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We recompute the invisible Higgs decay width arising from Higgs-graviscalar mixing in the Arkani-

Hamed, Dimopoulos, Dvali model, comparing the original derivation in the nondiagonal mass basis to that

in a diagonal mass basis. The results obtained are identical (and differ by a factor of 2 from the original

calculation) but the diagonal-basis derivation is pedagogically useful for clarifying the physics of the

invisible width from mixing. We emphasize that both derivations make it clear that a direct scan in energy

for a process such as WW ! WW mediated by Higgs plus graviscalar intermediate resonances would

follow a single Breit-Wigner form with total width given by �tot ¼ �SM
h þ �invisible. We also compute the

additional contributions to the invisible width due to direct Higgs to graviscalar-pair decays. We find that

the invisible width due to the latter is relatively small, unless the Higgs mass is comparable to or larger

than the effective extra-dimensional Planck mass.
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I. INTRODUCTION

In several extensions of the standard model (SM) there
exist mechanisms that modify the Higgs decay rates in
channels observable at the LHC. One recent example is
the Randall Sundrum model [1], where the Higgs-radion
mixing can modify Higgs production and decay at the LHC
[2,3]. These effects may be detected both through a reduc-
tion in the Higgs yield and in the direct observation of
radion decays [2–4]. There are also examples where the
reduction comes from a substantial invisible width, as
occurs, for example, in those supersymmetric models in
which the Higgs has a large branching ratio into the lightest
gravitinos or neutralinos. Invisible decay of the Higgs is
also predicted in models with large extra dimensions felt
by gravity (Arkani-Hamed, Dimopoulos, Dvali) [5,6], our
focus in this paper.

In Arkani-Hamed, Dimopoulos, Dvali models, the pres-
ence of an interaction between the Higgs H and the Ricci
scalar curvature of the induced four-dimensional metric,
gind, given by the action [7]

S ¼ ��
Z

d4x
ffiffiffiffiffiffiffiffi
gind

p
RðgindÞHyH (1)

generates, after the usual shift H ¼ ððvþ hÞ= ffiffiffi
2

p
; 0Þ, the

mixing term

L mix ¼ � 2�vM2
H

MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�� 1Þ
�þ 2

s
h� ~n�

~n
G; (2)

where the �~n
G are complex graviscalar fields, MP is the

reduced Planck mass (MP ¼ ð8�GNÞ�1=2), � is the number

of extra dimensions, and � is a dimensionless parameter.

Noting that Hermiticity requires�~n
G ¼ ½�� ~n

G �� and writing
�~n

G ¼ 1ffiffi
2

p ðs ~n þ ia ~nÞ, we may restrict the sums to ~n > 0, by

which we mean the first nonzero entry of ~n is positive.1

Then, defining

� � � 2
ffiffiffi
2

p
MP

�vm2
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð�� 1Þ
�þ 2

s
; (3)

one obtains

L mix ¼ �h
X
~n>0

s ~n; (4)

where s ~n is a CP-even canonically normalized graviscalar
Kaluza Klein excitation with mass m2

~n ¼ 4�2 ~n2=L2, L
being the size of each of the extra dimensions.
As a result of the above mixing, instead of a single Higgs

boson, one must consider the production of the full set of
densely spaced mass eigenstates all of which are mixing
with one another. The new signature that arises as a result
of this mixing is that the Higgs boson will effectively
acquire a possibly very large branching ratio to invisible
final states composed primarily of graviscalars. The pur-
pose of this paper is to first rederive the result obtained in
[7,8] comparing the nondiagonal mass and diagonal mass
bases in the direct Feynman diagram approach. Our ap-
proach clarifies the nature of this effect and also reveals a
factor two error in the original derivation (as confirmed in
[9]). [A brief summary of our results and related phenome-
nology appeared in [10].] These computations set the stage
for our main goal of computing the Higgs to graviscalar-
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1It is quite crucial to explicitly keep only ~n > 0 states since
s ~n<0 is not independent of s ~n>0. This is especially important for
obtaining correct Feynman rules that avoid double counting.
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pair width, in particular, making it clear that such compu-
tations are most easily performed using the nondiagonal
(Lagrangian) basis states rather than the mass eigenstate
basis. The graviscalar-pair states add to the invisible width
coming purely from Higgs-graviscalar mixing. As we
show, this additional invisible width is small relative to
the mixing width if mh is small compared to MD (MD is
related to the D-dimensional reduced Planck constant �MD

by MD ¼ ð2�Þ�=ð2þ�Þ �MD) but should be accounted for in
any eventual precision comparison between theory and
experiment if mh is comparable to or larger than MD.

II. INVISIBLE WIDTH

In [7,8] the invisible Higgs width is calculated by ex-
tracting the imaginary part of the Higgs self-energy, in-
cluding the effects of Higgs-graviscalar mixing. The result
we obtain following this general approach differs by a
factor of 2 from that of [7,8] (basically because of the
need to use properly normalized s ~n states) and is given by

�invðh ! s ~nÞ ¼ 2��2v2 3ð�� 1Þ
�þ 2

m1þ�
h

M2þ�
D

S��1

� ð16 MeVÞ202���2S��1

3ð�� 1Þ
�þ 2

�
�

mh

150 GeV

�
1þ�

�
3 TeV

MD

�
2þ�

; (5)

where S��1 ¼ 2��=2=�ð�=2Þ denotes the surface of a unit
radius sphere in � dimensions. In this paper, we first repeat
the derivation of this result in the h� s ~n basis, i.e. before
mass diagonalization. In our second derivation, we first
diagonalize the Hamiltonian to obtain the mass eigenstates.
In both cases, we compute, by way of example, the ampli-
tude for WW ! WW scattering coming from summing
over the diagonal Higgs and graviscalar-eigenstate ex-
changes. The derivations make it absolutely clear that a
scan of the cross section for WW ! WW scattering over
sWW would reveal a simple Breit-Wigner of width �SM

h þ
�invisible, implying that a direct scan in sWW can be used to
determine �inv. Further, after integrating over energy, the
invisible width suppresses the LHC Higgs rate in the
standard observable channels (such as WW) by a factor
of 1=ð1þ RÞ, where

R � �invisible

�SM
h

(6)

can be quite substantial even for a Higgs boson with mass
above the WW decay threshold. These two different ways
of determining R can then be checked for consistency. In
contrast, as pointed out in [7], a process such as eþe� !
Z� ! Zþ X cannot be directly employed to determine R
by simply measuring the ratio of the X ¼ invisible rate
relative to the X ¼ visible rate.

