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We investigated the finite temperature (T) phase transition for SUðNcÞ gauge theory with Nc ¼ 4, 6, 8

and 10 at lattice spacing, a, of 1=ð6TÞ or less. We checked that these theories have first-order transitions at

such small a. In many cases we were able to find the critical couplings with precision as good as a few

parts in 104. We also investigated the use of two-loop renormalization group equations in extrapolating the

lattice results to the continuum, thus fixing the temperature scale in units of the phase transition

temperature, Tc. We found that when a � 1=ð8TcÞ the two-loop extrapolation was accurate to about

1%–2%. However, we found that trading Tc for the QCD scale, �MS, increases uncertainties significantly,

to the level of about 5%–10%.
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I. INTRODUCTION

Since the realization [1] that a nontrivial and tractable
limit is obtained for SUðNcÞ gauge theories when the gauge
coupling, g, is taken to zero and the number of colors, Nc,
is taken to infinity, keeping the combination g2Nc fixed,
there has been much work on this limit [2]. Most such work
sums large classes of Feynman diagrams and therefore is
closely related to perturbation theory. The hope is that the
limiting theory and a small number of corrections in a
series in 1=Nc would allow us to understand the physically
interesting theory with Nc ¼ 3. Lattice calculations are of
help in testing this conjecture by making the connection
from the other direction—by simulations and complete
nonperturbative computations at finite Nc. They test
whether a short series in 1=Nc for Nc � 3 extrapolates
correctly to the tractable limit of Nc ! 1. However, in
order to test the continuum computations, one must also
take the continuum limit of the lattice theories. This is the
main thrust of this paper.

The theory with Nc ¼ 3 has been studied extensively
before [3], and its continuum extrapolation using the re-
normalized weak-coupling expansion has been studied and
found to work [4]. We shall have occasion to use these
results at various points in this paper. The finite tempera-
ture transition has been studied before in 3þ 1 dimensions
on lattices with a ¼ 1=ð4TÞ for Nc ¼ 4 [5]. These early
studies found that the crossover from strong to weak cou-
pling, which is a lattice artifact, interfered with the finite
temperature transition. Variant actions were invented to
solve this problem [6]. A modern solution which depends
on today’s vastly improved computational power is to just
go to larger Nt with the simplest action. For larger Nc there
have been some studies recently with Nt ¼ 5, 6 and 8 [7].

These earlier works have presented evidence for a first-
order thermal phase transition. For Nc ¼ 4, �MS has been

extracted from data on the string tension in the Schrödinger
functional scheme [8].
In this paper we investigate the continuum limit of the

finite temperature deconfinement transition in SUðNcÞ pure
gauge theory for Nc > 3. The main thrust of our study is to
control the approach to the continuum limit by performing
simulations of the (3þ 1)-dimensional theories at a suc-
cession of lattice spacings, a, and then using the weak-
coupling expansion for the extrapolation to zero lattice
spacing. It turns out that with today’s computational power
it is quite possible to reach lattice spacings small enough
for two-loop renormalization group equations (RGEs) to
be useful for the continuum extrapolation. Indeed, at the
lattice spacings that we use, even the one-loop flow is a
good rough indicator of the continuum limit.
In order to perform these precision tests of the contin-

uum limit we performed lattice simulations of SU(4),
SU(6), SU(8) and SU(10) theories. In all cases we simu-
lated theories with lattice cutoffs of a ¼ 1=ð6TÞ and
1=ð8TÞ, and in some cases for even smaller lattice spacings,
going down to lattice spacing of 1=ð12TÞ in one case. We
performed finite size scaling studies, thus extrapolating to
the thermodynamic limit of infinite spatial volumes, to
check that the thermal phase transitions is actually of first
order at lattice spacings a � 1=ð6TÞ. Coupled with the
continuum extrapolations that we discuss next, this verifies
earlier arguments about the order of the finite temperature
phase transition in continuum theories with Nc � 3 [9].
Through the finite size scaling analysis we located the

phase transition point with a statistical precision of a few
parts in 104. We found that the location of the phase
transition point scales as expected in the limit of Nc !
1. With this precision we could test the two-loop RG flow
to a statistical accuracy of a few parts in 103. It turned out
that at lattice spacing of a � 1=ð8TcÞ, the two-loop RGE is
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trustworthy in extrapolation towards the continuum, within
3� of the statistical accuracy. In all this the quantity Tc is
used to set the scale of measurements.

Any test of a weak-coupling expansion involves the
choice of a RG scheme, i.e., a choice of a measurement
used to define the running coupling in the gauge theory. If
the perturbation theory is accurate, and all orders in the
expansion are available, then the choice of the scheme is
immaterial for any measurement. However, in all practical
cases only a small number of terms in the weak-coupling
expansion are available. We found that for the determina-
tion of the temperature scale in terms of Tc the scheme
dependence is statistically significant, but small in magni-
tude, being around 1%–2%. This indicates that the lattice
spacings used in our study are small enough for the use of
the weak-coupling expansion. It seems likely that three-
loop computations can improve matters.

This could be the first indication that nonperturbative
lattice computations for Nc > 3 are at a point where they
are more reliable than the perturbative series needed for the
continuum extrapolation. Needless to say, one could just
push the nonperturbative lattice simulations to smaller and
smaller a until the running coupling (at the scale of a)
decreases significantly and the available perturbative ex-
pansions begins to be more accurate. However, it is more
cost-effective to develop the perturbation theory to higher
order.

In performing a weak-coupling expansion the scale of
choice is one which defines how fast the coupling changes
asymptotically when measured at two different length
scales. This intrinsic scale of QCD is called�MS. We found

that the determination of �MS in terms of the nonperturba-

tively determined scale Tc is quite uncertain. While the
statistical errors are under control, the scheme dependence
is quite large. Our observations seem to indicate that one
needs smaller lattice spacings to stabilize the transforma-
tion from Tc to �MS.

This paper is structured as follows: in the next section
we discuss the technicalities of the lattice simulations.
Following this we present our results for the finite tem-
perature transition and its extrapolation to the thermody-
namic limit. Next, we discuss the continuum limit, the
setting of the temperature scale and the extraction of
�MS. The final section contains a summary of our results.

Some parts of our results have been reported earlier in
conference proceedings [10].

