3=2, as in the

MSSM supplied by singlets (NMSSM).
The MSSM matter states in the T0

4 sector couple to the
Higgs pair, 5h and �5h, in the same sector. Additionally,
hS2S3S4i can be multiplied to suppress the size of the
Yukawa couplings. The matter states in the untwisted
sector can couple to them via S2, S3, and S4:

10�110�1
�5h � hS24i, 10�1535h � hS2S4i, and 1�553 �5h �

hS2S3i. Since there are in total 21 [ ¼ ð2þ 3þ 2Þ � 3]
states in S2, S3, and S4, they can be utilized to suppress the
size of the Yukawa couplings.

B. White dwarf axions and one pair of Higgsino
doublets

In this subsection, we comment on how the needed
horizontal symmetry can arise from our heterotic string
compactification. But, we will not endeavor to discuss
accidental global symmetries arising at some specific va-
cua [27–29]. In Ref. [25], a variant very light axion has
been introduced to enhance the axion-electron coupling.
This enhancement was motivated from the unexpected
extra energy loss from the white dwarf evolution [30]. It
is needed to distinguish families by the quantum numbers
of an Abelian horizontal gauge symmetryUð1ÞH so that the
mixing angles are ofOð10�1Þ–Oð10�3Þ. The Peccei-Quinn
symmetry broken at 	1011 GeV cannot achieve this goal
due to the small mixing Fa=MP 	 10�7. Let us choose the
H direction as

H ¼ 1
2ð1 1 1 1 1 3 � 1 1Þð0 0 0 0 0 a b cÞ0; (25)

where

b ¼ 2a� 20; c ¼ 3
2a� 7: (26)

The H quantum numbers of the visible sector quark and
Higgs fields are shown below in the square brackets:

U: 10�1 ½0�; T4: 2 10�1 ½0�; U: 5þ3 ½0�;
T4: 2 5þ3 ½�1�; U: 1�5 ½0�; T4: 2 1�5 ½þ1�;
T4: 2 5�2 ½1�; T4: 2 �52 ½0�; T7: 5�2 ½2�; �52 ½1�

(27)

which have a Uð1ÞH � SUð5Þ2 anomaly. But this anomaly
is canceled by the Green-Schwarz mechanism [31]. The H
quantum numbers of (27) are minus those anticipated in
Ref. [25], and hence can act as the needed horizontal gauge
symmetry. To realize the scenario of [25], we need 5�2 ½1�
and �5þ2 ½1�, which appear in T4 and T7, respectively.
As seen in the previous subsection, one quintet-

antiquintet pair in T7 is coupled to one quintet-antiquintet
pair in T4 via hS21i, and we assume that the other remaining
pair in T4 contains the MSSMHiggs. In this subsection, we
will assume that hS21i and hS4S16i are fine-tuned to be zero.
This is possible because the quantum numbers of S21 and
S4S16 are the same. Instead, we need the following singlet
VEVs to remove two Higgs quintet-antiquintet pairs,

T4: S1 ½�1�; T1: S19 ½�2�;
which break the Uð1ÞH gauge symmetry. Note that the
VEVs of Eq. (24) break Uð1ÞH. Here, we assume that
hS1i and hS19i are the dominant Uð1ÞH breaking sources.
The Uð1ÞH invariant couplings of the form T4T4T4 re-

move two pairs of Higgs quintets and antiquintets of T4.
Note that in the previous subsection hS1i was adjusted to
give a light mass term (‘‘� term’’) of one quintet-
antiquintet pair in T4. The Uð1ÞH invariant coupling of
the form T1T4T7 removes one Higgs quintet-antiquintet
pair from T4 and T7. Thus, the 3� 3 Higgsino mass matrix
takes the form

S 1[− 1] S 1[− 1] 0 5a
− 2[1](T4)

S 1[− 1] S 1[− 1] 0 5b
− 2[1](T4)

S 19[− 2] S 19[− 2] 0 5c
− 2[2](T7)

52[0](T4) 52[0](T4) 52[1](T7)

(28)

It is obvious that �52½1�ðT7Þ � �5EW�2 is massless at this level.
If hS1i ¼ V1 and hS19i ¼ V2 and the Yukawa couplings are
set to 1, the matching massless 5EW�2 is a linear combination
of 5’s from T4 and T7,

5 EW�2 ¼ �V2ð5a þ 5bÞ þ 2V15
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4V2

1 þ 2V2
2

q ; (29)

where the superscripts a, b, and c denote their origins from
T4 and T7 as indicated in Eq. (28).