A. Derivation of the invisible width from graviscalar
insertions into the Higgs propagator

It is useful to first present a derivation of the above
expression for the invisible Higgs width following a pro-
cedure that is essentially that of Refs. [7,8]. We begin with
the expression for the mixing Lagrangian given in Eq. (4).
We consider a process such as WW ! WW and recall that
only the h states have significant (i.e. not suppressed by
1=MP) coupling to WW. The contributing Feynman dia-
grams are such that one begins with aWW ! h vertex and
ends with an h ! WW vertex. There are then diagrams
with no

P
~n>0s ~n insertions, one

P
~n>0s ~n insertion with two

mixing vertices and so forth, resulting in a geometric series
that can be resummed to give an effective WW ! WW
s-channel scattering amplitude with exactly the same form
including normalization as a single Higgs exchange but
with an additional contribution to the self-energy of the
Higgs such that

AWW!WW ¼ g2WWh

sWW �m2
h þ imh�

SM
h

! g2WWh

sWW �m2
h þ imh�

SM
h þ�ðsWWÞ

; (7)

where

Im�ðsÞ ¼ ��2 Im
X
~n>0

1

s�m2
n þ i�

! ��2
1

4

M2
P

M2þ�
D

S��1ð��Þsð��2Þ=2

¼ 2�
3ð�� 1Þ
�þ 2

�2v2m2
h

sð��2Þ=2

M2þ�
D

S��1: (8)

This is interpreted as saying that the Higgs has acquired an
additional width given by

�invisible ¼ 1

mh

Im�ðm2
hÞ ¼ 2�

3ð�� 1Þ
�þ 2

�2v2 m
1þ�
h

M2þ�
D

S��1;

(9)

which is deemed an invisible width since the s ~n graviscalar
states do not interact with ordinary matter and would be
invisible in a detector.
The procedure for deriving the expression following the

arrow in Eq. (8) is as follows: First, one converts the sum
over ~n > 0 to an integral over a continuous spectrum of s ~n
masses as follows:

X
~n>0

1

s�m2
n þ i�

! 1

2

Z
dm2��ðmÞ 1

s�m2 þ i�

¼ 1

4

M2
P

M2þ�
D

S��1

Z
dm2 m��2

s�m2 þ i�
;

(10)

where the factor of 1=2 arises in going from
P

~n>0 to
P

~n,
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and we have used the following expression for the state
density:

��ðmÞ ¼ L�m��2

ð4�Þ�=2�ð�=2Þ ¼
M2

P

M2þ�
D

��=2

�ð�=2Þm
��2

¼ 1

2

M2
P

M2þ�
D

S��1m
��2 (11)

with L� ¼ ð2�Þ� M2
P

M2þ�
D

. Then, using

Im
1

s�m2 þ i�
¼ ���ðs�m2Þ; (12)

one has

Im
X
~n>0

1

s�m2
n þ i�

! 1

4

M2
P

M2þ�
D

S��1ð��Þsð��2Þ=2: (13)

We emphasize that Eq. (7) implies that a scan of the
cross section for WW ! WW as sWW is varied would
reveal a single Breit-Wigner of width �SM

h þ �invisible to

the extent that the real part of �ðsWWÞ can be neglected.
However, the real part of �ðsÞ can lead to mass and wave-
function renormalization (see the Appendix), which cor-
rections are of order m4

h=M
4
D. As a result, the apparent

magnitude of the total width measured in a scan will
receive corrections of this order. In addition, the interpre-
tation of the normalization of AWW!WW (or any other
process beginning with SM particles and ending with SM
particles) and of the effective pole location will be simi-
larly affected. In addition, in our focus here, we find that
there are further corrections to the effective width coming
from additional contributions to Im�. In particular, we will
discuss the h ! s ~ns ~m type of insertions. These we will find
to be of order �2ðmh=MDÞ2þ� relative to the mixing width,
and therefore potentially significant ifmh >MD. However,
in practice the invisible width from the s ~ns ~m pair final
states is suppressed sufficiently by the two-body phase

space that the pair-width to mixing-width ratio is typically
very small.
Of course, the ratio R of Eq. (6) can be large even when

ðmh=MDÞ4 is small. To illustrate the possibilities for R for
typical parameter choices of interest, we give in Figs. 1 and
2 a few contour plots of R as a function of � and mh for
fixed choices of MD and �. These plots make it clear that
even if mh is small compared to MD a substantial invisible
width relative to the SM width is possible for relatively
modest values of �. In particular, a large value for R is
possible for quite small � values (i.e. <0:1) when mh is
below the WW decay threshold.

B. Diagonal-basis derivation of the invisible width

In this section, we summarize a direct Feynman rule
based derivation of the invisible width, based on first
diagonalizing the Hamiltonian. One begins with a
Hamiltonian that includes the widths of the various states
and the mixing between the states. Because of the widths,
the Hamiltonian is intrinsically complex and non-
Hermitian. One must then diagonalize the Hamiltonian to
obtain the mass eigenstates. This is the procedure that is
employed when studying the K0- �K0 system. From the
diagonalized Hamiltonian one can then derive the
Feynman rules and compute the WW ! WW amplitude
using them.
Since the h is the only one of the states with couplings to

WW and f �f (that are not suppressed by 1=MP), it is the
only state with a substantial inverse propagator imaginary
component imh�

SM
h . A crucial question is the size of

mh�
SM
h relative to � and relative to the spacing between

the graviscalar states. For mh�100GeV and �SM
h �

fewMeV,mh�
SM
h � 0:1 GeV2. The spacing between grav-

iscalar states depends upon �, ranging from�eV for � ¼ 2
to 0.1 GeV for �¼8. The smallest spacing in mass-squared
(taking � ¼ 2) is of order 100 GeV� 1 eV� 10�7 GeV2,
so that it will be important to understand what happens

FIG. 1 (color online). We display contours of R ¼ 0:1, 0.25, 0.5, and 1 (from left to right) in the mh � � plane, for (left plot) � ¼ 2
and MD ¼ 1 TeV and (right plot) � ¼ 2 and MD ¼ 2 TeV.
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when the h and si states are essentially degenerate. The
magnitude of � is �ð100GeVÞ3=1019 GeV�10�13 GeV2,
i.e. much smaller than either the smallest mass-squared
splitting or mh�

SM
h . This fact will enter implicitly into

some of our expansions.
The relevant mass-squared matrix is (using the

Lagrangian form and defining � � mh�
SM
h )