II. SIMULATIONS, MEASUREMENTS AND OTHER
TECHNICALITIES

In this study we use the Wilson action,

S ¼ �
X

i;�<�

½1� ReP��ðiÞ�; (1)

where P��ðiÞ is the trace of the product of SUðNcÞ valued
link matrices,U, around a plaquette, starting from the site i

and touching the site iþ�þ �. The trace is normalized
by a factor ofNc, so that by this definition the trace of a unit
matrix is unity. The lattices have size Nt � N3

s in units of
the lattice spacing, a. The physical extent of the lattice is
aNt ¼ 1=T and ‘ ¼ aNs ¼ �=T where � ¼ Ns=Nt is
called the aspect ratio. Increasing � at fixed T corresponds
to increasing the volume, V ¼ ‘3. The bare gauge coupling
is g2 ¼ 2Nc=�.
The partition function,

ZðV; TÞ ¼
Z

DUe�S½U�; (2)

is sampled using a Monte Carlo procedure in which over-
relaxation steps are mixed with heat-bath updates. A large
fraction of the CPU time is taken up in the computation of
the product of matrices connecting to a given link (called
staples). This computation scales as N3

c , since the time is
dominated by the multiplication of Nc � Nc matrices.
Therefore, for each computation of a staple, it would
make sense to update each of the NcðNc � 1Þ=2 SU(2)
subgroups of SUðNcÞ a fixed number of times [11]. When
we update all SU(2) subgroups once in every step of a
composite sweep which contains three steps of over-
relaxation per step of heat-bath, then about 50% of the
CPU time is spent in the computation of staples, about 33%
in the over-relaxation update, and about 12% in the heat
bath. The rest of the time is spent in the measurement of
plaquettes and Polyakov loops. These fractions are almost
independent of Nc, whereas the actual CPU time per link
update scales very close to N3

c . It was argued earlier [12]
that in an optimum hybrid over-relaxation algorithm the
number of over-relaxation steps should be increased line-
arly with Ns. If this were to be done, then relatively less
time would be spent in computing staples, resulting in
more optimal use of CPU time.
We performed simulations of four theories. An overview

of the runs is given in Table I and its caption. Almost all
zero temperature runs collected statistics of several tens of
thousands of composite sweeps, and most finite tempera-
ture runs have statistics of over 500 000 composite sweeps.
The statistics of a set of measurements should actually be

TABLE I. For each Nc and Nt the values of Ns used in the
simulations are given. Runs which are exploratory are marked by
asterisks. The remaining runs are meant to yield precision data;
for these the details of the statistics are given in Table VI. Zero
temperature runs were performed for Ns ¼ Nt ¼ 16 for all Nc

and Ns ¼ Nt ¼ 24 for Nc ¼ 4 and 6.

Nt Nc ¼ 4 Nc ¼ 6 Nc ¼ 8 Nc ¼ 10

4 12, 16, 18, 20, 24 12, 16, 20

6 16, 18, 20, 22, 24 14, 16, 18, 20, 24 16* 16*

8 22, 24, 28, 30 20, 24* 16* 16*

10 24 24*

12 24
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judged by the autocorrelation time, �int, since the error in a
measurement, E, is related to the variance of the measure-
ments, �2, through the formula E2 ¼ �int�

2=N where N is
the number of measurements. Autocorrelation functions of
the plaquette at T ¼ 0 show that �int varies between ap-
proximately 1 and 10 sweeps. Since we study first-order
phase transitions, �int in the transition region for the order
parameter, L, is closely related to the number of tunnelings
between different phases [13]. The statistics collected close
to the transition region are summarized in Table VI.

SUðNcÞ theories with the action in Eq. (1) exhibit a bulk
transition when Nc is large enough. This transition can be
monitored in zero temperature simulations using the ex-
pectation value of the plaquette, hPi, where

P ¼ 2

dðd� 1ÞN3
sNt

X
i;�<�

ReP�;�ðiÞ; (3)

and d ¼ 4 for our purposes. On the small-� side of the
transition, one expects the strong coupling series for hPi to
work; this is an expansion of hPi in powers of �2 [14]. At
larger � one expects renormalization group running of hPi
[15]. ForNc ¼ 4 the change from strong- to weak-coupling
behavior is fairly smooth, with a crossover in the vicinity of
� ¼ 10:2 (see Fig. 1). The strong-coupling side has little to
do with continuum physics. We study thermal physics on
the weak-coupling side of this crossover, where, as we
show in Sec. IV, the continuum limit can be taken.

The largest finite volume effect at T ¼ 0 is expected to
occur when the lattice sizes are such that a spurious de-
confinement transition takes place [16]. At any given bare
coupling �, there is a critical N�ð�Þ such that for N4

lattices with N >N�ð�Þ one expects small finite size ef-
fects. These small effects are expected to scale as
expð�‘m0Þ where m0 is the mass of the lowest glueball.

For SU(3) pure gauge theory, this mass is very high com-
pared to the deconfinement temperature Tc. If this happens
also for Nc > 3, then one expects that finite size effects
should be smaller than of order exp½�N=N�ð�Þ�. That
finite volume effects are indeed small at T ¼ 0 is borne
out by the data in Table VII.
The finite temperature transition was monitored using

the order parameter Polyakov loop, hjLji, where

L ¼ 1

N3
s

X
i

Tr
YNt

t¼1

Ui;t̂; (4)

where the sum over sites, i, is restricted to all spatial sites.
The order parameter jumps from a zero value at small
temperature to a finite value at the thermal transition,
signaling deconfinement. The thermal transition is of first
order in all the simulations presented here. We found that
for SU(4) and SU(6) gauge theories the finite temperature
transition and the bulk transition interfere for Nt ¼ 4 (see
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FIG. 1 (color online). The average plaquette as a function of
the bare coupling for Nc ¼ 4 on a 164 lattice. Above � ¼ 10 the
strong coupling series no longer predicts hPi accurately, and the
theory crosses over to the weakly coupled phase.
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FIG. 2 (color online). The average plaquette as a function of
the bare coupling for Nc ¼ 4 and 6 on various lattice sizes. For
SU(4) on a lattice with Nt ¼ 4 there is a jump in hPi at �c ¼
10:48 where the first-order thermal phase transition occurs with a
jump in hjLji. However, at larger Nt there is no jump in hPi. For
SU(6) there is a jump in hPi at all Nt. ForNt ¼ 4 the jump occurs
at the thermal phase transition, but at all other Nt the bulk and
thermal transitions are decoupled.
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Fig. 2). This is a known phenomenon [5,6]. Since the bulk
transition must occur at a fixed lattice spacing, it is natural
to expect that by changing Nt the bulk and the thermal
transitions can be decoupled. It was found [7] that at larger
Nt these transitions do separate out (see Fig. 3). Therefore,
our strategy in this paper is to study larger Nt, where the
thermal transition is in the weak-coupling regime, and use
these studies to take the continuum limit.

