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It has been suggested that the volume dependence of the spectral weight could be utilized as a probe to

distinguish single and multiparticle states in Monte Carlo simulations. In a recent study using a solvable

model, the Lee model, we found that this criteria is not applicable for broad resonances. In this paper, the

same question is addressed within the finite-size formalism outlined by Lüscher. A similar conclusion has

been reached. This is first studied using a quantum-mechanical scattering model. Then, following

analogous arguments as in the original Lüscher’s formalism, the result is generalized to massive quantum

field theories under the same conditions as the conventional Lüscher’s formulas. A possibility of

extracting resonance parameters using the spectral weight function is also pointed out.
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I. INTRODUCTION

Low-energy hadron-hadron scattering plays an impor-
tant role in the understanding of nonperturbative physics of
strong interaction. Because of its genuine nonperturbative
nature, such problems can only be studied from first prin-
ciples using nonperturbative methods like lattice QCD.
Lüscher has outlined a finite-size formalism which enables
one to calculate the elastic scattering phase shifts using
lattice simulations [1–5]. Over the years, extensive numeri-
cal simulations have been carried out to the study on
hadron-hadron scattering using Lüscher’s formalism,
both within the quenched approximations and using gauge
field configurations with dynamical quarks [6–16].

In typical lattice studies on hadron spectroscopy and
hadron-hadron scattering, the most important physical
quantity is the energy of the system which is obtained
via the measurements of various correlation functions.
However, since a quantum field theory does not conserve
particle numbers in general, the distinction between single-
particle and multiparticle states becomes an important and
delicate issue in lattice calculations. In the infinite volume,
the difference is obvious since they have different kine-
matic behaviors: single-particle states have discrete energy
eigenvalues when viewed in their rest frame while multi-
particle states usually have continuous spectra starting
from the corresponding threshold. However, when per-
forming a lattice simulation in a finite volume, all energy
eigenvalues in the finite box become discrete. Therefore,
other means have to be applied in order to identify the
particle nature of a corresponding state.

In principle, differences between single-particle and
multiparticle states still persist in a finite volume. For
example, although both have discrete spectra, the level
spacing between neighboring multiparticle scattering
states becomes infinitesimally small while the level spac-
ing between the neighboring single-particle states remains
finite as the volume goes to infinity. However, it is difficult

to utilize this difference as a practical criteria since this
requires the computation of excited energy eigenvalues in
Monte Carlo simulations which is usually quite challeng-
ing. Another method suggested by various authors is to use
the so-called spectral weight function as the identifier. This
is the quantity which can be measured directly (and rela-
tively easily) from Monte Carlo simulations, together with
the corresponding energy eigenvalue. In a finite volume,
the volume dependence of the spectral weight for a eigen-
state is expected to show different behavior for single-
particle and multiparticle states. For example, one expects
the following empirical rule to hold: the spectral weight for
a single-particle state (if properly normalized) should ex-
hibit little volume dependence, while for a two-particle
state, it is expected to show a 1=L3 dependence with L
being the size of the cubic box. This expected difference in
volume dependence can be measured in lattice simulations
by performing the same calculation in two distinct vol-
umes. As an example, this strategy has been used in
Ref. [17] to study the possible penta-quark state. Using
this technique, the authors concluded that the expected
penta-quark (single-particle) states measured in their lat-
tice calculations are in fact kaon-nucleon two-particle
scattering states. However, this conclusion is not so settled
even in the first-principle lattice QCD calculations [18–
20]. Therefore, the volume dependence of the spectral
weight indeed can provide us useful information on the
particle nature of the corresponding state.
In a previous model study, we have shown that the above

mentioned empirical rule to distinguish single-particle and
multiparticle states are in fact only valid for stable particles
and narrow resonances. Using a solvable model, the Lee
model, we showed that this rule is violated for broad
resonances [21]. A general formula for the spectral weight
was obtained which can show either single- or two-particle
volume behavior depending whether the width of the reso-
nance is narrow or broad.
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In this paper, we attempt to generalize this conclusion
that we obtained in the Lee model, to the case of general
massive quantum field theory. For this purpose, the general
Lüscher’s formalism is adopted. In previous studies, people
have been focusing mainly on the energy eigenvalue
(which directly enters the famous Lüscher’s formula) of
the system within Lüscher’s formalism. However, since the
spectral weight function WðE;LÞ of a given state with
energy E in a cubic box of size L is intimately related to
the overlap of the exact energy eigenfunction with the free
scattering states, we have to study the wave function of a
energy eigenstate in a finite volume. In this paper, our study
focuses on the wave function in the Aþ

1 sector and a
formula for the spectral weight is thus obtained within
the nonrelativistic quantum mechanics model. By studying
the volume dependence of the spectral weight in the large
volume limit, we arrive at basically the same conclusion as
we drew from the previous Lee model study. Then, follow-
ing Lüscher’s arguments, this result is generalized to mas-
sive quantum field theory. Our results also opens up a
possibility of extracting the resonance parameters from
the spectral weight function on various volumes.