L / � 1

2
ðm2

h � i�Þh2 � 1

2

X
~n>0

m2
~ns

2
~n þ �h

X
~n>0

s ~n (14)

and can be diagonalized to order �2 by the following
transformations:

h ¼ N

�
h0 þ X

~m>0

�

m2
h � i��m2

~m

s0~m

�
; (15)

sn ¼ N~n

�
s0~n �

�

m2
h � i��m2

~n

h0 � 1

2

� �2

ðm2
~n �m2

h þ i�Þ
X

~m� ~n; ~n>0; ~m>0

1

m2
~m �m2

h þ i�
s0~m

�
;

(16)

where h and sn are the original fields before diagonalizing
the Hamiltonian and

N ¼
�
1þ X

~m>0

�2

ðm2
h � i��m2

~mÞ2
��1=2

;

N ~n ¼
�
1þ �2

ðm2
h � i��m2

~nÞ2
��1=2

:

(17)

The corresponding mass-squared eigenvalues are

m2
h0 ¼ m2

h � i�þ �2
X
~n>0

1

m2
h � i��m2

~n

;

m2
s0
~n

¼ m2
~n � �2

1

m2
h � i��m2

~n

:

(18)

The AðWW ! WWÞ amplitude is then obtained as the
sum AðWW ! h0 ! WWÞ þP

~n>0AðWW ! s0~n !
WWÞ and takes the following form, as shown in
Appendix A:

AWW!h0!WWþX
~n>0

AWW!s0
~n
!WW

� i

p2�m2
hþi�þ P

~n>0

�2

m2
~n
�m2

h
þi�

�
1�1

2

X
~n>0

�2

ðm2
~n�m2

hþi�Þ2
�
2

þX
~n>0

i

p2�m2
~n� �2

m2
~n
�m2

h
þi�

� ��

m2
~n�m2

hþi�

�
2

� i

p2�m2
hþi�� P

~n>0

�2

p2�m2
~n

’ i

s�m2
hþ imhð�SM

h þ�invÞ
: (19)

From the final expression we see (again) that the behavior
of the WW ! WW scattering amplitude is indeed that
obtained by replacing the SM Higgs width, �SM

h , by �SM
h þ

�inv in the self-energy portion of the Higgs propagator,
with �inv as given in Eq. (8). We also stress that this form
implies that the effective cross section for WW ! WW
from the s-channel Higgs resonance exchange will be sup-
pressed compared to that predicted in the SM by a factor of
1=ð1þ RÞ.
Of course, it should be stressed that all of these same

remarks apply to any process where the Higgs is exchanged
in the s channel beginning with a SM state and ending with
a SM state. In any such channel in which one can scan over

FIG. 2 (color online). We display contours of R ¼ 0:1, 0.25, 0.5, and 1 (from left to right) in the mh � � plane, for (left plot) � ¼ 4
and MD ¼ 1 TeV and (right plot) � ¼ 4 and MD ¼ 2 TeV.
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the Higgs resonance, the width of the resonance will be
�SM
h þ �inv instead of �

SM
h , and the net cross section will be

suppressed compared to the SM prediction by 1=ð1þ RÞ.
As studied in [11], there are many indirect and direct
techniques for measuring the total width of the Higgs
resonance. These range from the very precise determina-
tions by direct scanning in

ffiffiffi
s

p
at a muon collider, which

yields excellent accuracy for the width even for a very
narrow Higgs as found for mh � 100–150 GeV, to looking

at gg ! h ! ZZð�Þ ! 4‘ at a hadron collider, where a
direct scan determination of the Higgs width is possible
formh * 200 GeV, i.e. whenever the width is larger than a
couple of GeV. Of course, if �SM

h þ �inv � �SM
h , then the

latter will be possible down to considerably lower values of
mh. For example, from Fig. 4 we see that �� 0:6 will give
�SM
h þ �inv � 2 GeV at mh ¼ 120 GeV for � ¼ 2 and

MD ¼ 1 TeV. At a next-generation linear collider, the
best technique for directly scanning the Higgs resonance
is to look at the Higgs peak shape in eþe� ! ZX as a
function of MX. This again works in the case of a SM-like
width �SM

h down to mh � 200 GeV, extending to substan-

tially lower values for any case where �SM
h þ �inv *

2 GeV. In the absence of a muon collider, Ref. [11] details
the means for measuring the effective Higgs width for
cases where �SM

h þ �inv & 1 GeV using a subtle combina-

tion of �� collider data and eþe� collider data.

C. Additional contributions to the invisible state
production coming from direct two-graviscalar

production processes

In the above, it was assumed that the only way in which
invisible intermediate states contribute to WW ! WW
near the Higgs resonance is through multiple iterations of
h ! s ~n ! h-type mixing. However, there are other con-
tributing invisible intermediate states as a result of the
presence of WW ! s ~ks~l processes. First, there are

WWs~ks~l contact interactions. Second, there are the

s-channel exchange processes involvingWW ! hþ s ~n !
s ~ks~l. (Here, non-s-channel diagrams could also be in-

cluded, but would yield very small contributions compared
to those we consider, assuming reasonable resolution in the
final state.) To include the additional resonant sources of
invisible state production requires a significant calculation,
performed below. We also show that the s ~ns ~ks~l vertices that

are present in the theory do not contribute to the process at
hand. Note that we have found it easiest to perform this
calculation in the h, s ~n basis rather than in the diagonalized
h0, s0~n basis. In part, this is because it is the s ~n’s that are

truly invisible. But also, the h� s ~n basis is simply easier to
use, just as was the case for the mixing-width calculation.
At the end, we find that, to a good approximation, the
appropriate comparison is the contribution to the Higgs
invisible width coming from h ! s ~ns ~m decays to that
coming from h� s ~n mixing.

Let us first discuss the WWs~ks~l contact interactions.

These derive from expanding the interaction Lagrangian

to order �2, where � ¼ 2=M1þ�=2
D . This expansion takes

the form

Z
d4x

Z
dy

ffiffiffiffiffiffiffi�ĝ
p

LðĝÞ

¼
Z

d4x
Z

dy�ðyÞ
��
LðĝÞjĝ¼	 ��

2
h
�T
�

�

þ�2

�
ALðĝÞjĝ¼	 �B
� �L

�ĝ
�

��������ĝ¼	

�

þ�2h
�ðx; yÞ
�
1

2

Z
d4x0

�2L
�ĝ
��ĝ��

��������ĝ¼	
h��ðx0; yÞ

��
;

(20)

where

A ¼ 1

8
h2 � 1

4
h��h

��; B
� ¼ 1

2
hh
� � h
h�;

h ¼ h

: (21)