III. DECONFINEMENT TRANSITION

The abrupt change of hjLji shown in Fig. 3 indicates that
the finite temperature transition could be of first order.
Clear evidence of the coexistence of phases labeled by
the value of hLi is obtained from the distribution of L. In
simulations of the SU(4) theory close to �c we found that
the system is equally likely to be in the phase with L ¼ 0
and in four phases with the same hjLji but different phase
angles (Fig. 4). Hence the histogram of jLj shows two
peaks, one close to zero and another elsewhere. A scatter
plot of L measured on each gauge field configuration also
shows four distinct populations. All these observations are

consistent with a first-order phase transition. The extrac-
tion of the jump in hLi at Tc needs the renormalized
Polyakov loop [17] and hence lies beyond the scope of
this study.
For more accurate determination of �c we defined this

coupling by the position of the maximum of the suscepti-
bility of jLj,

�L ¼ N3
s fhjLj2i � hjLji2g: (5)

For the exploratory runs marked in Table I, �c is estimated
from the position of the peak of the values of �L found in a
scan over �, and its quoted error is the spacing in the scan
of �. In all the remaining cases, the objective was preci-
sion, and maximum of �L was determined through multi-
histogram reweighting [18]. The errors on �L were defined
through a bootstrap procedure combined with the re-
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FIG. 3 (color online). hjLji and hPi at functions of � on 6�
183 and 6� 243 lattices for SU(4). A rapid change at �c ¼
10:78 is seen in hjLji, whereas hPi is continuous. For Nt > 4 the
bulk and thermal transitions are decoupled for all Nc, as shown
by this kind of observation.
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FIG. 4 (color online). A first-order transition, i.e., the coex-
istence of phases, with different values of hjLji, is signaled by a
multipeaked histogram of jLj and the fact that the scatter plot of
L in the complex plane shows 5 well developed dense regions—
L ¼ 0 and four complex values of L. Here we show these
features at a coupling where all five coexisting phases for the
SU(4) theory have large weight. In the upper panel, the dip of the
histogram around jLj � 0:03 becomes deeper with increasing
volume.
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weighting. Such analysis requires very large statistics,
which is available to us, as shown in Table VI.
A final verification of the order of the transition and the

determination of the critical coupling, �c, require finite
size scaling [19]. At a first-order transition the maximum
value of �L as a function of � should scale as N3

s , i.e.,

�m
L ðN3

s Þ ¼ �N3
s þ 	þOðN�3

s Þ; (6)

when N3
s is large enough. Also, the position of the peak,

which is our estimate of�c at finite volume, should scale as

�cðN3
s Þ ¼ �c þ 
N�3

s þOðN�6
s Þ; (7)

as one approaches the thermodynamic limit, Ns ! 1. A
different definition of �cðN3

s Þ, such as the one where the
Nc þ 1 different peaks in L have equal weight, could give a
different result at finite N3

s through a change in 
. Finite
volume scalings as in Eqs. (6) and (7) were observed in
SU(3) gauge theory [3]. The asymptotic region sets in
when the lattice size is much larger than the longest
correlation length in the system. In this asymptotic region
one expects exponentially slow sampling through a stan-

dard Monte Carlo procedure, �int / expð�V2=3Þ [20]. As a
result, one might expect that as the transition becomes
stronger it becomes harder to do a finite size scaling
analysis because of an increase in �, but the asymptotic
finite volume corrections, 	 and 
, also become relatively
smaller.
The variation of �L with � obtained through a bootstrap

multihistogram analysis is shown for the SU(4) theory with
Nt ¼ 6 and 8 in Fig. 5. The position of the peak of �L, i.e.,
�c, is very stable on the largest lattices used, as shown in
Fig. 6. It seems that on the two or three largest lattices one
enters the region of asymptotic finite size scaling where the
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FIG. 5 (color online). Reweighting analyses of �L for SU(4)
gauge theory shows that on the larger lattices the maximum
scales with the lattice volume, N3

s , indicating a first-order phase
transition. The analysis is shown for both Nt ¼ 6 and 8.

 2.7

 2.8

 2.9

 3

 3.1

 3.2

 3.3

 0.02  0.03  0.04  0.05

   
 /(

V
T

  )5
Lχ

1/(VT  )3

Nt=8
Nt=6

 10.782

 10.784

 10.786

 10.788

 11.074

 11.076

 11.078

 11.080

 0.01  0.02  0.03  0.04  0.05  0.06

cβ

1/(VT  )
3

Nt=6

Nt=8

FIG. 6 (color online). Finite size scaling for SU(4) gauge theory for Nt ¼ 6 (boxes) and 8 (circles). The left-hand panel shows the
maximum of �L=ðVT5Þ as a function of 1=ðVT3Þ. The right-hand panel shows �c as a function of 1=ðVT3Þ. On the largest spatial
volumes, the maximum scales as V, as expected for a first-order phase transition. On the same volumes �c reaches a limit which is its
thermodynamic value.
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formulas in Eqs. (6) and (7) become applicable. The values
of �c for Nt ¼ 6 and 8, shown in Table II, are obtained by
fitting Eq. (7) with the constraint 
 ¼ 0 to data on the three
largest volumes at each Nt. If 
 is allowed to vary freely
then the best fit changes by at most the quoted error and we
find 
 ¼ �14� 14 for Nt ¼ 6 and 
 ¼ �32� 38 for
Nt ¼ 8 [21].