This paper is organized as follows. In Sec. II, we briefly
review the quantum-mechanical model in the infinite vol-
ume. In Sec. III, the quantum-mechanical model is studied
on a three-dimensional torus of size L. In this section, we
derive the relevant formulas for the spectral weight func-
tion and study its volume dependence. It is found that
similar conclusion is reached as in our previous study using
the Lee model. We then argue that, under the same re-
strictions as in Lüscher’s formula, our results found in the
quantum-mechanical model can be generalized to massive
quantum field theory. The possibility of extracting reso-
nance parameters from spectral weight is also discussed. In
Sec. IV, we will conclude with some general remarks.
Details on the evaluation of a function Fðk2Þ are listed in
the Appendix.

II. THE MODEL IN THE INFINITE VOLUME

Consider a quantum-mechanical model whose
Hamiltonian is given by

H ¼ � 1

2m
r2 þ VðrÞ; (1)

where the potential VðrÞ is zero for r > a with some a > 0.
We now discuss the energy eigenstates satisfyingH�ðrÞ ¼
E�ðrÞ. One can expand the eigenfunction in terms of
spherical harmonics:

�ðrÞ ¼ c lmðrÞYlmðnÞ; (2)

where r ¼ rn and c lmðrÞ is the radial wave function
satisfying the radial Schrödinger equation,�

d2

dr2
þ 2

r

d

dr
� lðlþ 1Þ

r2
þ k2 � 2mVðrÞ

�
c lmðrÞ ¼ 0; (3)

and where E ¼ k2=ð2mÞ is the energy eigenvalue of the
state. It is well known that, there exists only one solution to
the radial Schrödinger equation that is bounded near the
origin. This solution will be denoted as ulðr; kÞ. To fix the
normalization, we impose the condition

lim
r!0

r�lulðr; kÞ ¼ 1; (4)

the solution to the radial Schrödinger equation then has the
form

c lmðrÞ ¼ blmulðr; kÞ; (5)

with some constant blm to be fixed by other conditions
(normalization, boundary conditions, etc.).
In the region r > a where the interaction vanishes, the

solution ulðr; kÞ is expanded in terms of spherical Bessel
functions1:

ulðr; kÞ ¼ �lðkÞjlðkrÞ þ �lðkÞnlðkrÞ: (6)

The coefficients �lðkÞ and �lðkÞ have a simple relation
with the scattering phase shift:

e2i�lðkÞ ¼ �lðkÞ þ i�lðkÞ
�lðkÞ � i�lðkÞ ; tan�lðkÞ ¼ �lðkÞ

�lðkÞ : (7)

In the low-energy limit, k ! 0, one normally defines

�0
l ¼ lim

k!0
kl�lðkÞ; �0

l ¼ lim
k!0

k�l�1�lðkÞ; (8)

and the threshold parameters2

al � �0
l

�0
l

: (9)

In particular, a0 for l ¼ 0 is referred to as the s-wave
scattering length. Other al’s for l > 0 are sometimes also
called scattering lengths in the corresponding channel,
although they do not have the dimension of a length.3

The threshold parameters al are important because they
characterize the behaviors in low-energy scattering pro-
cesses. For example, we have

�lðkÞ ’ alk
2lþ1 þOðk2lþ3Þ; ðmod�Þ: (10)

III. THE MODEL ON ATORUS

We now enclose the system we discussed in the previous
section in a large cubic box and impose the periodic
boundary condition in all three spatial directions. The
potential itself is also modified to VLðrÞ by periodically
extending over the whole space VLðrÞ ¼

P
n2Z3Vðjrþ

nLjÞ. For later convenience, we define the so-called ‘‘outer

1In this paper, we have adopted the same convention for
spherical Bessel functions as in Ref. [4] which agrees with
Messiah’s book [22].

2Assuming �0
l � 0 which is usually the case.