After employing the �ðyÞ, which gives a factor of 1=V�,

using the identification �2

V� ¼ 1=M2
P, and using the fact that

for an initial WW state we would have �L
�ĝ
� jĝ¼	 �

m2
WW


W
 þ . . . , we find an amplitude contribution to

WW ! s ~ks~l, that is / m2
W=M

2
P. Squaring and integrating

over a window of ds of size�mh�res, we get a cross section
contribution of order

m4
W

M8
D

m5
h�res: (22)

This can be compared to the s-channel h exchange con-
tribution, which gives an integrated cross section for
WW ! h ! WW of rough size (assuming that the resolu-
tion window size �res is substantially larger than �SM

h )

g4m4
W

�

mh�
SM
h

: (23)

The ratio of the contact to the s-channel contribution is
then very roughly given by

m6
h�

SM
h �res

�g4M8
D

: (24)

This ratio will typically be very small provided �res is of
order a few GeV and MD > 1 TeV.
Now let us turn to the cubic interactions that can lead to

WW ! hþ s ~n ! s ~ks~l-type processes. To do so, we must

go to the full L including all effects of the mixing term at
the cubic level. A first source of such cubic interactions
comes from the expansion of the Hilbert-Einstein
Lagrangian up to the cubic order in the graviscalar fields.
There are a huge number of terms, but after integrating
over the extra dimensions, one finds that all cubic s ~ns ~ks~l
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vertices are proportional to �~nþ ~kþ~l. This � function implies

that j ~kj þ j~lj � j ~nj. Since m ~m / j ~mj, this implies that
m~k þm~l � m~n. However, for the decay s ~n ! s ~k þ s~l to

be possible requiresm~k þm~l < m~n. Thus, there is no phase

space available for the decays that could be mediated by
these cubic vertices.

The hs ~ns ~k vertices that can mediate the decays of inter-

est derive from the extra T


 contributions that emerge from

Lmix, which take the form (using H ¼ 1ffiffi
2

p ðvþ hÞ)
T

 extra

 ¼ 6�hðHyHÞ; (25)

where

hðHyHÞ ¼ ðvhhþ hhhþ @
h@

hÞ: (26)

Including this full structure in the expression forLint, gives
rise to an interaction term of the form

� �

6�vm2
h

X
~n>0

s ~n½4VðhÞ � @
h@
h

þ 6�ðvhhþ hhhþ @
h@

hÞ�;

(27)

where the full form for VðhÞ is

VðhÞ ¼ 1

2
m2

hh
2 þ 1

2

1

v
m2

hh
3 þ 1

8

1

v2
h4: (28)

Thus, the full L takes the form

L ¼ � 1

2

X
~n>0

s ~nðhþm2
~nÞs ~n �

1

2
hhh

�
�
1þ X

~n>0

2

3

�

�vm2
h

s ~n

�
VðhÞ

� �

vm2
h

�
vhhþ @
h@


h

�
1� 1

6�

�
þ hhh

�X
~n>0

s ~n

(29)

or after partial integration

L ¼ 1

2

X
~n>0

@
s ~n@

s ~n � 1

2

X
~n>0

m2
~ns

2
~n þ

1

2
@
h@


h

�
�
1þ 2

3

�

�vm2
h

X
~n>0

s ~n

�
VðhÞ � �

vm2
h

X
~n>0

�
�v@
h@


s ~n

� @
s ~nh@
h� 1

6�
s~n@


h@
h

�
: (30)

At this point, we must now employ the equations of
motion for the h and s ~n fields. For the s ~n we have

ðhþm2
~nÞs ~n þ

�

vm2
h

ðvhhþ @
h@

hþ hhhÞ

þ 2

3

�

�vm2
h

�
VðhÞ � 1

4
@
h@
h

�
¼ 0: (31)

As regards the h, we have

hhþ �

vm2
h

ðvþ hÞX
~n>0

hs ~n þ
�
1þ 2�

3�vm2
h

X
~n>0

s ~n

�
@V

@h

þ �

3�vm2
h

�
@


�X
~n>0

s ~n@
h

��
¼ 0: (32)

Returning to the original form of L, given in Eq. (30),
keeping only terms of cubic or quadratic order in fields, we
get

L ¼ 1

2

X
~n>0

@
s ~n@

s ~n � 1

2

X
~n>0

m2
~ns

2
~n þ

1

2
@
h@


h� 1

2
m2

hh
2

� 1

2v
m2

hh
3 � 1

3

�

�v

X
~n>0

s ~nh
2 � �

vm2
h

ðvþ hÞhh
X
~n>0

s ~n

� �

vm2
h

�
1� 1

6�

�
@
h@
h

X
~n>0

s ~n: (33)

We now make use of the equations of motion by substitut-
ing the expression forhh obtained using Eq. (32). First, we
collect the purely quadratic terms in L from this substitu-
tion. This means we look for terms linear in the fields in
hh. To the needed order in �, we have

ðhhÞlinear ¼ �m2
hh� X

~m>0

�

m2
h

hs ~m: (34)

The relevant (quadratic) terms arise from the next to last
term in L in Eq. (33) and are

Lhh
quad ¼

X
~n>0

�hs~n þ
X
~n>0

X
~m>0

�2

m4
h

s ~nhs ~m; (35)

the first being our standard mixing term. Important trilinear
terms emerge from the second term of the next to last term
in Eq. (33). Again keeping only Oð�2Þ or lower we have
Lhh

cubic ¼ � �

vm2
h

h
X
~n>0

s ~nðhhÞlinear �
X
~n>0

�

m2
h

s ~nðhhÞquad:

(36)

To the order needed,

ðhhÞquad ¼ � 3

2

m2
h

v
h2 � X

~m>0

2�

3�v
s ~mh� X

~m>0

�

vm2
h

hs ~mh

� �

3vm2
h�

X
~n>0

ð@
s~n@
hþ s ~nhhÞ (37)

yielding

Lhh
cubic ¼

X
~n>0

�
5

2

�

v
s ~nh

2 þ 1

3

�2

�vm2
h

hs ~n
X
~m>0

s ~m

þ 2
�2

vm4
h

s ~nh
X
~m>0

hs ~m

þ �2

3vm4
h�

s ~n
X
~m>0

@
s ~m@
h

�
: (38)
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So, putting it all together, we find the following trilinear Lagrangian

L cubic ¼ � 1

2v
m2

hh
3 � �

3�v
h2

X
~n>0

s ~n � �

vm2
h

�
1� 1

6�

�
@
h@
h

X
~n>0

s ~n þLhh
cubic

¼ � 1

2v
m2

hh
3 � �

vm2
h

�
1� 1

6�

�
@
h@
h

X
~n>0

s ~n þ �

2v

�
5� 2

3�

�
h2

X
~n>0

s ~n þ 1

3

�2

�vm2
h

h
X
~n>0

s ~n
X
~m>0

s ~m

þ 2
�2

vm4
h

h
X
~n>0

s ~n
X
~m>0

hs ~m þ �2

3vm4
h�

X
~n>0

s ~n
X
~m>0

@
s ~m@
h (39)

of which it is the latter two terms that give the vertices of
interest. The effective cubic Lagrangian for our purposes
then becomes (after using hs ~m ! �m2