SUð5Þflip � SUð5Þ0 FROM Z12�I PHYSICAL REVIEW D 80, 115012 (2009)

115012-5



V. KALUZA-KLEIN SPECTRUM

The relatively light KK modes (MKK < 1=
ffiffiffiffiffi
�0p Þ associ-

ated with the relatively large extra dimensions can arise
only in the nonprime orbifolds such as Z12�I. This is
because KK excitations are possible only under a trivial
(untwisted) boundary condition, which leads to N ¼ 2 (or
N ¼ 4) SUSY spectra. In the Z12�I orbifold, for instance,
the boundary conditions associated with the SU(3) sublat-
tice of the 6D compact space in the U, T3, T6, and T9

sectors become trivial and allowN ¼ 2 SUSY sectors [12].
The KK modes associated with the relatively large extra

dimensions R ( � R3 ¼ R4) of the SU(3) sublattice, whose
masses compose a KK tower of ðintegerÞ=R, should also
satisfy the mass shell conditions [12], Eqs. (A1) and (A2)

of the Appendix, forMKK < 1=
ffiffiffiffiffi
�0p
. Hence, the KK modes

in the U sector still arise from the E8 � E0
8 root vectors.2

But P �W ¼ integer is not necessary for the KK states in
the decompactification limit. In addition, the Gliozzi-
Scherk-Olive (GSO) projection condition in the U sector
is relaxed from P � V ¼ integer to P � 3V ¼ integer [12].
The E8 � E0

8 roots satisfying these are

SO ð10Þ: ð�1 � 1 0 0 0; 0 0 0Þð08Þ0; (30)

SO ð6Þ: ð0 0 0 0 0;�1 � 1 0Þð08Þ0; (31)

E 0
6:

8>><
>>:

ð08Þ ð�1 � 1 0 0 0; 0 0 0Þ0
�ð08Þ ðþ � � � �;þ þ þÞ0
�ð08Þ ðþ þ þ � �;þ þ þÞ0
�ð08Þ ðþ þ þ þ þ;þ þ þÞ0;

(32)

SU ð2Þ0K: � ð08Þð0 0 0 0 0; 1 � 1 0Þ0: (33)

Thus, above the compactification scale the gauge group is
enhanced to

½SOð10Þ � SOð6Þ� � ½E6 � SUð2ÞK � Uð1Þ�0: (34)

In the visible sector, the flipped-SU(5) in the massless case
is embedded in the simple group SO(10). Therefore, be-
tween the GUT scale (	 compactification scale 1=R) and

the string scale 1=
ffiffiffiffiffi
�0p
, the MSSM gauge couplings are

unified, including theUð1ÞX coupling. SUð5Þ0 and SUð2Þ0 of
the hidden sector are embedded in E0

6. Note that the SUð2Þ0K
emerging in 6D space is different from the SUð2Þ0 gauge
symmetry observed from the massless spectrum. The con-
dition for KK matter states from the U sector is also
relaxed from P � V ¼ f�5

12 ;
4
12 ;

1
12g (modZ) to P � 3V ¼ � 1

4

(modZ) [12]. They form N ¼ 2 hypermultiplets. The KK
matter states from the U sector are shown in Table III.

Among the twisted sectors of Z12�I, only T3, T6, and T9

can provide KK states. The KK states from T9 are all the
CT P conjugates of the KK states from T3. As in the U

sector, the KK modes from T3, T6, and T9 should also
satisfy the mass shell conditions. However, the required
GSO projection is also relaxed. Following the guide of
Ref. [12], where the authors discussed how the KK states
are consistent with the modular invariance, one can derive
the KK spectrum from the twisted sectors T3 and T6. The
results are presented in Table IV. One can check that the
KK spectra in Tables III and IV cancel the 6D gauge
anomalies. The beta function coefficients bN¼2

G of SO(10)

and E0
6 by KK modes with N ¼ 2 SUSY are

bN¼2
SOð10Þ ¼ �2� 8þ 2� ð2� 8þ 1� 10Þ ¼ 36; (35)

bN¼2
E0
6

¼ �2� 12þ 2� 3� 2 ¼ �12: (36)