3From normalization condition (4), it is easy to verify that the
spectral parameters al have the length dimension of 2lþ 1.
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region’’ as

� ¼ fr:jrþ nLj> a; for all n 2 Z3g: (11)

This is the region where the potential vanishes identically.
We assume the size of the box is L which is much larger
than any of the physical scales in the system. In particular,
we need to have L � 2a so that the outer region admits
free spherical wave solutions (asymptotic states). We now
would like to study the change in the energy eigenvalues,
the corresponding wave functions, and their possible con-
nections with the scattering phase shifts in the infinite
volume. Our discussion here will focus on the case of a
cubic box whose relevant symmetry group being the cubic
group OðZÞ. Generalization to an arbitrary rectangular box
can be performed easily by changing the symmetry group
to the corresponding ones (D4 or D2, etc.).

Since the boundary condition breaks rotational symme-
try explicitly, we anticipate that energy eigenstates of the
system will not have a definite angular momentum in
general. To be specific, the original eigenstate in the
s-wave will acquire mixtures from higher angular momen-
tum modes (mainly l ¼ 4 for a cubic box). However, since
the original radial wave function ulðr; kÞ and the spherical
harmonics forms a complete set in the functional space, we
may still expand the true eigenfunction in the box in terms
of them:

�ðr; kÞ ¼ X
lm

blmulðr; kÞYlmðnÞ; (12)

where the coefficients are to be determined by boundary
conditions and normalization.

In the outer region �, the solutions are those singular,
periodic solutions for the Helmholtz equation. Thus we
may write

�ðr; kÞjr2� ¼ X
lm

vlmGlmðr; k2Þ: (13)

In the meantime, the outer solution can also be expanded in
terms of spherical harmonics and the spherical Bessel
functions jlðkrÞ and nlðkrÞ:

Glmðr; k2Þ ¼ ð�Þlklþ1

4�

�
Ylmð�rÞnlðkrÞ

þX
l0m0

Mlm;l0m0Yl0m0 ð�rÞjl0 ðkrÞ
�
: (14)

The explicit expression forMl0m0;lmðk2i Þ is given in Ref. [4]
which we quote here:

Mlm;jsðk2Þ ¼
X
l0m0

ð�Þsij�lZl0m0 ð1; q2Þ
�3=2ql

0þ1

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2lþ 1Þð2l0 þ 1Þð2jþ 1Þ

q l l0 j

0 0 0

 !

� l l0 j

m m0 �s

 !
: (15)

Here we have used the Wigner’s 3j symbols and q ¼
kL=ð2�Þ. The zeta function Zlmðs; q2Þ is defined as

Z lmðs; q2Þ ¼
X
n

YlmðnÞ
ðn2 � q2Þs : (16)

From the analytically continued formula, it is obvious from
the symmetry of OðZÞ that, for l � 4, the only nonvanish-
ing zeta functions at s ¼ 1 are Z00 and Z40. This is in
accordance with the fact that s-wave and g-wave mix with
each other in a cubic box. In what follows, we will focus on
the s-wave eigenfunction.

A. Lüscher’s formula in the Aþ
1 sector revisited

In the remaining part of this paper, we will be only
concerned with the energy eigenfunctions in the Aþ

1 sector,
which is the analogue of s-wave in a cubic box.
A good approximation for the s-wave dominated eigen-

function can be written as a superposition of l ¼ 0 and l ¼
4 spherical harmonics with the s-wave component much
larger than that of g-wave. To explicitly construct this type
of wave functions, we notice that the eigenfunction in Aþ

1

sector has to be invariant under cubic symmetries. It is easy
to verify that; there are only two homogeneous harmonic
polynomials which are invariant under cubic symmetry up
to l � 4. They can be conveniently expressed as

Y00 ¼ 1ffiffiffiffiffiffiffi
4�

p ;

Y40 þ
ffiffiffiffiffiffi
70

p
14

ðY4;4 þY4;�4Þ ¼ 15

4
ffiffiffiffi
�

p
�
x4 þ y4 þ z4 � 3

5
r4
�
:

(17)

So, we may write the eigenfunction in Aþ
1 sector as

�ðAþ
1 Þðr; kÞ ¼ b00u0ðr; kÞY00 þ b40u4ðr; kÞ

�
�
Y40 þ

ffiffiffiffiffiffi
70

p
14

ðY4;4 þ Y4;�4Þ
�
þ � � � ; (18)

with jb40j � b00 in the large volume limit. In other words,
to ensure cubic symmetry, the general coefficients blm at
l ¼ 4 with different m values must have definite ratios. In
the outer region, using relation (6), we have
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�ðAþ
1 Þðr; kÞjr2� ¼ b00½�0j0ðkrÞ þ �0n0ðkrÞ�Y00ð�rÞ

þ b40½�4j4ðkrÞ þ �4n4ðkrÞ�

�
�
Y40 þ

ffiffiffiffiffiffi
70

p
14

ðY4;4 þ Y4;�4Þ
�
þ � � � :