For the SU(4) theory with Nt ¼ 10 and 12 we have
performed simulations on only one lattice volume, as
shown in Table I. While the multihistogram reweighting
analysis allows us to find �c at this volume with good
precision, an extrapolation to the thermodynamic limit is
not yet possible. If we were to assume that 
 ¼ 0, as in the
two smallerNt sets we discussed above, then we can ignore
the finite volume shift. However, for Nt ¼ 10 and 12 we
use � smaller than the lattices which gave 
 ¼ 0 for Nt ¼
6 and 8, so there may be some finite volume shift. To
estimate this, albeit crudely, we fitted Eq. (7) to our data
on the three smallest volumes for Nt ¼ 6 and 8, and
extrapolated 
 to Nt ¼ 10 and 12 using a scaling formula
for 
 in [7]. According to this analysis, the thermodynamic
limit of�c is within twice the error quoted forNt ¼ 10 and
within the quoted errors for Nt ¼ 12.

SU(6) follows the same trend. For all Nt, one has all the
qualitative features of a strong first-order phase transi-
tion—multiple coexisting phases (6 ordered phases and
one disordered in this case) and long autocorrelation times
determined by the tunneling rate from one phase to an-
other, growing rapidly with volume. The phase transition is
even stronger than SU(4), and a finite size scaling analysis
is more delicate.

In Fig. 7 we show the multihistogram reweighting analy-
sis for SU(6). Note that the aspect ratios used in this
analysis are smaller than those for SU(4). This is forced
on us because the transition is stronger, and therefore �int
grows faster with V. In fact, statistical problems already
begin to show up at the largest V forNt ¼ 6; the run at� ¼
24:85 has statistically too few tunnelings, since it lies right
at the edge of the region of metastability for these lattices.
For this system we examined the stability of the analysis
through the comparison of the multihistogrammethod with
seven and three histograms. As shown in Fig. 7, the peak is

unambiguously determined, since the values of �m
L in the

two analyses are compatible, as are the estimates of �c.
The reason for the absence of a large systematic error at the
peak is that the scan in � is fine enough, so that there are

TABLE II. The critical couplings, �c, for the first-order thermal phase transition for different
Nc and different temporal lattice sizes, Nt. Error estimates which are marked by an asterisk are
not statistical, as discussed in the text. The results for Nc ¼ 3 were found in [3]. For Nc > 3 the
transition for Nt ¼ 4 falls in the region of the strong- to weak-coupling crossover, making it hard
to distinguish the bulk from the thermal phase transition.

Nc Nt ¼ 4 Nt ¼ 6 Nt ¼ 8 Nt ¼ 10 Nt ¼ 12

3 5.6925 (2) 5.8940 (5) 6.0609 (9)

4 10.788 (1) 11.078 (1) 11.339 (4) 11.552 (17)

6 24.838 (1) 25.470 (3) 26.0 (1*)

8 44.7 (2*) 45.8 (2*)

10 70.5 (15*) 73 (2*)
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FIG. 7 (color online). Reweighting analyses of �L for SU(6)
gauge theory shows that on the larger lattices the maximum
scales with the lattice volume, V, indicating a first-order phase
transition. Also shown is a multihistogram analysis on the largest
lattice with seven and three input simulations, demonstrating the
stability of the estimate of �c.
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enough other histograms to compensate for the one which
is improperly sampled.

Our simulations of SU(8) and SU(10) pure gauge theory
at finite temperature were purely exploratory, being re-
stricted to a single volume at each Nt. The value of �c

that we estimate, along with the error bounds given by the
scan in � are quoted in Table II.

In Fig. 8 we plot these results as a function for Nc at
fixed lattice spacing a ¼ 1=ðNtTcÞ for Nt ¼ 6 and 8. We
see that a good description of our observations is obtained
by a two-term extrapolation to the large-Nc limit,

�c

N2
c

¼ �� þ �0�
N2

c

: (8)

The quantity �� is expected to increase without bound as
Nc ! 1. The first correction term, of order 1=N2

c , provides
a sufficient description of the data even at Nc ¼ 3. This
scaling check shows that for each cutoff, a ¼ 1=ðNtTÞ one
has a large Nc theory which is nontrivial in the limit g2Nc

fixed, i.e., �=N2
c fixed.

Note that in the best cases we have achieved accuracies
of a few parts in 104 in the measurement of �c. Next we
turn to the continuum extrapolation of these measurements
and the determination of the temperature scale.

IV. RENORMALIZED COUPLING AND THE
TEMPERATURE SCALE

Pure gauge SUðNcÞ theory contains a single dimension-
less parameter, the coupling, �S ¼ g2=4�. Quantum cor-
rections change this into a scale. This can be specified
explicitly, as the parameter �, or implicitly, as the value
of the running (renormalized) coupling �Sð�Þ at a chosen
momentum scale �. At scales where �S is small, pertur-
bation theory is expected to work. In that case, changes of
the scale of measurements can be accomplished through
the use of perturbation theory. In particular, extrapolation
of results to the continuum can then be done with ease.
The two-loop RGE can be integrated to trade the running

coupling �Sð�Þ for a mass scale,

a� ¼ kR

�
1

4��0�S

�
; where RðxÞ ¼ expð�x=2Þx�1=ð2�2

0Þ;

(9)

where k depends on the coupling �S that enters into these
equations. This coupling is measured by some operator
dominated by the ultraviolet scale 1=a. Each such defini-
tion of �S defines a RG scheme. The function R is obtained
by integrating the two-loop beta function,

��ðgÞ ¼ �
dg

d�
¼ ��0g

3 � �1g
5; (10)

where �0 and �1 are well-known [22]. These coefficients
are independent of the scheme. Since T ¼ 1=ðaNtÞ, and we
have a determination of Tc for different Nt, by making
appropriate lattice measurements of�S we can measure the
temperature scale, T=Tc. At the same time, one could use
Eq. (9) to determine the QCD scale �MS in terms of Tc.