The KK masses are nothing but the excited momenta
( ¼ ~m3, ~m4) in the SU(3)-dual lattice of Fig. 1(b) in Z12�I.
The Wilson line WI lifts some KK spectra and breaks the
gauge symmetry, say G to H . This is because the mo-
mentum vectors ~m3, ~m4 are shifted by PIWI, where PI

indicates the E8 � E0
8 weight vectors. This is clearly seen

TABLE III. The KK spectrum from the U sector. The 16
collectively denotes ðþ � � � �Þ, ðþ þ þ � �Þ,
and ðþ þ þ þ þÞ, which are 5, 10, and 1, respectively, in
terms of SU(5). Here we drop the CT P conjugates so that the
fields listed above are all we need.

Visible states 4D � SOð10Þ � SOð6Þ
ð16;þ � �Þð08Þ0 L, R ð16; 4Þ
ð16;þ þ þÞð08Þ0 L, R

Hidden states 4D � E0
6 � SUð2Þ0K

ð08Þð16;þ � �Þ0 L, R

ð08Þð�1 0 0 0 0; 1 0 0Þ0 L, R ð27; 2Þ0
ð08Þð0 0 0 0 0;�1 0 � 1Þ0 L, R

ð08Þð0 0 0 0 0;�1 0 1Þ0 L, R ð1; 2Þ0

TABLE IV. The KK spectrum from the T3 and T6 sectors. All
the states are singlets under E0

6. The 16 in T6 collectively denotes

ðþ � � � �Þ, ðþ þ þ � �Þ, and ðþ þ þ þ þÞ,
which are 5, 10, and 1, respectively, in terms of SU(5). In the T6

sector, we drop the CT P conjugates.

Pþ 3V Tk ðNLÞj 4D � SOð10Þ � SOð6Þ
�SUð2Þ0K

ð05;þ þ �Þð05; 34 �1
4

�1
2 Þ0 T3 0 L, R 4� ð1; 4; 20Þ

ð05;� � �Þð05; 34 �1
4

�1
2 Þ0 T3 0 L, R

ð05;þ þ �Þð05; �1
4

�1
4

1
2Þ0 T3 11, 13 L, R 8� ð1; 4; 10Þ

ð05;� � �Þð05;�1
4

�1
4

1
2Þ0 T3 11, 13 L, R

ð16; 0 0 0Þð05;�1
4

�1
4

1
2Þ0 T3 0 L, R 4� ð16; 1; 10Þ

Pþ 6V Tk ðNLÞj 4D � SOð10Þ � SOð6Þ
�SUð2Þ0K

ð05;�1 0 0Þð05;þ � 0Þ0 T6 0 L, R 3� ð1; 6; 20Þ
ð�1 04; 03Þð05;þ � 0Þ0 T6 0 L, R 5� ð10; 1; 20Þ2The states of E8 � E0

8 weights, not satisfying P2 ¼ 2, are the
string excited states with masses of ðintegerÞ= ffiffiffiffiffi

�0p
.
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from the expression for KK masses [12]:

M2
KK ¼ X

ma;mb

2~gab

3R2
ðma � P �WÞðmb � P �WÞ; (37)

where R is the radius of the SU(3) torus,ma, mb (a, b ¼ 3,
4) are integers, and ~gab of the SU(3)-dual lattice is defined
as

~g ab ¼ 2 1
1 2

� �
: (38)

We list the masses of the first two excited KK states for
P �W ¼ integer:

M2
KK ¼

� 4
3R2 for ðm3; m4Þ ¼ �ð1; 0Þ;�ð0; 1Þ;�ð1;�1Þ
4
R2 for ðm3; m4Þ ¼ �ð1; 1Þ;�ð2;�1Þ;�ð1;�2Þ:

(39)

See Fig. 2. For P �W ¼ 1
3 þ integer, we have

M2
KK ¼

� 4
9R2 for ðm3; m4Þ ¼ ð0; 0Þ; ð1; 0Þ; ð0; 1Þ
16
9R2 for ðm3; m4Þ ¼ ð1; 1Þ; ð1;�1Þ; ð�1; 1Þ:

(40)

In the next excited level, there are six KK states, whose

mass squared is 28
9R2 . See Fig. 3. As seen from Eq. (37), the

KK mass squared for the states with P �W ¼ � 1
3 þ

integer and ð�m3;�m4Þ is the same as that for the states
with P �W ¼ 1

3 þ integer and ðm3; m4Þ. Nonvanishing vec-
tors ðm3; m4Þ do not affect the GSO projection conditions
[12]. In Table V, we display the KK states satisfying P �
W ¼ integer. Thus the KK states in Tables III and IV also
contain the states of P �W ¼ � 1

3 plus an integer.

