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Location of critical point and mapping the QCD phase boundary still exists as one of the most

interesting and studied problems of heavy-ion physics. A new equation of state (EOS) for a gas of

extended baryons and pointlike mesons is presented here which accounts for the repulsive hard-core

interactions arising due to the geometrical size of the baryons. A first-order deconfining phase transition is

obtained using Gibbs’ equilibrium criteria and a bag model EOS for the weakly interacting quark matter. It

is interesting to find that the phase transition line ends at a critical point beyond which a crossover region

exists between hot-dense meson gas and quark-antiquark gluon matter. Our curve closely resembles in

shape the predictions of the available lattice gauge calculations and also reproduces the conjectured phase

boundary.
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The existence of critical point in the studies of QCD
phase diagram has attracted considerable theoretical and
experimental attention recently. The phase diagram of
quark matter is still not understood either experimentally
or theoretically. The conjectured phase boundary between
quark gluon plasma (QGP) and hot, dense hadron gas (HG)
represents a first-order phase transition line for nonzero
and moderate values of temperature T and baryon chemical
potential (�B) [1–3]. At extremely high baryon densities
(i.e., large �B), we expect a color-flavor-locked (CFL)
phase involving color-superconducting quark matter. As
we increase T and decrease �B, it is also expected that the
first-order phase transition line ends at a critical point
beyond which there exists a crossover region since thermal
fluctuations at temperature (say, T > 170 MeV) break up
mesons (mostly pions) which are densely populated in this
region and this thus results in a gas of quarks, antiquarks,
gluons, etc. The existence of such a critical point was
proposed a long time ago [4,5], and more recently its
properties were investigated in detail with the help of
several models [6,7]. We are hopeful that the experiments
with different colliding beam energies at the Relativistic
Heavy-Ion Collider (RHIC) will provide a suitable experi-
mental window [8] for the search of QCD critical point as
well as for mapping the QCD phase boundary. Indeed we
have gained reliable insight into the thermodynamics of
QGP from lattice QCD calculation and our knowledge
about its dynamics is particularly helpful in the high tem-
perature limit where it becomes weakly coupled. However,
RHIC has given us results that, at least at temperatures
within a factor of 2 of that at which hadrons melt, show that
the dynamics of QGP is closer to an ideal liquid limit rather
than to the ideal gas limit indicating the presence of a
strongly coupled QGP. Confusion still prevails regarding
the theoretical understanding of the QCD phase transition.
We do not knowwhether the conjectured phase boundary is
an outcome of deconfinement and/or chiral symmetry res-
toration. The purpose of this paper is to determine the

phase boundary and to locate the critical point in a first-
order deconfining phase transition obtained by using equa-
tion of state (EOS) for the interacting quark matter and HG,
separately.
We propose a new thermodynamically consistent EOS

for the HG where the geometrical size of the baryons is
explicitly incorporated as the excluded-volume correction
and our model uses full quantum statistics in the partition
function of the grand canonical ensemble so that no prob-
lems arise in dealing with large �B and the low T region,
and thus the full phase boundary in the T;�B plane can be
investigated easily. In the earlier version of the model
[9,10], we have simplified the calculations by using the
Boltzmann approximation and we have noticed that the
model successfully describes the observed particle yields,
particle ratios, etc. at the chemical freeze-out of the HG
fireball in the heavy-ion collisions [10]. In order to deter-
mine the thermodynamic properties of the weakly interact-
ing quark matter, we use a simple bag model EOS with the

perturbative corrections of the order of �3=2
S in strong

interaction coupling constant �S. The advantage of the
bag model clearly lies in determining the thermodynamic
parameters in the region of nonzero as well as large baryon
chemical potential �B, which is still not properly acces-
sible in the lattice calculations. We obtain the full phase
boundary by Gibbs’ construction of equilibrium phase
transition between QGP and HG. We find a significant
result that the first-order phase transition line ends at a
point beyond which there occurs no phase transition and
the crossover region is only present. Thus we determine the
precise coordinates of the QCD critical point in the phase
diagram and we compare the location with the predictions
of other models including lattice calculations. The con-
struction of the QCD phase boundary by comparing EOS
of weakly interacting QGP with a bag pressure term to
EOS of hadron gas with an excluded-volume correction is
not new and was done by several authors [11–14].
Excluded-volume corrections in many of these approaches
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have usually been incorporated in a thermodynamically
inconsistent manner. Our approach has the following new
and interesting features: (1) Our EOS for the HG is ther-
modynamically consistent and we have obtained the
chemical freeze-out curve using the same formulation.
(2) We have used quantum statistics in our formulation
so that we can determine the phase boundary in the entire
ðT;�BÞ plane. (3) We find that our calculated phase dia-
gram almost reproduces the conjectured QCD phase dia-
gram and the coordinates of the critical point match well
with the lattice prediction. No other model reproduces the
features so well. (4) Most importantly, we get a first-order
deconfining phase transition line where other models in-
cluding lattice calculations reveal chiral phase transition.
(5) The chemical freeze-out curve obtained from our for-
mulation lies in close proximity to the critical point, and
this supports the suggestions of previous authors [3].