~ms ~m and relabeling
indices)

Lcubic ¼ �2
X
~k>0

X
~l>0

�
1

2�vm2
h

hs~ls ~k

� 2

vm4
h

�
1� 1

6�

�
hs~lm

2
~k
s ~k

�
: (40)

The hs ~ks~l vertex (accounting for the many different Wick’s
contractions) takes the form �2g ~k ~l where

g ~k ~l ¼
1

�vm2
h

� 2

vm4
h

�
1� 1

6�

�
ðm2

~k
þm2

~l
Þ: (41)

The invisible h width arising from these interactions
takes the form

�ðh ! graviscalar pairsÞ

¼ 1

2

X
~k>0; ~l>0

1

16�m3
h

j�2g~l; ~kj2ðm2
h; m

2
~k
; m2

~l
Þ; (42)

where ða; b; cÞ ¼ ½a2 þ b2 þ c2 � 2ab� 2ac� 2bc�1=2
is the usual two-body phase space factor and the 1

2 is

required to avoid double counting states. To compute this
width numerically, we employ Eq. (42) and write

1

2

X
~k>0; ~l>0

¼ 1

2

�
1

2

�
2 Z

dm2
kdm

2
l ��ðm2

kÞ��ðm2
l Þ

¼ 1

2

�
1

2

�
2
�2
�ðm2

hÞm4
h

Z
dxð ffiffiffi

x
p Þ��2

Z
dyð ffiffiffi

y
p Þ��2

¼ 1

2

�
1

2

�
2
�2
�ðm2

hÞm4
h

Z 1

0
dxxð�=2Þ�1

Z 1

0
dzð1� ffiffiffi

x
p Þ2

� ½ð1� ffiffiffi
x

p Þ2z�ð�=2Þ�1; (43)

where we have defined

x � m2
l

m2
h

; y � ð1� ffiffiffi
x

p Þ2z � m2
k

m2
h

(44)

and used the definition of the density, ��, given in Eq. (11).
The integration limits derive from the presence of the 
kinematic phase space factor, which reduces to

ðm2
h; m

2
~k
; m2

~l
Þ ¼ m2

hð1; x; yÞ
¼ m2

hð1�
ffiffiffi
x

p Þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p ½1þ xð1� zÞ
þ 2

ffiffiffi
x

p ð1þ zÞ � z�1=2; (45)

from which one immediately sees that phase space runs out
at x ¼ 1 or z ¼ 1. In terms of the x and z variables, we
have

g ~k ~l ¼
1

vm2
h

�
1

�
� 2

�
1� 1

6�

�
ðxþ ð1� ffiffiffi

x
p Þ2zÞ

�
: (46)

The final expression for �ðh ! graviscalar pairsÞ can be
written in terms of the integral

I ¼ 1

4

Z 1

0
dx

Z 1

0
dzð1� ffiffiffi

x
p Þ�þ1

ffiffiffiffiffiffiffiffiffiffiffiffi
1� z

p ½1þ xð1� zÞ

þ 2
ffiffiffi
x

p ð1þ zÞ � z�1=2x�=2�1z�=2�1

��������
1

�

� 2

�
1� 1

6�

�
ðxþ ð1� ffiffiffi

x
p Þ2zÞ

��������
2

: (47)

I behaves as 1=�2 at small �, reaches a minimum near � ¼
1:5 due to the cancellations implicit in g ~k ~l, and ultimately

asymptotes (quite slowly) to a constant value of I ! 0:011
for � ¼ 2 (I ! 0:00 024 for � ¼ 4) at � ! 1. We plot �2I
as a function of � for the � ¼ 2 and � ¼ 4 cases in Fig. 3.
Clearly, I decreases rapidly as � increases. As a result,
�ðh ! graviscalar pairsÞ is only significant compared to
�ðh ! graviscalarÞ if � 	 4.
In terms of I, we find

�ðh ! graviscalar pairsÞ

¼ 1

32�

m2��5
h �4

v2

M4
P

M4þ2�
D

�
��=2

�ð�=2Þ
�
2
I

¼ 18

�

m3þ2�
h v2

M4þ2�
D

�4

�
�� 1

�þ 2

�
2
�

��=2

�ð�=2Þ
�
2
I: (48)

This is to be compared to the direct mixing invisible width,
which in terms of � takes the form

�ðh ! graviscalarÞ ¼ �

2
m��3

h �2
M2

P

M2þ�
D

��=2

�ð�=2Þ : (49)

We obtain
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�ðh ! graviscalar pairsÞ
�ðh ! graviscalarÞ ¼ 1

16�2

m��2
h �2

v2

M2
P

M2þ�
D

��=2

�ð�=2Þ I

¼ 3ð�� 1Þ
2�2ð�þ 2Þ�

2

�
mh

MD

�
2þ�

� ��=2

�ð�=2Þ I: (50)

From this result, we immediately see that unless mh is
comparable to or larger than MD the pair invisible width
will be much smaller than the mixing invisible width unless
�2 is large enough, �� 10, to overcome the numerically
small value of I � 0:011 at large �. However, for such large
� the mixing invisible width is typically huge. At small �,
since �2I approaches a constant value so does �ðh !
graviscalar pairsÞ=�ðh ! graviscalarÞ.

To illustrate, we display in Figs. 4–6 the mixing invisible
width �ðh ! graviscalarÞ and the ratio �ðh !
graviscalar pairsÞ=�ðh ! graviscalarÞ as a function of �
for the cases of � ¼ 2, MD ¼ 1 TeV (the approximate
lower limit for � ¼ 2 from Tevatron data) and a selection
of Higgs masses: mh ¼ 120 GeV, mh ¼ 850 GeV and
mh ¼ 1200 GeV. One finds that the graviscalar-pair to
graviscalar-mixing width ratio is very small for the light
Higgs case and only as large as a percent even for mh

somewhat above 1 TeV, a range of mh that becomes ques-
tionable from the point of view of unitarity for WW !
WW scattering. For � ¼ 4, the ratio is even smaller as
apparent from the example of � ¼ 4, MD ¼ 1 TeV and
mh ¼ 1200 GeV plotted in Fig. 7. In the above plots, one
should presumably not take seriously the regions at larger
� in the mh ¼ 850 GeV and 1200 GeV cases for which
�inv becomes substantially larger than mh.