By the constraint P �W ¼ integer, in the visible sector
6D SO(10) is broken to the flipped-SU(5), and SO(6) to
SUð2Þ � Uð1Þ2. The 6D hidden-sector gauge group E0

6 is

also broken to SUð5Þ0 � SUð2Þ0 � Uð1Þ0. But P �W ¼
integer still leaves N ¼ 2 SUSY intact. While the root
vectors of the flipped-SU(5) and SUð5Þ0 � SUð2Þ0 are those
of Eqs. (3)–(5), the roots of the 6D SU(2) in the visible
sector are�ð05; 0 1 1Þð08Þ0. They are broken to U(1) below
the compactification scale. The beta function coefficients
bN¼2
H

via the states with P �W ¼ integer are

bN¼2
SUð5Þ ¼ �2� 5þ 2� ð12 � 12þ 3

2 � 5Þ ¼ 17; (41)

bN¼2
Uð1ÞX ¼ 1

40
� 2� ð32 � 10þ 12 � 10

þ 12 � 40þ 22 � 50Þ ¼ 17; (42)

bN¼2
SUð5Þ0 ¼ �2� 5þ 2� 1

2 � 3 ¼ �7: (43)

The beta function coefficients bN¼2
G=H

via the ‘‘matter’’

states with P �W ¼ � 1
3 þ integer are bN¼2

G � bN¼2
H

.

Since bN¼2
SUð5Þ is the same as bN¼2

Uð1ÞX , and both are included

in bN¼2
SOð10Þ in Eq. (35), the KK modes in this model, which

respect the N ¼ 2 SUSY, do not affect the gauge coupling
unification of SU(5) and Uð1ÞX. Accordingly, only the

FIG. 1 (color online). The SU(3) lattice (a) and its dual
lattice (b). In panel (a) the torus is inside the light grey paral-
lelogram and the fundamental region is inside the dark grey
parallelogram.

FIG. 3 (color). The KK modes with P �W ¼ 1
3 mod integer.

The lengths of the red (short), blue (medium), and green (long)
arrows are 2

3 ð�0=L2Þ1=2, 4
3 ð�0=L2Þ1=2, and 2

3 ð7�0=L2Þ1=2, respec-
tively.

FIG. 2 (color online). The KK modes with P �W ¼ integer.
The length of the solid arrows is ð4�0=3L2Þ1=2 and that of the
thick dashed arrows is 2ð�0=L2Þ1=2.
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fields in the N ¼ 1 SUSY sector, i.e. the massless states,
affect the unification.

From the beta function coefficients, we can expect that
the MSSM gauge couplings rapidly increase in the ultra-
violet region. On the other hand, the hidden-sector gauge
coupling is asymptotically free. Therefore, a large disparity
between couplings of the visible and hidden sectors at the
compactification scale can be understood by going up
above the compactification scale. In other words, starting
with a unified coupling at the string scale, the hidden-
sector SUð5Þ0 coupling can be of order 1 near the GUT
scale.

When a gauge group G is broken to a subgroup H by
the Wilson line and further broken to H 0 by orbifolding,3

the renormalization group (RG) evolution of the gauge
coupling of H 0, including the effects by KK modes, is
described at low energies by

4�

�H 0
ð�Þ ¼ 4�

�

þ bN¼1

H 0
log

M2

�2

þ bN¼2
H

�0 þ bN¼2
G=H

��:

(44)

We assume that the dilaton has been stabilized by a non-
perturbative effect [32]. This can be discussed also in the
context of SUSY breaking as in Ref. [21]. In Eq. (44),
bN¼2
H

�0 (bN¼2
G=H

��) denotes the threshold correction by the

KKmodes of P �W ¼ 0 (� 1
3 ) mod integer, respecting the

N ¼ 2 SUSY. b0
H 0

in Eq. (44) is the beta function coeffi-

cient contributed by the N ¼ 1 SUSY sector states. As
discussed above, the KK mass towers by the states with P �
W ¼ 1

3 þ integer and with P �W ¼ � 1
3 þ integer are the

same. bN¼2
G=H

is given by bN¼2
G � bN¼2

H
.