In order to complete this process, we need to define �S.
Two schemes are easily implemented on the lattice. One is
the V scheme [15], in which the potential extracted from
Polyakov loop correlations is used to define the renormal-
ized coupling. Equivalently, at two-loop order accuracy,
the weak-coupling expansion of the plaquette [23] can be
inverted to find �V

� lnhPi ¼ �CF�VðqÞ
�
1� 11Nc

12�
ln

�
6:7117

aq

�
2
�VðqÞ

�

(11)

where CF ¼ ðN2
c � 1Þ=ð2NcÞ and q ¼ k=a, where k is the

same number which is used in Eq. (9). In this scheme k ¼
3:4018 [15]. Since hPi is easily measured and needed for
thermodynamic quantities, we prefer to use Eq. (11) as a

 0.64
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FIG. 8 (color online). �c for different number of colors, on
Nt ¼ 6 and 8 lattices.
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definition of �V rather than through a separate measure-
ment of the potential. The other definition is the E scheme,
in which the coupling is defined from the plaquette through
the formula

1� hPi ¼ �CF�EðqÞ; (12)

where q ¼ 1=a, i.e., k ¼ 1. If the weak-coupling expan-
sion were exact, and known to all orders, then there would
be no difference between the couplings determined in these
two schemes at any cutoff, provided that �V (or �E) were
small enough. Since this is not the case, one must explore
RG scheme dependence. A third scheme that we utilize is

theMS scheme defined through dimensional regularization
of the continuum perturbation theory. The known expan-
sion of �V in terms of �MS [24] is used to obtain the latter

using the two-loop relation

�MSðq0Þ ¼ �VðqÞ
�
1þ 2Nc

3�
�V

�
; (13)

where q0 ¼ expð�5=6Þq [25]. In other words, k ¼ 1:4784

for the MS scheme.
The values of the plaquette at zero temperature are

measured on the grid of � shown in Tables VII and VIII.
They are obtained at other points using Lagrange interpo-
lation with polynomials of orders between 1 and 4, and
through a cubic spline interpolation. By using such a
variety of interpolation schemes we quantify the system-
atic error in the interpolation at any � as the widest
dispersion between these schemes. For SU(4) and SU(6)
on lattices with Nt � 6, this systematic error is smaller

than, or of the same order as, the statistical error in the
measurement of the plaquette. For SU(8) and SU(10), the
systematic error is larger than the statistical error. These
lead to statistical and systematic errors in the determination
of the running coupling of the order of a few parts in 105.
However, when we determine a scale, the largest error is
that which comes from the determination of �c.
A test of the weak-coupling expansion for the scale, and

the scheme dependence in this, is provided by using the
determination of �c for one Nt to predict that at a different
Nt. Since we have measurements for Nt ¼ 6, 8 and 10 for
SU(4) and SU(6), we have chosen to examine the tempera-
ture predicted by the one-loop and two-loop RGEs for the
Nt ¼ 6 and 10 lattices at the �c corresponding to the Nt ¼
8 lattice. This is shown in Table III. Note that the error of
roughly one part in 104 in the determination of �c trans-
lates into an error of about one part in 103 in the determi-
nation of the temperature scale in the range of temperatures
we explore here. Since the accuracy of this error estimate is
important in our later reasoning, we performed it by two
different methods: first by the usual methods of propagat-
ing errors, and then again through a bootstrap analysis. The
two errors agreed within 10%, indicating that the estimates
are robust. The errors quoted in Table III come from the
bootstrap analysis.
Some systematics visible in Table III is worth explicit

comment. The one-loop RG already is close to the exact
result, but in all cases performs worse than the two-loop
RG. This is expected. Also the RG flow between �cðNt ¼
10Þ and �cðNt ¼ 8Þ is better than that between �cðNt ¼ 6Þ
and �cðNt ¼ 8Þ. Indeed, for SU(4), where the test is most
stringent, the former agrees with the exact nonperturbative
result to about 1:5� in the V scheme, and to about 3–4� in

TABLE III. The values of T=Tc at the coupling �cðNt ¼ 8Þ, for SUðNcÞ gauge theory for
different Nt, in different RG schemes, and at different loop orders. The entries give the central
value, the statistical error propagated from the uncertainty in �cðNtÞ, the statistical error from
plaquette measurements, and systematic errors from interpolations of plaquette values. For Nt ¼
6 the exact nonperturbative result is T=Tc ¼ 1:33, and for Nt ¼ 10 it is T=Tc ¼ 0:80.

Nc Nt Scheme 2-loop 1-loop

4

6
E 1.297 09 (167) (7) (1) 1.323 33 (184) (8) (1)

V 1.307 82 (174) (8) (1) 1.353 39 (204) (9) (2)

MS 1.300 57 (169) (7) (1) 1.350 68 (202) (9) (1)

10
E 0.808 85 (265) (5) (0) 0.796 32 (280) (5) (0)

V 0.804 42 (270) (5) (0) 0.783 81 (294) (5) (1)

MS 0.807 57 (267) (5) (1) 0.785 17 (292) (5) (0)

6

6
E 1.305 04 (165) (10) (3) 1.331 90 (181) (11) (4)

V 1.316 75 (172) (10) (4) 1.364 76 (200) (12) (4)

MS 1.309 16 (167) (10) (3) 1.361 30 (198) (12) (4)

10
E 0.818 84 (2993) (4) (1) 0.806 95 (3161) (4) (1)

V 0.814 35 (3052) (4) (1) 0.794 52 (3324) (4) (1)

MS 0.817 40 (3011) (4) (1) 0.795 83 (3307) (4) (1)
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the other schemes. The implication is that Nt ¼ 8 is al-
ready in a regime where the weak-coupling extrapolation
to the continuum works, but Nt ¼ 6 may be just a little
outside this regime. The scheme dependence is most sig-
nificant when the two-loop RGE is least reliable, but is less
than 1% in all cases.

The one-loop temperature scale is shown in Fig. 9 in the
V scheme for a large range of lattice spacings. While this
works reasonably well, the improvement in going to two-
loops, shown in Fig. 10, is obvious. The cutoff effects are
small on this scale already for Nt ¼ 5. The two-loop
temperature scale in the V scheme for Nt ¼ 6 and 8 are
collected together in Table IX for future reference. As
discussed already, the scale for Nt ¼ 8 is more reliable,
and should be used for extrapolations. The scale forNt ¼ 6
serves to give a rough indication of the kind of systematic
errors to be expected: as one can see the difference between
these two scales is roughly of 2%.