1 2 3 4

0.02

0.04

0.06

2I

1 2 3 4

0.0005

0.0010

0.0015

2I

FIG. 3 (color online). We plot �2I as a function of � for the cases of � ¼ 2 and � ¼ 4.

1 2 3 4

5. 10 7

1. 10 6

1.5 10 6

graviscalar pairs graviscalar

FIG. 4 (color online). We display �inv ¼ �ðh ! graviscalarÞ and �ðh ! graviscalar pairsÞ=�ðh ! graviscalarÞ for � ¼ 2, MD ¼
1 TeV and mh ¼ 120 GeV.
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FIG. 5 (color online). We display �inv ¼ �ðh ! graviscalarÞ and �ðh ! graviscalar pairsÞ=�ðh ! graviscalarÞ for � ¼ 2, MD ¼
1 TeV and mh ¼ 850 GeV.
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III. CONCLUSIONS

We computed the amplitude for a process such as
WW ! WW in the presence of Higgs-graviscalar mixing.
Using a direct Feynman diagram approach we performed
the calculation in two different bases: (a) the non-mass-
diagonal (Lagrangian) basis and (b) the diagonalized mass
basis. Of course, identical results were obtained but the
comparison provides a few pedagogical and intuitive in-
sights. Ignoring small corrections from wave-function re-
normalization, the resulting amplitude is equivalent to that
for exchange of a single effective Higgs state with SM
coupling to WW but effective width given by �SM

h þ �inv,

where �SM
h is the Higgs width as computed in the standard

model and (up to the factor of 2 correction that we found)
�inv is the width obtained via the original technique of
Ref. [7]. In particular, one would not observe a sum of
Breit-Wigners, one of width �SM

h overlaying a superposi-

tion of many much narrower resonances. Integration over
the full resonance will yield a WW ! WW cross section
that is suppressed compared to the SM result by the factor
1=ð1þ RÞ, where R ¼ �inv=�

SM
h . Of course, the width and

total cross section for any process mediated by Higgs
exchange will be affected in exactly the same way as is
WW ! WW. For example, for any choices of �, �, andMD

such that �SM
h þ �inv * 2 GeV, it will be possible to di-

rectly measure this net width in the process gg !
Higgs ! ZZ ! 4‘ by looking at the peak shape in M4‘.

Using the Feynman diagram technique we were also
able to perform a direct computation of the invisible width

from WW ! h ! P
~n; ~ks ~ns ~k on resonance pair production

of graviscalars. We found that this width was typically
much smaller than the invisible width from Higgs-
graviscalar mixing unless mh >MD (MD being the effec-
tive 4þ �-dimensional Planck scale). However, the mh >
MD region of parameter space (a) is problematical from the
point of view of WW ! WW unitarity given that MD >
1 TeV and (b) is such that many other corrections to the
invisible width are possibly present. Nonetheless, formh >
MD including the pair width would be necessary for pre-
cision comparison between theory and experiment.
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APPENDIX A: FEYNMAN DIAGRAM DERIVATION
OF THE INVISIBLE WIDTH AND FULL WW !

WW SCATTERING AMPLITUDE FORM

To begin with, it is useful to understand how the calcu-
lation should be done using the example of a small number
of states. We illustrate using 3 states. The three states are
the h (Higgs) with mass-squared 
2, a graviscalar s1 with
mass m1 and a second graviscalar s2 with mass m2.

0.2 0.4 0.6 0.8

0.003

0.004

0.005

0.006

graviscalar pairs graviscalar

FIG. 6 (color online). We display �inv ¼ �ðh ! graviscalarÞ and �ðh ! graviscalar pairsÞ=�ðh ! graviscalarÞ for � ¼ 2, MD ¼
1 TeV and mh ¼ 1200 GeV.
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FIG. 7 (color online). We display �inv ¼ �ðh ! graviscalarÞ and �ðh ! graviscalar pairsÞ=�ðh ! graviscalarÞ for � ¼ 4, MD ¼
1 TeV and mh ¼ 1200 GeV.
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Since the h is the only one of the states with couplings to
WW and f �f (that are not suppressed by 1=MP), it is the
only state with a substantial imaginary component, i 12
�h.

The relevant mass-squared matrix is [using Eq. (14)]

1

2
M2 � 1

2


2 � i
�h �� ��
�� m2

1 0
�� 0 m2

2

0
B@

1
CA: (A1)

This 3� 3 matrix is a complex symmetric matrix, that is
not Hermitian. It can be diagonalized by an orthogonal
transformation (given that the eigenvalues are distinct). To
sufficient order, the eigenvalues are


2 � i�þ �2
1


2 � i��m2
1

þ �2
1


2 � i��m2
2

;

m2
1 þ

�2

m2
1 �
2 þ i�

; m2
2 þ

�2

m2
2 �
2 þ i�

;

(A2)

where we have written � � 
�h. The eigenvectors of the
3� 3 matrix are (dropping terms of Oð�3Þ and higher)

w1 ¼
1� 1

2 �
2ð 1

ðm2
1
�
2þi�Þ2 þ 1

ðm2
2
�
2þi�Þ2Þ

��

2�m2

1
�i�

��

2�m2

2�i�

0
BB@

1
CCA

w2 ¼
�


2�i��m2
1

1� 1
2

�2

ðm2
1
�
2þi�Þ2

� 1
2

�2

ðm2
1�
2�i�Þðm2

2�
2�i�Þ

0
BBB@

1
CCCA

w3 ¼
�


2�i��m2
2

� 1
2

�2

ðm2
2
�
2�i�Þðm2

1
�
2�i�Þ

1� 1
2

�2

ðm2
2
�
2þi�Þ2

0
BBB@

1
CCCA:

(A3)

These form a normalized orthogonal basis in the sense that

wT
i wi ¼ �ij for i, j ¼ 1, 2, 3 and not wy

i wj ¼ �ij. The

matrix that diagonalizes the mass-squared matrix is built as

T ¼ fw1; w2; w3g; (A4)

and one can check that (to order �2)

T�1M2T ¼ M2
D; (A5)

where M2
D is the diagonal matrix containing the eigenval-

ues of Eq. (A2). Also, to order �2, T�1 coincides with the
transpose of T. Therefore, the relation between � ¼
fh; s1; s2g and the mass eigenstates�0 ¼ fh0; s01; s02g is given
by