(19)

On the other hand, we know that, in the outer region �,
the eigenfunction can also be expanded into singular peri-
odic solutions of Helmholtz equation. Since Glm �
YlmðrÞGðr; k2Þ with Gðr; k2Þ being rotationally invariant,
we see that in order to keep the eigenfunction invariant
under cubic symmetry, we must have the combination

G40 þ
ffiffiffiffiffiffi
70

p
=14ðG4;4 þG4;�4Þ in the expansion. Thus we

may write4

�ðAþ
1
Þðr; kÞjr2� ¼

�
4�

k

�
v00

�
G00 þ v40

k4

�
G40 þ

ffiffiffiffiffiffi
70

p
14

� ½G4;4 þG4;�4�
�
þ � � �

�
: (20)

The fact that such a combination respects cubic symmetry
can also be checked explicitly. Using the expressions (14)
and (15), we may write the expansion for G00 as

G00 ¼ k

4�

�
ðn0 þm00j0ÞY00 þ

ffiffiffiffiffiffi
7

12

s
m04j4

�
�
Y40 þ

ffiffiffiffiffiffi
70

p
14

½Y44 þ Y4;�4�
��

; (21)

where we have introduced m00 ¼ M00;00 and m04 ¼
2
ffiffiffiffiffiffiffiffi
3=7

p
M40;00 for later convenience (see Ref. [4] for the

notation). Similarly, for the higher angular momentum
functions, we have

G40 ¼ k5

4�
½n4Y40 þM40;00j0Y00 þM40;20j2Y20

þM40;40j4Y40 þM40;44j4ðY44 þ Y4;�4Þ�;

G4;4 þG4;�4 ¼ k5

4�
½n4ðY4;4 þ Y4;�4Þ þ 2M44;00j0Y00

þ 2M44;20j2Y20 þ 2M44;40j4Y40

þ ðM44;4;�4 þM44;44Þj4ðY44 þ Y4;�4Þ�:
(22)

In the above expansions, we have also utilized the follow-
ing properties of the matrix elements Mlm;l0m0 :

M lm;l0m0 ¼ Ml0m0;lm ¼ Ml;�m;l0;�m0 : (23)

Note that in the expansion of G40 and G44 þG4;�4 in

Eq. (22), there are terms with l ¼ 2, m ¼ 0 spherical
harmonics. However, when we construct the combination

G40 þ ð ffiffiffiffiffiffi
70

p
=14ÞðG44 þG4;�4Þ, the terms with l ¼ 2 can-

cel out explicitly since M40;20 þ ð ffiffiffiffiffiffi
70

p
=7ÞM44;20 ¼ 0

which can be checked by looking into Table E.1 in
Ref. [4]. Therefore we finally have

G40þ
ffiffiffiffiffiffi
70

p
14

ðG44þG4;�4Þ ¼ k5

4�

� ffiffiffiffiffiffi
12

7

s
m04j0Y00

þðn4þm44j4Þ

�
�
Y40þ

ffiffiffiffiffiffi
70

p
14

½Y44þY4;�4�
��

;

(24)

wherem44 ¼ M40;40 þ � � � . At this stage, it is worthwhile
to point out that m00, m04, and m44 that we introduced here
are exactly those reduced matrix elements of M in the Aþ

1

sector. Please refer to Ref. [4] for further detailed explan-
ations (especially Table E.1 and Table E.2 in the
reference).
Collecting relevant information from the expansions

obtained thus far, i.e. Eq. (20), (21), and (24), we have

�ðAþ
1 Þðr; kÞjr2� ¼ v00

��
n0 þm00j0 þ v40

ffiffiffiffiffiffi
12

7

s
m04j0

�
Y00

þ
�� ffiffiffiffiffiffi

7

12

s
m04 þ v40m44

�
j4 þ v40n4

�

�
�
Y40 þ

ffiffiffiffiffiffi
70

p
14

ðY4;4 þ Y4;�4Þ
��

þ � � � :
(25)

We should now match the two solutions given by Eq. (19)
and (25) in the outer region�. This yields the following set
of linear equations:

v00 ¼ b00�0; v00

�
m00 þ

ffiffiffiffiffiffi
12

7

s
v40m04

�
¼ b00�0;

(26)

v00v40 ¼ b40�4; v00

� ffiffiffiffiffiffi
7

12

s
m04 þ v40m44

�
¼ b40�4:

(27)