We have argued here that the continuum extrapolation
from Nt ¼ 8 or 10 can be performed using the weak-
coupling expansion. In weak coupling the reference scale
that is used is �MS and not Tc. Our analysis above gave us

the scales �E and �V . These can be converted into �MS

[26,27],

�MS

�E

¼ exp

�
6�

11

�
1:622 268� �

4N2
c

��
;

�MS

�V

¼ exp

�
� 31

66

�
:

(14)

Using this and the determinations of�c, we can convert the
nonperturbative scale Tc into a specification of �MS in

three different schemes.
The test of two-loop RGE in Table III showed that this

was fairly accurate already at the lattice spacing corre-
sponding to �c for Nt ¼ 8 and 10. Therefore it is no
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FIG. 9 (color online). One-loop renormalization group flow for
Nc ¼ 4 and 6 in the V scheme. The data on �c for Nt ¼ 5 are
taken from [7]. If the RG were adequate, then the curves for
different Nt would lie on top of each other. The accuracy of the
one-loop flow improves with increasing Nt.
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FIG. 10 (color online). Two-loop renormalization group flow
for Nc ¼ 4 and 6 in the V scheme. The data on �c for Nt ¼ 5 are
taken from [7]. Good scaling behavior is obtained when the
curves for different Nt lie on top of each other. Excellent scaling
is obtained for Nt ¼ 8 and 10.
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surprise that to the same degree of accuracy the ratio
Tc=�MS is constant when evaluated at Nt � 8. However,
the scheme dependence is much larger for�MS than for the

temperature scale. This happens because the renormalized
coupling is not small enough for Eqs. (14) to hold. One
could correct these formulas by explicitly including two-
loop or higher order correction terms. However, then the
ratio Tc=�MS would depend on the scale a. This can be

avoided only when �S becomes substantially smaller.
However, since �S runs logarithmically with a, that would
imply that one has to use lattice spacings which are about
10 times smaller. This is currently outside the reach of our
computational abilities.

For SU(3) the range of accuracy of the RGE can be
extended by including into it corrections of order a2 [28].
This seems to be possible for Nc > 3 too. When we com-
pare Tc=�MS extracted for all Nt, it seems possible to fit

this to a simple a2 variation. In principle this term can be
used to add an Oða2Þ correction to the two-loop beta
function by changing RðxÞ in Eq. (9) to RðxÞ½1þ �=N2

t �.
We evaluate these corrections by a fit to the lattice spacing
dependence of Tc=�MS which renders this ratio flat in the

whole range of a, i.e., we choose the fit form

Tc

�MS

��������Nt

¼ Tc

�MS

þ �

N2
t

: (15)

Statistically significant results can only be obtained for

Nc � 6. Our results for the fit are given in Table IV. One
can compare these with the estimate Tc=�MS ¼ 1:187�
0:009 obtained by combining estimates of Tc=

ffiffiffiffi
�

p
(where

� is the string tension) and
ffiffiffiffi
�

p
=�MS reported in [7,29].

The estimation of
ffiffiffiffi
�

p
=�MS removes Oða2Þ corrections, as

we do here. We note that such a term sums many different
types of corrections and amounts to a phenomenological fit
of the beta function, i.e., gives what is called the non-
perturbative beta function. For this reason it cannot be
regarded as a test of scaling.
The continuum values for Tc=�MS, obtained assuming

that this ratio is constant for lattice cutoffs a � 1=ð8TcÞ,
are collected in Table V. Note that there are large and
statistically significant differences between these results
and those in Table IV. Since the latter results constitute a
check of two-loop RGE, and the best possible extraction of
�MS, they are to be preferred for this purpose. For SU(3)

we have performed a reanalysis of the data which was used
in [4] without the Oða2Þ terms from [28]. This makes the
analysis uniform for all Nc. Note that the dependence on
Nc is weak. We have added indicative values of this ratio
extrapolated to the limit Nc ! 1. Since a statistical analy-
sis is not possible, we have not added error bars to this
extrapolation. Note that the strong scheme dependence,
which we discussed before, propagates to the Nc ! 1
limit.
In summary, the two-loop renormalization group equa-

tions work well for a � 1=ð8TcÞ, i.e., at the level of 1%–
2%. Since the largest part of this uncertainty stems from
the RG scheme dependence, higher order corrections in the
perturbation series for the plaquette could easily improve
this description. However, trading the nonperturbative
scale Tc for the perturbatively determined scale �MS is

not yet possible to better than 5%–10%. Improving this
would require using lattice spacings which are beyond
reach today.

V. CONCLUSIONS

In this paper we studied the finite temperature phase
transition in SU(4), SU(6), SU(8) and SU(10) pure gauge
theories at several lattice spacings and extrapolated the
results to the continuum. In all these theories at large lattice

TABLE IV. Fitted parameters for the nonperturbative beta function in the form of Eq. (15).
Here Tc=�MS must be considered as a formal fit parameter. Data from all available lattice

spacings 1=ð12TcÞ � a � 1=ð6TcÞ have been used. For Nc ¼ 3 data from a ¼ 1=ð4TcÞ has also
been used.

E scheme V scheme MS scheme

Nc Tc=�MS c2 Tc=�MS c2 Tc=�MS c2

3 1.16 (2) 2.7 (7) 1.11 (2) 1.9 (7) 1.17 (2) 2.5 (7)

4 1.198 (1) 2.49 (5) 1.129 (2) 1.61 (5) 1.203 (2) 2.23 (5)

6 1.193 (1) 1.98 (9) 1.120 (2) 1.05 (9) 1.193 (2) 1.67 (9)

TABLE V. Tc=�MS in the continuum limit of SUðNcÞ gauge
theory for Nc ¼ 3, 4, 6, 8, in different schemes using two-loop
RGE for a � 1=ð8TcÞ. These values of Tc=�MS are appropriate

for use in a two-loop computation.

Nc E scheme V scheme MS scheme

3 1.19 (3) 1.12 (3) 1.20 (2)

4 1.235(1) 1.153(1) 1.236(1)

6 1.222(1) 1.135(1) 1.217(1)

8 1.26(6) 1.17(5) 1.25(6)

10 1.48(41) 1.38(39) 1.48(41)

1 1.22 1.13 1.22
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spacing, a ’ 1=ð4TcÞ, a lattice artifact called the bulk
phase transition prevents a simple study of finite tempera-
ture physics. The order parameter of the bulk transition is
the plaquette average, hPi, whereas that of the finite tem-
perature transition is the Polyakov loop expectation value,
hjLji. The bulk transition is expected to occur at a (ap-
proximately) fixed lattice spacing. We studied these theo-
ries at smaller lattice spacings, a � 1=ð6TcÞ, and found
that in all cases the finite temperature phase transition can
be studied without any interference from the bulk transition
(see Fig. 3, for example). More details are reported in
Sec. II.