�0 ¼ TT� � ¼ T�0 (A6)

from which we obtain

h ¼ w1ð1Þh0 þ w2ð1Þs01 þ w3ð1Þs02
¼

�
1� 1

2
�2
�

1

ðm2
1 �
2 þ i�Þ2 þ

1

ðm2
2 �
2 þ i�Þ2

��
h0

þ �


2 � i��m2
1

s01 þ
�


2 � i��m2
2

s02; (A7)

where wið1Þ is the first component of the vector wi.
Similarly, we have

s1 ¼ w1ð2Þh0 þ w2ð2Þs01 þ w3ð2Þs02
’ ��


2 �m2
1 � i�

h0 þ
�
1� 1

2

�2

ðm2
1 �
2 þ i�Þ2

�
s01

� 1

2

�2

ðm2
2 �
2 � i�Þðm2

1 �
2 � i�Þ s
0
2; (A8)

and similarly for s2.
Of course, since the transformation is orthogonal the

kinetic terms for the original h, s1 and s2 states transform
into

1
2 ð@
h0@
h0 þ @
s

0
1@


s01 þ @
s
0
2@


s02Þ; (A9)

where we recall that the fields h, s1, s2 were real, while
these new h0, s01, s02 now have (small) complex components.
For later use, we will want the WW coupling of each of

the 3 h0, s01, s
0
2 states. This comes entirely from the h part of

each state giving (relative to the SM coupling gWWh)

gWWh0 ¼ 1� 1

2
�2
�

1

ðm2
1 �
2 þ i�Þ2 þ

1

ðm2
2 �
2 þ i�Þ2�

gWWs0
1
¼ �


2 � i��m2
1

gWWs0
2
¼ �


2 � i��m2
2

:

(A10)

These are converted to Feynman rules for the vertices as
usual. Note, that the couplings are complex; this will be
important in what follows.
From the above, the generalization to many si states is

apparent. For the h0 mass-squared we find

m2
h0 ¼ 
2 � i�þ �2

X
~n>0

1


2 � i��m2
~n

¼ 
2 � i�þ �2
X
~n>0


2 �m2
~n þ i�

ð
2 �m2
~nÞ2 þ �2

’ 
2

�
1þ �2


2
<
�X
~n>0

1


2 � i��m2
~n

��

� i

�
�� �2

X
~n>0

��ð
2 �m2
~nÞ
�

�
2 � ið�� �invÞ; (A11)

where we have neglected the < term (which is of order

4=M4

D). Note that in the h0 propagator, i=ðp2 �m2
h0 Þ, the
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invisible width comes in with what appears to be a
‘‘wrong’’ sign. However, as we will see in the following,
in a typical physical amplitude, one must sum over both h0
and s0~n exchanges. The sum produces an effective propa-

gator of form i=½p2 �
2 þ ið�þ �invÞ�. Below we show
this explicitly for WW ! WW scattering.

First, however, we must give expressions for the WW
couplings to the h0 and s0~n states. We have

gWWh0 ¼ 1� 1

2

X
~n>0

�2
1

ðm2
~n �
2 þ i�Þ2 ;

gWWs0
~n
¼ �


2 � i��m2
~n

:

(A12)

The WW ! WW amplitude is then the sum WW ! h0 !
WW þP

~n>0WW ! s0~n ! WW and takes the form:

AWW!h0!WW þ X
~n>0

AWW!s0
~n
!WW

� i

p2 �
2 þ i�þ P
~n>0

�2

m2
~n
�
2þi�

�
1� 1

2

X
~n>0

�2

ðm2
~n �
2 þ i�Þ2

�
2 þ X

~n>0

i

p2 �m2
~n � �2

m2
~n
�
2þi�

� ��

m2
~n �
2 þ i�

�
2

� i

p2 �
2 þ i�þ P
~n>0

�2

m2
~n
�
2þi�

�
1� X

~n>0

�2

ðm2
~n �
2 þ i�Þ2

�
þ X

~n>0

i

p2 �m2
~n � �2

m2
~n
�
2þi�

�2

ðm2
~n �
2 þ i�Þ2

� i

p2 �
2 þ i�þ P
~n>0

�2

m2
~n
�
2þi�

�
1� X

~n>0

�2

ðm2
~n �
2 þ i�Þ2 þ

X
~n>0

p2 �
2 þ i�

p2 �m2
~n

�2

ðm2
~n �
2 þ i�Þ2

�

� i

p2 �
2 þ i�þ P
~n>0

�2

m2
~n
�
2þi�

�
1þ X

~n>0

�2

ðm2
~n �
2 þ i�Þ2

ððp2 �
2 þ i�Þ � ðp2 �m2
~nÞÞ

p2 �m2
~n

�

� i

p2 �
2 þ i�þ P
~n>0

�2

m2
~n
�
2þi�

�
1þ X

~n>0

�2

ðm2
~n �
2 þ i�Þðp2 �m2

~nÞ
�

� i

½p2 �
2 þ i�þ P
~n>0

�2

m2
~n
�
2þi�

�½1� P
~n>0

�2

ðm2
~n
�
2þi�Þðp2�m2

~n
Þ�

� i

p2 �
2 þ i�þ �2
P
~n>0

ð 1
m2

~n
�
2þi�

� p2�
2þi�
ðm2

~n
�
2þi�Þðp2�m2

~n
ÞÞ

� i

p2 �
2 þ i�þ �2
P
~n>0

ð 1
m2

~n
�
2þi�

� 1
p2�m2

~n

� 1
m2

~n
�
2þi�

Þ

� i

p2 �
2 þ i�� P
~n>0

�2

p2�m2
~n

� i

p2 �
2 þ i�� 1
2

R
dm2��ðm2Þ �2

p2�m2þi�0

� i

p2 �
2 þ i�þFðp2Þ þ iGðp2Þ ; (A13)

where

Fðp2Þ ¼ ��2P
1

2

�Z dm2��ðm2Þ
p2 �m2

�
;

Gðp2Þ ¼ 1

2
��2��ðp2Þ:

(A14)

The most critical step in the above is the transition from

line 6 to line 7 of Eq. (A13) in which we presume the
higher order terms of order �4 and so forth organize into the
correct geometric series (as they did in the approach of
Ref. [7]). We next write Fðp2Þ ¼ Fðm2

hÞ þ ðp2 �
m2

hÞF0ðm2
hÞ þ . . . , where m2

h �
2 þ Fðm2
hÞ ¼ 0 and drop

the . . .. We also approximate Gðp2Þ ¼ Gðm2
hÞ and use the

result of Eq. (9) to obtain
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AWW!WW � i

ðp2 �m2
hÞ½1þ F0ðm2

hÞ� þ imhð�h þ �invÞ
:

(A15)

The result above shows that the WW ! WW scattering
amplitude is indeed equivalent to that for a single Higgs
exchange with total width given by �SM

h þ �inv, aside from
wave-function renormalization associated with the gravis-
calar mixing. However, the wave-function renormalization
correction is small since F0 �Oðm4

h=M
4
DÞ is very small for

mh 
 MD, as required for the model to be fully
trustworthy.