These four equations can be viewed as a set of homoge-
neous linear equations for the four coefficients: v00, b00,
v00v40, and b40. Demanding a nontrivial solution to exist
requires the corresponding determinant of the 4� 4matrix
to vanish. Another simple way to proceed is to divide the
second equation by the first and similarly divide the fourth
one by the third. This will eliminate all coefficients except
for v40. We then arrive at

4For simplicity of the following equations, we have scaled out
an overall factor (4�=k) and an extra factor of (1=k4) for the
coefficient of G40.
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cot�ð0Þ ¼ m00 þ
ffiffiffiffiffiffi
12

7

s
v40m04;

cot�ð4Þ ¼ m44 þ
ffiffiffiffiffiffi
7

12

s
m04=v40:

(28)

Eliminating v40 from the above two equations then yields

ðcot�ð0Þ �m00Þðcot�ð4Þ �m44Þ ¼ m04m04: (29)

This is exactly the equation obtained by general Lüscher’s
method when we only consider the mixing between l ¼ 0
and l ¼ 4 waves [4]. Therefore, using more explicit con-
struction, not only have we recovered Lüscher’s formula,
we also obtained an explicit approximate expression for the
energy eigenfunction in the Aþ

1 channel which is given by
Eq. (18) in general and given by Eq. (20) in the outer
region.

B. The spectral weight function and its normalization

Now we would like to derive a formula for the spectral
weight function which can be measured in a Monte Carlo
simulation. Instead of working with general states, we will
focus on the single- and two-particle states. These states
naturally arise in the lattice study of hadron-hadron scat-
tering and hadron spectrum. In such simulations, one con-
structs an operator (also known as the interpolating field
operator), or operators if more than one is needed, within a
specific symmetry sector of the theory. The correlation
matrix among these operators are then computed by en-
semble averaging over different gauge field configurations
that is generated in a Monte Carlo simulation.

For this purpose, we pass over to the second-quantized
version of our quantum-mechanical scattering model. In
this model, two distinguishable particles scatter via a po-
tential VðrÞ where r being the distance between them. The
center-of-mass coordinate of the two-particle system is
separated out and the mass parameterm in the Hamiltonian
(1) refers to the reduced mass of the two-particle system.
For each type of particle, a local scalar field operator
�iðx; tÞ, with i ¼ 1, 2 designating different types of parti-
cles, is introduced together with its momentum-space
counterpart5:

�iðx; tÞ ¼ 1ffiffiffiffiffiffi
L3

p X
p

~�iðp; tÞeip�x;

~�iðp; tÞ ¼ 1ffiffiffiffiffiffi
L3

p
Z

d3x�iðx; tÞe�ip�x:
(30)

They satisfy the usual equal-time commutation relations:

½�iðp; tÞ; �y
j ðk; tÞ� ¼ �pk�ij. Using free states made up of

two particles, one from each type, one can form a state:

j�i ¼ Oyð0Þj0i ¼ 1

L3=2

X
P

~�ðPÞ ~�y
1 ðP; 0Þ~�y

2 ð�P; 0Þj0i;

(31)

with the interpolating operator OðtÞ defined by

O ðtÞ ¼ 1ffiffiffiffiffiffi
L3

p X
P

~�	ðPÞ ~�1ðP; tÞ ~�2ð�P; tÞ: (32)

Requiring such a state to be normalized as h�j�i ¼ 1
yields the condition

1

L3

X
P

j ~�ðPÞj2 ¼ 1: (33)

If such a state were a bound state of two particles, ~�ðPÞ
would be the corresponding momentum-space wave func-
tion normalized according to the above equation.
We can now define the corresponding correlation func-

tion:

C ðtÞ ¼ h0jOðtÞOyð0Þj0i ¼ X
E

jhEjOyð0Þj0ij2e�Et; (34)

where E and jEi represents the eigenvalue and eigenstate
of the full Hamiltonian, respectively. By fitting the time
dependence of the correlation function obtained from
Monte Carlo simulations, the exact eigenvalue E, and the
corresponding spectral weight functionWðEÞ, which is the
coefficient in front of the exponential, is obtained. If we
denote the overlap of two wave functions,

OðEÞ ¼ hEjOyð0Þj0i
¼
Z

d3r1d
3r2hEjr1; r2ihr1; r2jOyð0Þj0i; (35)

the spectral weight function is simply given by

WðEÞ ¼ jhEjOyð0Þj0ij2 ¼ jOðEÞj2: (36)

At this point, it is worthwhile to point out that the spectral
weight functionWðEÞ defined above depends explicitly on
the normalization of O.
Because of translational symmetry, the exact wave func-

tion hr1; r2jEi will only depend on the relative coordinate
r ¼ r2 � r1. It is independent of the center-of-mass coor-
dinate rc. This means that, if the eigenstate jEi is normal-
ized according to hEjEi ¼ 1 as it should, the wave function
hr1; r2jEi � hrjEi should be normalized according toZ

T 3

d3rjhrjEij2 ¼
Z
T 3

d3rj�ðAþ
1
Þðr; kÞj2 ¼ 1

L3
: (37)

Therefore, in order to compute the volume dependence of
the spectral weight function, we first have to fix the nor-

malization of �ðAþ
1
Þðr; kÞ according to this convention.