As seen in Eqs. (35), (36), and (41)–(43), the beta
function coefficients by KK modes are quite large.
Accordingly, only the KK states residing in the lowest
few layers of the KK mass tower would be involved in
the RG evolution of the visible SU(5) gauge coupling,
before it reachesOð1Þ. So the field theory analysis, keeping
only such relatively light KK modes for the RG analysis of
the gauge couplings, would give a good approximation.
Reference [12] presents a full stringy analysis on the
threshold correction in Z12�I.
If 16=9R2 <M2
 < 28=9R2, �0 includes the contribu-

tions from six KK modes with mass squared 4=3R2, while
�þ (and also ��) includes contributions from three KK
modes of 4=9R2 and three KK modes of 16=9R2. Thus, the
threshold corrections by such KK modes are given by

bN¼2
H

�0 ¼ 17 � 6 � log
�
3R2M2


4

�
; (45)

bN¼2
G=H

�� ¼ 19 � 3 � 2
�
log

�
9R2M2


4

�
þ log

�
9R2M2

16

��
;

(46)

TABLE V. The KK spectrum satisfying P �W ¼ integer. Here we drop the CT P conjugates.

Pþ kV Tk 4D � ðSUð5Þ; SUð2ÞÞðSUð5Þ;SUð2ÞÞ0
ðþ � � � �;þ þ þÞð08Þ0 U L, R ð5; 2Þð1; 1Þ0
ðþ � � � �;þ � �Þð08Þ0 U L, R

ðþ þ þ � �;� � þÞð08Þ0 U L, R ð10; 1Þð1; 1Þ0
ðþ þ þ þ þ;� þ �Þð08Þ0 U L, R ð1; 1Þð1; 1Þ0
ð08Þðþ � � � �;þ � �Þ0 U L, R

ð08Þðþ þ þ þ þ;þ � �Þ0 U L, R ð1; 1Þð5; 2Þ0
ð08Þð1 0 0 0 0; 1 0 0Þ0 U L, R

ð08Þð05; 0 � 1 � 1Þ0 U L, R

ð08Þðþ þ þ � �;� þ �Þ0 U L, R ð1; 1Þð�5; 1Þ0
ð08Þð0 0 0 0 � 1; 0 1 0Þ0 U L, R

ð08Þð� � � � þ;� þ �Þ0 U L, R ð1; 1Þð1; 2Þ0
ð08Þð0 0 0 0 1; 0 1 0Þ0 U L, R

ð08Þð0 0 0 0 0; 0 � 1 1Þ0 U L, R ð1; 1Þð1; 1Þ0
ð05;� þ þÞð05; 34 �1

4
�1
2 Þ0 T3 L, R 4� ð1; 2Þð1; 1Þ0

ð05;� � �Þð05; 34 �1
4

�1
2 Þ0 T3 L, R

ð05;þ þ �Þð05;�1
4

3
4

�1
2 Þ0 T3 L, R 4� ð1; 1Þ

ð05;þ þ �Þð05;�1
4

�1
4

1
2Þ0 T3 L, R 8� ð1; 1Þð1; 1Þ0

ðþ þ þ � �; 0 0 0Þð05;�1
4

�1
4

1
2Þ0 T3 L, R 4� ð10; 1Þð1; 1Þ0

ð05; 0 1 0Þð05;þ � 0Þ0 T6 L, R 6� ð1; 2Þð1; 1Þ0
ð05; 0 0 � 1Þð05;þ � 0Þ0 T6 L, R

ð104; 03Þð05;� þ 0Þ0 T6 L, R 10� ð5; 1Þð1; 1Þ0

3In our model, G ¼ ½SOð10Þ � SOð6Þ� � ½E6 � SUð2ÞK �
Uð1Þ�0, H ¼ ½SUð5Þ � Uð1ÞX � SUð2Þ � Uð1Þ2� � ½SUð5Þ �
SUð2Þ � Uð1Þ3�0, and H 0 ¼ ½SUð5Þ � Uð1ÞX � Uð1Þ3� �
½SUð5Þ � SUð2Þ � Uð1Þ3�0.
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where H ¼SUð5Þ and G¼SOð10Þ. We assume 1=R�
MGUT and �
 ¼ 1. With �SUð5Þ ¼ 1