Let us first consider QGP, and we assume that it consists
of massless quarks ðu; dÞ, their antiquarks, and gluons only.
So the pressure of QGP can be written as [15]
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Here we have used B1=4 ¼ 216 MeV and � ¼ 100 MeV
in our calculation.

The grand canonical partition function for the HG with
full quantum statistics and after incorporating excluded-
volume correction in a thermodynamically consistent man-
ner can be written as [16]
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where gi is the degeneracy factor of the ith species of
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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We can write Eq. (3) as
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and �i ¼ expð�i

T Þ is the fugacity of the particle, nexj is the

number density of the jth type of baryons after excluded-
volume correction and can be obtained from Eq. (4) as
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This leads to a transcendental equation as
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and R ¼ P
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i is the fractional occupied volume. We

can write R in an operator equation:
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Using the Neumann iteration method in Eq. (9) and retain-
ing the series up to the �2 term, we get

R ¼ R̂þ�R̂þ�2R̂: (11)

Equation (11) can be solved numerically. The total
pressure [15] of the hadron gas after the excluded-volume
correction is

Pex
HG ¼ Tð1� RÞX

i

Ii�i þ
X
i

Pmeson
i : (12)

In (12), the first term represents the pressure due to all
types of baryons, and the second term gives the total
pressure due to all mesons having pointlike size only.
This makes it clear that we consider the hard-core repul-
sion existing between two baryons only.
We have considered all the baryons and the mesons as

well as their resonances having masses up to 2 GeV=c2 in
our calculation. In order to conserve the strangeness quan-
tum number, we have used the criterion of equating the net

strangeness equal to zero, i.e.,
P

iSiðnSi � n
�S
i Þ ¼ 0, where

Si is the strangeness quantum number of the ith hadron,

and nSi and n
�S
i are the strange hadron density of the ith

hadron and the ith antihadron, respectively. The strange-
ness neutrality condition yields the value of strange chemi-
cal potential in terms of�B. We have considered mesons as
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pointlike particles in this calculation. Furthermore, we

have taken an equal volume V0 ¼ 4�r3

3 for each type of

baryon with a hard-core radius r ¼ 0:8 fm. The first-order
phase transition boundary is determined by using Gibbs’
equilibrium condition Pex

HGðTc;�cÞ ¼ PQGPðTc;�cÞ.
In Fig. 1, we have shown the phase boundary between

QGP and HG as obtained from our calculations. We start
from a low but nonzero value of T and large value of �B

and we move towards large T and small (and nonzero) �B.
We find a first-order phase transition line and it ends at a
QCD critical point. The coordinates are Tc ¼ 160 MeV
and �c ¼ 156 MeV. The critical point as obtained by us
lies close to the lattice result LTE04 [17]. Since the value of
�c is the lowest in comparison to all other models, we hope
that this point can be reached in the RHIC experiments.
From this critical point to the �B ¼ 0 line, we find a
transitional crossover region which cannot be described
or modeled analytically. Hadronic degrees of freedom are
insufficient to give a valid description [18] of this region
whereas free quark and gluons start playing a significant
role only at much higher temperatures. We have compared
our prediction regarding the location of the QCD critical
point with those obtained from different models. We find
that the critical point in our curve lies closer to the lattice
gauge predictions. It should be emphasized that the loca-
tion of the critical point in our calculation means the end
point of the first-order phase transition line, and beyond

this point Gibbs’ equilibrium condition does not remain
valid. Here we stress that the dependence of our results on
the values of two parameters, the bag constant B and the
hard-core radius r, is small; we have shown this in Fig. 1 by
the curves P1, P2, and P3, respectively. We find that the
location of the critical point shifts from C1 to C2 as we
decrease the value of the bag constant B. Furthermore, the
variation in the QCD scale factor � does not give any
substantial change.
It is very difficult to predict the coordinates of the

critical point reliably, and this is also evident by the plot
in Fig. 1 where we find that the predictions of different
models vary widely [2]. However, it has been suggested
that the present heavy-ion experiments can be used to
locate the QCD critical point [7]. We find that the critical
point as obtained from our calculation lies in the region of
the phase diagram accessible at the current energy of
200 GeV=nucleon at which RHIC explores the crossover
region. Near the critical point, chemical freeze-out points
are also helpful in finding its location. It has been sug-
gested that the experimental observables should show non-
monotonic behavior as a function of center-of-mass energyffiffiffi
s