C. Normalization of the energy eigenstates inAþ
1 sector

As discussed in the previous subsection, the wave func-
tion in the Aþ

1 sector in Eq. (18) must be normalized

5For simplicity, we assume that the two particles are
distinguishable.
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properly on the torus T 3 according to Eq. (37). The
integral of the eigenfunction on the torus runs over two
regions: the inner region, where the explicit form of the
wave function is not known, and the outer region�, where
an approximate form of the function is given by Eq. (20).
Although we do not know the exact form of the eigenfunc-
tion in the inner region, we do know that the eigenfunction
is bounded in this region. Since it is assumed that the
interaction region is of size a with a � L, therefore the
integral in the normalization condition (37) is dominated
by the integral of the function in the outer region �.
Therefore, we may modify the normalization condition to

Z
�
d3rj�ðAþ

1
Þðr; kÞj2 ’ 1

L3
: (38)

Since in the large volume limit, the eigenfunction is domi-
nated by the s-wave contribution, we may use the first term
in Eq. (20) and write�
4�

k

�
2jv00j2

�Z
T 3

d3rjG00ðr; kÞj2 �
Z
B
d3rjG00ðr; kÞj2

�

’ 1

L3
; (39)

where the second integral is over the interaction ball re-
gion, B ¼ fr:r � a;modLg. We now use the definition for
G00:

G00ðr; kÞ ¼ 1ffiffiffiffiffiffiffi
4�

p
L3

X
p

eip�r

p2 � k2
; (40)

where the summation of p ¼ ð2�=LÞn is for all three-
dimensional integers n 2 Z3. Substituting this expression
into the first term and Eq. (25) into the second integral in
Eq. (39) we get

k2

16�2jv00j2L3
’ 1

4�L3

X
p

1

ðp2 � k2Þ2 �
k2

16�2

�
Z a

0
r2drðn0ðkrÞ þm00j0ðkrÞÞ2: (41)

The integral in the second term maybe evaluated directly
within r < a. We thus obtain

1

jv00j2L3
’ 4�

k2L3

X
p

1

ðp2 � k2Þ2 �
a

2k2sin2�

�
�
1�

�
sinka

ka

�
cosðkaþ 2�Þ

�
; (42)

where we have utilized the definition m00 ¼ cot�. In the
large volume limit, the first term on the right-hand side of
the above equation is much larger than the second (see the
Appendix for the explanation of this assertion). If we drop
the second term, we then arrive at

�
4�

k

�
2jv00j2L3 ’ 4�

�
1

L3

X
p

1

ðp2 � k2Þ2
��1 � 4�

F0ðk2Þ ;

(43)

where we have defined the function

Fðk2Þ ¼ 1

L3

X
p

fðp2Þ
p2 � k2

; (44)

where we have introduced a cutoff function fðp2Þ to regu-
late possible ultraviolet divergences. The property of
this function in the large volume limit is addressed in
the Appendix. The relevant formula for us is given by
Eq. (A10).

D. Spectral weight in Aþ
1 sector

We now evaluate the spectral weight using Eq. (36) with
the exact energy eigenfunction given approximately by

�ðAþ
1
Þðr; kÞ ’ ð4�=kÞv00G00ðr; kÞ. The overlap of the two

wave function is approximately given by

O ¼
�
4�

k

�
v	
00

1ffiffiffiffiffiffiffiffiffiffiffiffi
4�L3

p X
P

~�ðPÞ
P2 � k2

: (45)

Using the expression (43) and the expression in Eq. (A10),
we finally obtain WðEÞ ¼ jOj2 as

WðEÞ ¼ 8�kj’Lðk2Þj2
cot�0ðkÞ þ 2�k2

�p2 csc
2�0ðkÞ

¼ 8�kj’Lðk2Þj2
cot�0ðkÞ þ 2�E

�E csc2�0ðkÞ
; (46)

where the function ’Lðk2Þ is defined as

’Lðk2Þ ¼ 1

L3

X
P

~�ðPÞ
P2 � k2

: (47)