We found a first-order finite temperature transition for
all these theories. This was established not only by clear
signals of multiple coexisting phases labeled by different
values of hjLji, but, in several cases, also by finite size
scaling tests. These studies and also multihistogram re-
weighting at fixed volumes allowed us to locate the phase
transition with precision which was in many cases as good
as a few parts in 104. Our results on the finite temperature
phase transition are given in Sec. III, and the locations of
the phase transition are collected together in Table II.

We investigated the continuum extrapolation of our
lattice results and found that when the lattice spacing is
a � 1=ð8TcÞ then the two-loop RGE can be used to take
the continuum limit. In order to do this one has to use a
definition of the renormalized (running) coupling, called a
RG scheme. We found that when the location of the phase
transition at one lattice spacing is used to predict that at
another, then the dependence on the RG scheme is small
(see Table III): the statistical precision is about one part in
103, but the scheme dependence is about 2%. This allows
us to construct a temperature scale with this degree of
precision using the nonperturbatively obtained mass scale,
Tc. Since the scheme dependence is the largest part of the
uncertainty, higher order corrections will reduce this error.

This is the first instance of a large Nc lattice calculation
which has reached precisions good enough to test the state
of the art in the weak-coupling expansion. Details of
these tests can be found in Sec. IV. One useful result is
the determination of the temperature scale in SU(4) and
SU(6) gauge theories (Table IX).
We tried to use two-loop perturbation theory to trade the

scale Tc for the scale�MS which is more commonly used in

weak-coupling expansions, and found that the scheme
dependence becomes significantly more pronounced. The
extraction of �MS by this means gave statistical errors

comparable to the temperature scale, but RG scheme de-
pendence of about 10%. A large scheme dependence in
trading a nonperturbative scale such as Tc for the pertur-
bative scale �MS is bound to persist in all foreseeable

lattice computations.
We found that two results can be easily extrapolated to

the limitNc ! 1. The location of the critical point at fixed
lattice spacing a ¼ 1=ðNtTcÞ goes as �� þOð1=N2

cÞ for
Nc � 3 (see Fig. 8). For Tc=�MS the series could be

shorter; we find no statistically significant dependence of
Tc=�MS on Nc in any of the three RG schemes that we

studied (see Table V).
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APPENDIX: SOME DETAILS

Some details of the simulations and detailed tables
(Tables VI, VII, VIII, and IX) of some of our results are
collected in this appendix.
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TABLE VI. The statistics (in 106 of composite sweeps) used in the reweighting analysis for �c

in SUðNcÞ gauge theory. Also quoted is the integrated autocorrelation time. Studies at Nt ¼ 10
and 12 have been carried out with statistics of 4� 105 composite sweeps, where �int varied
between 500 and 1000 sweeps.

Nc ¼ 4 Nc ¼ 6
Nt ¼ 6 Nt ¼ 8 Nt ¼ 6 Nt ¼ 8

Ns � Statistics �int � Statistics �int � Statistics �int � Statistics �int

14 24.80 2.14 7354

24.81 1.94 9391

24.82 2.05 10 538

24.83 1.94 12 349

24.84 1.94 12 113

24.85 2.05 9428

24.86 2.01 7747

16 10.77 1.56 2367 24.80 2.26 4388

10.78 4.5 3188 24.81 3.88 12 602

10.79 1.56 3780 24.82 2.29 14 827

10.80 2.6 2566 24.83 2.74 15 582

24.84 2.34 16 984

24.85 4.24 15 854

24.86 0.89 7907

18 10.77 0.92 3263 24.80 3.75 2486

10.78 0.88 6944 24.81 3.69 315

10.79 0.88 5944 24.82 3.62 15 585

10.80 1.8 4564 24.83 3.68 18 409

24.84 4.23 18 376

24.85 3.62 3861

24.86 2.70 4175

20 10.77 2.8 2850 25.42 1.46 5533

10.78 2.9 6445 25.44 0.90 11 482

10.79 2.8 8192 25.46 0.64 15 773

10.80 4.4 5806 25.48 2.31 15 951

25.50 1.44 15 117

22 10.77 2.1 3621 11.06 3.1 5472

10.78 2.1 6737 11.08 2.9 7019

10.79 2.1 10700

10.80 3.4 5256

24 10.77 0.12 1452 11.06 1.08 5959

10.78 2.9 9063 11.08 1.1 9821

10.79 2.8 13 614

10.80 2.8 4475

28 11.06 1.5 6753

11.08 1.4 11 935

30 11.06 1.2 2308

11.08 1.2 15 251
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TABLE VII. Plaquette expectation values for SU(4) and SU(6). The numbers in brackets denote errors on the least significant digits.
Note that the volume dependence is negligible.

SU(4) SU(6)

� hPi � hPi
Ns ¼ 16 Ns ¼ 18 Ns ¼ 24 Ns ¼ 16 Ns ¼ 20 Ns ¼ 24

10.40 0.502 033(46) 0.501 991(29) 0.502 136(18) 24.60 0.537 686(30)

10.46 0.520 680(25) 0.520 728(23) 0.520 673(16) 24.70 0.542 241(24)

10.48 0.525 249(12) 0.525 254(16) 0.525 259(7) 24.80 0.546 406(9)

10.50 0.529 260(25) 0.529 268(17) 0.529 274(15) 24.82 0.547 189(10)

10.52 0.532 786(15) 0.532 749(20) 0.532 773(11) 24.84 0.547 981(6)

10.54 0.535 885(9) 0.535 903(16) 0.535 903(12) 24.86 0.548 764(9)

10.60 0.543 796(10) 0.543 778(12) 0.543 790(7) 24.88 0.549 532(8)

10.70 0.554 088(7) 0.554 097(10) 0.554 092(4) 24.90 0.550 292(7)

10.76 0.559 352(8) 0.559 341(5) 24.92 0.551 042(6)

10.78 0.561 000(4) 0.561 005(10) 0.561 000(5) 25.00 0.553 961(3)

10.79 0.561 805(8) 0.561 799(4) 25.10 0.557 459(5)

10.80 0.562 606(7) 0.562 605(5) 0.562 602(3) 25.20 0.560 805(4)

10.82 0.564 167(7) 0.564 166(8) 0.564 169(4) 25.30 0.564 026(4) 0.564 012(4) 0.564 015(3)

10.84 0.565 700(8) 0.565 689(5) 0.565 702(3) 25.40 0.567 126(4) 0.567 119(2) 0.567 120(3)