25 , we estimate

R2M2
 � 2:5,4 which is consistent with our assumption
16=9R2 <M2
 < 28=9R2. With R2M2
 � 1:9, and

bN¼1
SUð5Þ0 ¼ �3� 5þ 1

2 � 3þ 3
2 ¼ �12 (47)

by ð100; 10Þ0, ð50; 20Þ0, and ð�50; 10Þ0 in Eq. (19), one can also
estimate the confining scale of the hidden SUð5Þ0. In the
beta function coefficient of (47), we also included
Uð1ÞX-neutral (50 � �50) in addition to (19) to obtain the
lowest possible SUð5Þ0 confining scale. It is just below� �
4=3R � 0:8M
. Therefore, e.g., if M
 ¼ 2� 1016 GeV,
the confining scale of the hidden sector is 1:6�
1016 GeV. Indeed, the string scale can be much lower
than 1018 GeV in strongly coupled heterotic string theory
(or heterotic M theory), if the compactified 11th dimension
is relatively large [33].

However, the hidden-sector confining scale is very sen-
sitive to R2M2
. If M2
 & 4=9R2, all the KK modes do not
contribute to the RG evolution of the gauge couplings up to
the string scale M
, and so we should adopt only the usual
4D RG equation. If M
 ¼ 2� 1016 GeV and so ��1

SUð5Þ0 ¼
25 at that scale, the confining scale can be much lower,
down to 1011 GeV. Here, we assume SUð2Þ0 is broken at

the compactification scale and only 100 and 50 draw down
the confining scale.

Below the confinement energy scale, the order parame-
ters are composite fields rather than SUð5Þ0 gauginos and
quarks. As noticed in Ref. [21], the gaugino condensation
scale or N ¼ 1 SUSY breaking scale can be much lower
than the confinement scale, as discussed in
Refs. [21,34,35].

The threshold correction by the KK modes allows a very
wide range of the SUð5Þ0 confinement scale, from
1011 GeV to 1016 GeV. Moreover, as noticed in
Ref. [21], the gaugino condensation scale can be quite
low compared to the confinement scale of SUð5Þ0. Thus,
even in the case where the confinement scale is above
1013 GeV, one can obtain N ¼ 1 SUSY breaking effects
in the visible sector of order 102–3 GeV via gravity me-
diation. If the condensation scale is below 1013 GeV,
SUSY breaking effects in the visible sector by gauge
mediation can dominate over those by gravity mediation,
and here one may resort to the gauge mediation scenario
[11].

VI. CONCLUSION

We have constructed a phenomenologically viable
flipped-SUð5Þ � hidden-SUð5Þ0 model, based on the
Z12�I orbifold compactification of heterotic string theory.
The flipped-SU(5) breaks down to the SM gauge group by

nonzero VEVs of 10H and 10H. The doublet/triplet split-
ting problem is very easily resolved, because the missing
partner mechanism simply works in the flipped-SU(5). In
this model, we could obtain sin2�W ¼ 3

8 at the string (or

GUT) scale as desired. We have shown that all the extra
states beyond the MSSM field spectrum are vectorlike
under the flipped-SU(5) and obtain superheavy masses by
VEVs of some neutral singlets.
In this model, the KK modes do not affect the gauge

coupling unification in the visible sector, because the
flipped-SU(5) gauge symmetry is enhanced to the SO(10)
gauge symmetry above the compactification scale. On the
other hand, they could cause a big difference between the
visible and hidden gauge couplings at the compactification
scale. Depending on the size of such disparity between the
visible and hidden gauge couplings at the compactification
scale, a wide range of the confining scale of SUð5Þ0 is
possible: 1011 GeV–1016 GeV. With the hidden matter

100 and 50, the gaugino condensation scale or the N ¼ 1
SUSY breaking scale can be a few orders lower than the
hidden-sector SUð5Þ0 confinement scale.
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APPENDIX

The string excited states are irrelevant to low energy
physics. The masslessness conditions for the left- and
right-moving strings are

left-moving string :
ðPþ kVfÞ2

2
þX

i

NL
i
~�i � ~ck ¼ 0;

(A1)

right-moving string :
ðsþ k�Þ2

2
þX

i

NR
i
~�i � ck ¼ 0;