In the large volume limit, following similar derivation as in
our discussion of function Fðk2Þ, this function goes over to

’1ðk2Þ ¼ P
Z d3p

ð2�Þ3
~�ðpÞ

p2 � k2
þ k ~�ðk2Þ

4�
cot�0ðkÞ: (48)

Thus the function ’Lðk2Þ has little volume dependence in
the large volume limit. Therefore, the explicit volume
dependence of the spectral weight function WðEÞ comes
mainly from the denominator in Eq. (46). Normally, if
cot�0ðkÞ is not changing rapidly, the second term in the
denominator of Eq. (46), which is proportional to L3,
dominates the result and one finds that the spectral weight
is proportional to 1=L3. This is the typical two-particle
spectral weight function.
In particular, if there exists a resonance at energy E ¼

E?, then close to this resonance energy region, one has
approximately

ZHI-YUAN NIU et al. PHYSICAL REVIEW D 80, 114509 (2009)

114509-6



cot�ðEÞ ’ E? � E

�=2
; (49)

where � is the physical width of the resonance. In this case,
we obtain

WðEÞ ’ 8�k?j’1ðk2?Þj2
ðE?�E
�=2 Þ þ ð2�E�E Þ½1þ ðE?�E

�=2 Þ2� : (50)

Note that the numerator of the above expression does not
depend on the volume of the box. The first term in the
denominator also does not depend on the volume explic-
itly.6 Therefore, only the second term in the denominator
depends on the volume of the box in an explicit manner via
the quantity �E. For large enough volume, as long as �
remains finite, we have � � �E and the quantity in the
denominator is dominated by the second term and the
spectral weight itself is roughly proportional to 1=L3 which
is typical for a two-particle scattering state.

The case for an extremely narrow resonance needs to be
considered differently. The reason for this is that, in the
derivations so far that lead to Eq. (50), we have implicitly

assumed that all functions, e.g, ~�ðPÞ etc., are smooth
functions on the scale of �E. This allows us to approxi-
mate the summations by a principle integral part and an
analytically computable series (see the derivations in the
Appendix). However, for an extremely narrow resonance
for which � � �E, this assumption becomes invalid. For
example, the two-particle operators that overlap with the
narrow resonance substantially will have a wave function
~�ðPÞ that changes rapidly around the resonance energy E?.
In fact, if we take a simple Breit-Wigner form, the wave
function will change substantially within the energy range
[E? � �=2, E? þ �=2]. Since in this case � � �E, this
wave function does not satisfy our assumption that it is
smooth over a range of �E and thus the derivation given
above cannot apply to such a case. In real lattice calcula-
tions, such a scenario basically indicates that the volume is
not large enough and the narrow resonance simply cannot
decay and it behaves more like a single stable particle. For
example, for simulations in which 2m� <m� but the en-

ergy for the pion pair with nonvanishing momenta are
larger than mass of the � due to the smallness of the
volume, the � meson in this case effectively cannot decay
into pion pairs and a single-particle description of it re-
mains a good approximation. However, as we pointed out
already, as long as the volume is large enough (and the
mass parameters are such that the decay can occur in
infinite volume), any resonance with a finite width will
mix with multiparticle final states (the decay products) and
its spectral weight function will eventually show a multi-
particle behavior.

E. Generalization to massive quantum field theory

Our results on the volume dependence of the spectral
weight is obtained within a quantum-mechanical model. In
this subsection, we would like to generalize these results to
massive quantum field theory, following the line of argu-
ments in Lüscher’s formalism [5]. Using an effective
Schrödinger equation (derived from the Bethe-Salpeter
equation) [2], Lüscher has argued that, if the size of the
box is large enough such that all quantum field theory
effects are suppressed exponentially, the results obtained
within the quantum-mechanical model can be carried over
to the case of massive quantum field theory literally [2,5].
Here, we will assume that the same conditions are satisfied
and thus our results obtained within the quantum-
mechanical model are expected to be valid for massive
quantum field theory.

F. Possibility of extracting the resonance parameters
from the spectral weight

The relation established in Eq. (50) opens up a possi-
bility for extracting the width of a resonance if the spectral
weight can be measured in the simulation. Assuming that
there exists a single resonance in the energy region that we
are interested in, and the contribution from this single
resonance dominates the scattering. Thus, by fitting the
function WðE;LÞ7 for different E and L (hence different
�E as well), it is possible to extract the width parameter �
together with the resonance position E? of the resonance.
Note that in previous lattice calculations, focus has been
mainly put on the energy levels, i.e. the values of E, only.
No attention is paid to the associated spectral weight
function WðE;LÞ which in fact can be obtained from the
fitting procedure of the corresponding correlation func-
tions with almost no extra costs. The study in this paper
indicates that, the spectral weight function at various vol-
umes also contains valuable information about the scatter-
ing and might also be utilized in someway. In fact, it can be
used as an cross-check for the scattering phase obtained
from the energy levels. Of course, this is only a possibility
at this stage. The feasibility of this method has to be check
in realistic simulations.