10.90 0.570 122(5) 0.570 123(4) 0.570 120(3) 25.42 0.567 727(3) 0.567 727(2)

11.00 0.576 972(5) 0.576 979(5) 0.576 984(3) 25.44 0.568 332(3) 0.568 329(3)

11.02 0.578 291(5) 0.578 286(4) 25.46 0.568 933(3) 0.568 931(3)

11.04 0.579 577(4) 0.579 580(3) 25.48 0.569 522(3) 0.569 527(3)

11.06 0.580 859(5) 0.580 851(4) 25.50 0.570 130(5) 0.570 123(4) 0.570 119(3)

11.08 0.582 117(5) 0.582 109(4) 25.52 0.570 709(3) 0.570 708(2)

11.10 0.583 361(5) 0.583 369(3) 0.583 363(3) 25.54 0.571 293(4) 0.571 294(2)

11.20 0.589 361(4) 0.589 357(3) 0.589 360(2) 25.56 0.571 880(3) 0.571 877(3)

11.30 0.595 051(3) 0.595 043(4) 0.595 051(2) 25.60 0.573 043(3) 0.573 031(3) 0.573 031(2)

11.50 0.605 665(5) 0.605 652(4) 0.605 650(2) 25.70 0.575 876(4)

11.60 0.610 655(6) 0.610 643(4) 0.610 630(3) 25.80 0.578 631(3) 0.578 620(3) 0.578 616(3)

25.90 0.581 321(4)

26.00 0.583 937(5) 0.583 925(4) 0.583 921(4)

26.10 0.586 506(6) 0.586 487(3) 0.586 485(3)

TABLE VIII. Plaquette expectation values for SU(8) and SU(10), measured on 164 lattices.
The numbers in brackets are errors on the least significant digit.

SU(8) SU(10)

� hPi � hPi
44.50 0.542 133(9) 68.00 0.376 818(6)

44.80 0.548 772(6) 70.00 0.542 542(8)

45.00 0.552 860(7) 71.00 0.554 874(8)

45.20 0.556 747(5) 72.00 0.567 207(8)

45.50 0.562 252(4) 74.00 0.586 693(5)

46.00 0.570 739(4) 76.00 0.603 381(7)
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TABLE IX. T=Tc scales for SU(4) and SU(6) gauge theories in the V scheme, for Nt ¼ 6 and
8. The errors are dominated by the uncertainty in the determination of �c.

SU(4) SU(6)

� Nt ¼ 6 Nt ¼ 8 � Nt ¼ 6 Nt ¼ 8

10.70 0.9106(9) 0.6963(6) 24.60 0.8841(4) 0.6714(8)

10.72 0.9311(9) 0.7119(6) 24.70 0.9335(5) 0.7089(9)

10.74 0.9513(10) 0.7274(6) 24.80 0.9818(5) 0.7456(9)

10.76 0.9716(10) 0.7429(6) 24.82 0.9913(5) 0.7529(9)

10.77 0.9817(10) 0.7507(7) 24.84 1.0010(5) 0.7602(9)

10.78 0.9920(10) 0.7585(7) 24.85 1.0059(5) 0.7640(9)

10.79 1.0020(10) 0.7662(7) 24.86 1.0107(5) 0.7675(9)

10.80 1.0122(10) 0.7740(7) 24.88 1.0204(5) 0.7749(9)

10.82 1.0326(10) 0.7895(7) 24.90 1.0301(5) 0.7823(9)

10.84 1.0530(11) 0.8052(7) 24.92 1.0397(5) 0.7896(10)

10.90 1.1151(11) 0.8526(7) 25.00 1.0786(5) 0.8191(10)

11.00 1.2215(12) 0.9340(8) 25.10 1.1277(6) 0.8564(10)

11.02 1.2433(13) 0.9506(8) 25.20 1.1775(6) 0.8943(11)

11.04 1.2654(13) 0.9675(8) 25.30 1.2282(6) 0.9327(11)

11.06 1.2876(13) 0.9845(9) 25.34 1.2487(6) 0.9483(11)

11.08 1.3101(13) 1.0017(9) 25.38 1.2695(6) 0.9641(12)

11.10 1.3331(13) 1.0193(9) 25.40 1.2799(6) 0.9720(12)

11.12 1.3559(14) 1.0368(9) 25.42 1.2904(6) 0.9800(12)

11.14 1.3791(14) 1.0545(9) 25.44 1.3008(6) 0.9879(12)

11.16 1.4028(14) 1.0726(9) 25.46 1.3114(7) 0.9960(12)

11.18 1.4265(14) 1.0908(10) 25.48 1.3221(7) 1.0040(12)

11.20 1.4507(15) 1.1092(10) 25.50 1.3327(7) 1.0121(12)

11.22 1.4748(15) 1.1276(10) 25.52 1.3434(7) 1.0202(12)

11.24 1.4996(15) 1.1466(10) 25.54 1.3542(7) 1.0284(12)

11.26 1.5243(15) 1.1655(10) 25.56 1.3650(7) 1.0366(13)

11.28 1.5496(16) 1.1849(10) 25.60 1.3868(7) 1.0532(13)

11.30 1.5755(16) 1.2046(10) 25.80 1.4989(7) 1.1383(14)

11.32 1.6010(16) 1.2242(11) 25.90 1.5573(8) 1.1827(14)

11.34 1.6271(16) 1.2441(11) 26.00 1.6169(8) 1.2280(15)

11.36 1.6537(17) 1.2645(11) 26.20 1.7415(9) 1.3226(16)

11.38 1.6804(17) 1.2849(11) 26.40 1.8727(9) 1.4222(17)

11.40 1.7077(17) 1.3058(11) 26.60 2.0119(10) 1.5279(18)

11.42 1.7351(17) 1.3267(12) 27.00 2.3149(11) 1.7581(21)

11.44 1.7629(18) 1.3479(12) 27.50 2.7474(14) 2.0865(25)

11.46 1.7911(18) 1.3696(12)

11.48 1.8197(18) 1.3914(12)

11.50 1.8486(19) 1.4135(12)

11.60 1.9988(20) 1.5283(13)

11.70 2.1590(22) 1.6508(14)

11.80 2.3300(23) 1.7816(15)

11.90 2.5126(25) 1.9212(17)

12.00 2.7076(27) 2.0703(18)

12.20 3.1390(32) 2.4001(21)

12.40 3.6320(37) 2.7771(24)
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