(A2)

where k ¼ 0; 1; 2; . . . ; 11; Vf ¼ ðV þmfWÞ with mf ¼ 0,

þ1, �1; and i runs over f1; 2; 3; �1; �2; �3g. Here ~�j � k�j

modZ such that 0< ~�j � 1, and ~� �j � �k�j modZ such

that 0< ~� �j � 1. NL
i and NR

i indicate oscillating numbers

for the left and right movers. P and s [ � ðs0; ~sÞ] are the
E8 � E0

8 and SO(8) weight vectors, respectively. The val-

ues of ~ck, ck are listed as follows [17,18]:

4Considering that the first excited KK mass squared is 4=9R2,
one could define the effective compactification scale, Reff � 3

2R.
Then, R2

effM
2
 ¼ 5:6. So at � ¼ M
=

ffiffiffiffiffiffiffi
5:6

p ¼ 0:4�M
, the first
excited KK modes appear.
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2� ~ck ¼

8>>><
>>>:

210
144 ; k ¼ 1; 192

144 ; k ¼ 4

216
144 ; k ¼ 2; 210

144 ; k ¼ 5

234
144 ; k ¼ 3; 216

144 ; k ¼ 6

(A3)

and

2� ck ¼

8>>><
>>>:

11
24 ; k ¼ 1; 1

3 ; k ¼ 4

1
2 ; k ¼ 2; 11

24 ; k ¼ 5

5
8 ; k ¼ 3; 1

2 ; k ¼ 6:

(A4)

The multiplicity for a given massless state is calculated
with the generalized GSO projector in the Z12�I orbifold,

P kðfÞ ¼ 1

12 � 3
X11
l¼0

~�ð�k; �lÞe2�il�k ;

where f ( ¼ ff0; fþ; f�g) denotes twist sectors associated
with kVf ¼ kV, kðV þWÞ, kðV �WÞ. The phase �k is

given by

�k ¼
X
i

ðNL
i � NR

i Þ�̂i þ
�
Pþ k

2
Vf

�
Vf �

�
~sþ k

2
�

�
�;

where �̂j ¼ �j and �̂ �j ¼ ��j. Here, ~�ð�k; �lÞ denotes
the degeneracy factors, which are summarized in Table VI
[17,18]. Note that P kðf0Þ ¼ P kðfþÞ ¼ P kðf�Þ for k ¼ 0,
3, 6, 9. In addition, the left-moving states should satisfy

P �W ¼ 0 modZ in the T3; T6; T9 sectors:

Neglecting the oscillator numbers, H-momenta of states
in various sectors, Hmom;0 [ � ð~sþ k�þ ~r�Þ], are as-

signed as [6,17,18]

U1: ð�1; 0; 0Þ; U2: ð0; 1; 0Þ; U3: ð0; 0; 1Þ;

T1:

��7

12
;
4

12
;
1

12

�
; T2:

��1

6
;
4

6
;
1

6

�
;

T3:

��3

4
; 0;

1

4

�
; T4:

��1

3
;
1

3
;
1

3

�
;

�
T5:

�
1

12
;
�4

12
;
�7

12

��
; T6:

��1

2
; 0;

1

2

�
;

T7:

��1

12
;
4

12
;
7

12

�
; T9:

��1

4
; 0;

3

4

�
;

(A5)

from which T5 will not be used since the chiral fields there

are right-handed while the other fields are represented as
left-handed. Including oscillators, the H-momenta [ �
ðR1; R2; R3Þ] are
ðHmomÞj ¼ ðHmom;0Þj � ðNLÞj þ ðNLÞ �j; j ¼ 1; 2; 3:

(A6)

The superpotential terms by vertex operators should
respect the following selection rules [18]:
(a) Gauge invariance;
(b) H-momentum conservation with � ¼ ð 512 ; 4

12 ;
1
12Þ,

X
z

R1ðzÞ ¼ �1mod 12;
X
z

R2ðzÞ ¼ 1mod 3;

X
z

R3ðzÞ ¼ 1mod 12; (A7)

where zð� A; B; C; . . .Þ denotes the index of states
participating in a vertex operator;

(c) Space group selection rules:

X
z

kðzÞ ¼ 0mod 12; (A8)

X
z

½kmf�ðzÞ ¼ 0mod 3: (A9)

If some singlets obtain string scale VEVs, however, con-
dition (b) can be merged into Eq. (A8) in (c). Then, it is
sufficient to consider (a) and (c) only.
There are 11 twisted sectors. For each twisted sector of

T1 � T6, the chiral fields are listed in the tables of
Ref. [19].
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