If we now take the absolute square of this form and
integrate over p2, we obtain

Z
dp2

��������
i

ðp2 �m2
hÞ½1þ F0ðm2

hÞ� þ i
ð�h þ �invÞ
��������

2

¼
Z

dp2 1

ðp2 �m2
hÞ2½1þ F0�2 þm2

hð�h þ �invÞ2

� 1

1þ F0
�

mhð�h þ �invÞ ; (A16)

which is to be compared to the result we would have
obtained in the absence of graviscalars, which is � �

mh�h
.

Equation (A16) shows that (neglecting wave-function re-
normalization) the integral over p2 ¼ sWW of the WW !
WW scattering amplitude gives the WW partial width
(which has been implicitly set to unity for this discussion)
divided by the total width including the graviscalar-mixing
contribution.

The above discussion neglects a small correction to the
h0 and s0~n couplings deriving from the s ~n couplings. These

take the form (in the general case)

gWWs~n ¼
�ð1� 6�Þm2

W

3�v
2
¼ gWWh

�ð1� 6�ÞmW

3�gv
2

¼ gWWh

�ð1� 6�Þ
6�
2

; (A17)

where we were careful to rewrite T



 ¼ �m2

V
~V
 � ~V
 ¼

�m2
Vð2Wþ


W

� þW3


W
3
Þ, giving rise to an extra factor

of 2 for WþW� couplings. This result actually applies to
all types of couplings, in particular, we also have

gf �fs ~n
¼ � �ð1� 6�Þmf

6�v
2
¼ gf �fh

�ð1� 6�Þ
6�
2

: (A18)

We define the common WW and f �f ratio as

� � �ð1� 6�Þ
6�
2

: (A19)

We note that the (1� 6�) factor appears in all the grav-
iscalar couplings.
In addition, it is useful to define

r ~n � �

�
ðm2

~n �
2 þ i�Þ: (A20)

Then, the full WWh0 and WWs0 couplings take the form

gWWh0 ¼
�
1� 1

2

X
~n>0

�2
1

ðm2
~n �
2 þ i�Þ2

�
gWWh

þ X
~n>0

� ��


2 �m2
~n � i�

�
gWWs~n

¼
�
1� 1

2

X
~n>0

�2

ðm2
~n �
2 þ i�Þ ½1� 2r ~n�

�
gWWh

(A21)

and, similarly,

gWWs0
~n
¼ �


2 � i��m2
~n

gWWh

þ
�
1� 1

2

�2

ðm2
~n �
2 þ i�Þ2

�
�gWWh

¼ � �

m2
~n þ i��
2

½1� r ~n�gWWh; (A22)

where we dropped the �2 term in the big parenthesis since
� is already of order �. We can now correct the computa-
tion we did in Eq. (A13). Following the same type of
procedure we obtain (dropping the common gWWh)

AWW!WW � i

p2 �
2 þ i�þ P
~n>0

�2

m2�
2þi�

�
1� 1

2

X
~n>0

�2

ðm2
~n �
2 þ i�Þ2 ½1� 2r ~n�

�
2

þ X
~n>0

i

p2 �m2
~n � �2

m2
~n
�
2þi�

� ��

m2
~n �
2 þ i�

½1� r ~n�
�
2

¼ i

p2 �
2 þ i�� P
~n>0

�2

p2�m2
~n

ð1� ðp2 �
2 þ i�Þ½2 �
�� þ ðp2 �
2 þ i�Þ2ð��Þ2Þ

: (A23)

In the on-shell approximation of p2 �
2 the corrections to the terms we kept before are of order
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2i�
�

�
� �2

�
�

�

�
2 � 2i

�SM
h




1� 6�

6�
�

�
�SM
h




�
2
�
1� 6�

6�

�
2
;

(A24)

where we used � ¼ 
�SM
h (where 
 is our shorthand

notation for mh). For a light Higgs, �SM
h =
 is a very tiny

number and this correction can be neglected. (Note that for
small �, � / � so that there is no actual � singularity, and
the whole effect is simply very small.) Our numerical
results presented in the main body of the paper neglected
both this correction and the F0 correction discussed earlier.

Let us finally conclude with the obvious generalizations
of Eqs. (A7) and (A8):

h� N

�
h0 þ X

~m>0

�

m2
h � i��m2

~m

s0~m

�
; (A25)

sn ¼ N~n

�
s0~n �

�

m2
h � i��m2

~n

h0 � 1

2

� �2

ðm2
~n �m2

h þ i�Þ
X

~m� ~n; ~n>0; ~m>0

1

m2
~m �m2

h þ i�
s0~m

�
;

(A26)

where h and sn are the original fields before diagonalizing
the Hamiltonian and

N �
�
1þ X

~m>0

�2

ðm2
h � i��m2

~mÞ2
��1=2

; (A27)

N~n ¼
�
1þ �2

ðm2
h � i��m2

~nÞ2
��1=2 � 1þO

�
1

M2
P

�
:

(A28)

We emphasize again that Eqs. (A25) and (A26) yield a
diagonal, canonically normalized form for the kinetic en-
ergy terms, while the mass terms also take a diagonal form

� 1

2

�
ðm2

h � i�Þh2 þ X
~n>0

m2
~ns

2
n � 2�h

X
~n>0

sn

�

¼ � 1

2

��
m2

h � i�þ �2
X
~n>0

1

m2
h � i��m2

~n

�
h02

þ X
~n>0

�
m2

~n � �2
1

m2
h � i��m2

~n

�
s02~n

�
þOð�3Þ:

(A29)

Let us study the h02 mass squared. We have

m2
h0 ¼ m2

h � i�þ �2
X
~n>0

1

m2
h � i��m2

~n

¼ m2
h � i�þ �2

X
~n>0

m2
h �m2

~n þ i�

ðm2
h �m2

~nÞ2 þ �2

’ m2
h

�
1þ �2

m2
h

<
�X
~n>0

1

m2
h � i��m2

~n

��

� i

�
�� �2

X
~n>0

��ðm2
h �m2

~nÞ
�
: (A30)

From this result we see that the Higgs mass renormaliza-
tion is given by

m2
h0 � m2

h

�
1þ �2

m2
h

<
�X
~n>0

1

m2
h � i��m2

~n

��
(A31)

in agreement with Eq. (17) of Ref. [7].
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