p
when the freeze-out point lies close to the critical point

[1,19]. We have determined the locations of freeze-out
points in various heavy-ion experiments by measuring
the ratios of particle yields and fitting to our excluded-
volume HG model with T and �B as parameters. We have
plotted in Fig. 1, the freeze-out curve as obtained from our
model. We find that the critical point lies almost on (or
near) the freeze-out curve. This endorses the usefulness of
the finding of Stephanov et al. [3] because they have shown
that a nonmonotonic behavior of fluctuations (e.g., of
multiplicity) can be considered as a signal for the critical
point. However, after the critical point, the difference
between the freeze-out curve and the phase transition line
increases as �B increases and T decreases. The freeze-out
points tend to cluster near the QCD critical point.
In conclusion, we have demonstrated the first-order

phase transition boundary in a simple baglike model de-
scribing the deconfining phase transition of quarks and
gluons. It should be stressed that the excluded-volume
model proposed in this paper is thermodynamically con-
sistent and also incorporates full quantum statistics. We
have also determined the precise location of the QCD
critical point using new EOS for the HG proposed by us.
The results are in agreement with what we expect from
lattice calculations [17]. It should be emphasized that the
lattice calculations [20–23] have failed so far to converge
on a prediction for the location of the critical point.
However, our interpretation differs from other QCD mod-
els which are all based on the chiral dynamics. Obviously
the existence of the critical point in all these calculations
follows from the basic assumption that the finite �B chiral
phase transition is first-order. However, the picture based
on the chiral dynamics in the baryon-dense region casts a

FIG. 1. The location of the QCD critical point in the QCD
phase diagram as calculated in our model. P2 is the phase
boundary with B1=4 ¼ 216 MeV and r ¼ 0:8 fm, P1 is with
B1=4 ¼ 216 MeV and r ¼ 0:6 fm, and P3 is with B1=4 ¼
200 MeV and r ¼ 0:8 fm. F1 is the chemical freeze-out line
obtained in our model. C1ðTc ¼ 160 MeV; �c ¼ 156 MeVÞ and
C2ðTc ¼ 146 MeV; �c ¼ 156 MeVÞ are the critical end points
on P1 or P2 and P3, respectively. Critical points denoted by
LR04 [21], LR01 [22], LTE03 [23], LTE04 [17] are lattice model
results, and NJLinst [5], LSM, NJL [25], NJL/I, NJL/II [26], RM
[27] are in other models and the points and the notations have
been taken from Ref. [2].
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shadow of doubt as CFL phase breaks chiral symmetry.
The occurrence of a novel phase of dense quarks, named as
quarkyonic phase, was recently proposed based on the
large-Nc argument where Nc denotes number of colors
[24]. This phase occurs above �B ¼ MB, where MB is
the baryon mass and is characterized by nonvanishing
baryon number density and confinement. The clear sepa-
ration of the quarkyonic phase from the hadronic phase is
lost in a system with finite Nc, but any large change in the
baryon number density can reveal a quarkyonic transition.
Our model endorses the deconfining nature of the first-
order phase transition. We also find the existence of a
crossover region lying beyond the critical point where
the meson dominant HG pressure is always less than the
QGP pressure. This region can be interpreted in terms of
the dual description of mostly the quarks and gluons to-
gether with � mesons. The fundamental assumption in our
model is that the baryons in the HG possess a hard-core
size and there exists a repulsive interaction between two
baryons [13]. However, mesons are not subjected to any
such force because they do not have any hard-core size. In
constructing a first-order phase transition it is essential to
include the excluded-volume corrections for baryons in the

HG and the EOS for QGP phase should also include QCD
interaction terms [16]. Mesons at high temperature can
fuse into one another, but baryons retain their space. So
at large �B, the fractional occupied volume R is finite and
hence mobility of baryons is affected. Therefore, for any
low temperature T we find a corresponding�B at which the
QGP pressure becomes equal to the HG pressure and
beyond which the QGP pressure dominates. At higher T
also, this continues unless we reach the end point at which
the QGP pressure is always larger than the HG pressure.
This is defined as the critical end point in our model. The
physical mechanism in this calculation is analogous to the
percolation model [14] where a first-order transition is
obtained through ‘‘jamming’’ of baryons without any com-
parison to the QGP. Recent progress and results are en-
couraging in this direction, but much more work still needs
to be done before this picture becomes conclusive.
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