IV. CONCLUSIONS

In this paper, we have studied the volume dependence of
the spectral weight function which is accessible in
Monte Carlo lattice simulations. Motivated by our previous
study in the Lee model, Lüscher’s formalism is adopted. It
is first studied in a quantum-mechanical model and then
generalized to massive quantum field theories, assuming
that the polarization effects are exponentially suppressed

6The exact energy eigenvalue E depends on the volume
slightly which is usually called the finite volume correction for
that state in lattice simulations.

7To emphasize its dependence on the box size L, we have used
WðE; LÞ to denote the spectral weight function WðEÞ given in
Eq. (50).
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following Lüscher’s arguments. It is shown that, for a
resonance of definite width, the spectral weight function
will exhibit typical two-particle volume dependence, i.e. a
1=L3 dependence, as long as the volume is large enough. In
particular, we expect this scenario to be true also for QCD
which governs the scattering of hadrons and therefore our
result is relevant for lattice QCD simulations. Possibilities
of using the spectral weight function to extract the reso-
nance parameters is also discussed.
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APPENDIX: THE FUNCTION Fðk2Þ
To study the normalization of the wave function

�ðAþ
1 Þðr; kÞ in the large volume limit, we define the func-

tion:

Fðk2Þ ¼ 1

L3

X
p

fðp2Þ
p2 � k2

; (A1)

where we have introduced a cutoff function fðp2Þ. The
relevant function appearing in the normalization condition
(43) is given by the derivative of Fðk2Þ with respect to k2:

F0ðk2Þ ¼ 1

L3

X
p

fðp2Þ
ðp2 � k2Þ2 : (A2)

We now follow the argument in Ref. [21] to estimate the
value of Fðk2Þ for arbitrary value of k2 in the large L limit.
We separate the summation into two parts with jp2 �
k2j 
 � and jp2 � k2j< �. The first part goes smoothly
to the principle-valued integral �ðk2Þ while the second
summation may be written as

1

L3

X
p;jp2�k2j<�

1

p2 � k2
¼ 1

L3

X1
n¼�1

1

p2
? þ n�p2 � k2

¼ � �

L3�p2
cot

�
�

�
k2 � p2

?

�p2

��
;

(A3)

where p2
? is the value of p2 that is closest to k2; �p2 is the

typical level spacing between neighboring p2 values which
can be estimated by

L3

ð2�Þ3 2�
ffiffiffiffiffi
p2

q
�p2 ¼ 1 � L3�p2 ¼ ð2�Þ2ffiffiffiffiffi

p2
p : (A4)

Therefore we obtain

Fðk2Þ ¼ �ðk2Þ � k

4�
cot

�
�

�
k2 � p2

?

�p2

��
: (A5)

However, since it is easy to verify that

Fðk2Þ ¼ Z00ð1; q2Þ
2�3=2L

’ k

4�
cot�0ðkÞ; (A6)

where we have utilized the approximate relation (Lüscher’s
formula)

cot�0ðkÞ ¼ Z00ð1; q2Þ
�3=2q

: (A7)

We therefore seem to have �ðk2Þ ¼ 0 in which case we
recover the DeWitt’s formula

�0ðkÞ ¼ ��

�
k2 � p2

?

�p2

�
: (A8)

If one evaluates �ðk2Þ explicitly, one gets

�ðk2Þ ¼ P
Z d3p

ð2�Þ3
1

p2 � k2
¼ 4��þ 2�k ln

���������� k

�þ k

��������;
(A9)

with a sharp momentum cutoff �. This expression indeed
goes to zero if we drop the constant term and taking � !
1. Consequently we have for the function F0ðk2Þ,

F0ðk2Þ ¼ � 1

8�k
cot

�
�

�
k2 � p2

?

�p2

��

þ k

4�p2
csc2

�
�

�
k2 � p2

?

�p2

��

¼ 1

8�k
cot�0ðkÞ þ k

4�p2
csc2�0ðkÞ; (A10)

where in the second line we have used DeWitt’s formula.
Since �p2 / L�3, we find that F0ðk2Þ / L3 in the large
volume limit. This justifies the assertion made after
Eq. (42) in the main text.
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