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The masses of the low-lying baryons are evaluated using two degenerate flavors of twisted mass sea

quarks corresponding to pseudoscalar masses in the range of about 270–500 MeV. The strange valence

quark mass is tuned to reproduce the mass of the kaon in the physical limit. The tree-level Symanzik

improved gauge action is employed. We use lattices of spatial size 2.1 and 2.7 fm at two values of the

lattice spacing with r0=a ¼ 5:22ð2Þ and r0=a ¼ 6:61ð3Þ. We check for both finite volume and cutoff

effects on the baryon masses. We performed a detailed study of the chiral extrapolation of the octet and

decuplet masses using SU(2) �PT. The lattice spacings determined using the nucleon mass at the physical

point are consistent with the values extracted using the pion decay constant. We examine the issue of

isospin symmetry breaking for the octet and decuplet baryons and its dependence on the lattice spacing.

We show that in the continuum limit isospin breaking is consistent with zero, as expected. The baryon

masses that we find after taking the continuum limit and extrapolating to the physical limit are in good

agreement with experiment.
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I. INTRODUCTION

In the last couple of years an intense and successful
effort in extending unquenched lattice calculations toward
realistic values of quark masses, small lattice spacings, and
large volumes has been undertaken using a variety of
algorithmic techniques and lattice actions. A review of
the salient features of the various discretization schemes
currently employed can be found in Ref. [1]. Of particular
relevance to the current work are the calculations of the
low-lying baryon spectrum using two degenerate flavors
(Nf ¼ 2) of light dynamical quarks. Such studies have

been carried out by the MILC Collaboration [2,3] using
Kogut-Susskind fermions and by the European Twisted
Mass Collaboration (ETMC) [4] for the nucleon (N) and
� baryons using twisted mass fermions. There are also
baryon mass calculations using two degenerate flavors of
light quarks and a strange quark with the mass tuned to its
physical value (Nf ¼ 2þ 1) mainly using clover improved

Wilson fermions with different levels of smearing, such as
the calculation of the nucleon mass by the QCDSF-
UKQCD Collaboration [5], and the evaluation of the octet
and decuplet spectrum by the PACS-CS [6] and BMW [7]
Collaborations. The LHP Collaboration computed the octet
and decuplet spectrum using a hybrid action with domain
wall valence fermions on asqtad improved staggered sea
quarks [8]. Preliminary results on the nucleon mass are also

computed using Nf ¼ 2þ 1 domain wall fermions by the

RBC-UKQCD Collaboration [9,10].
In this work we study the low-lying spectrum of the

baryon octet and decuplet with twisted mass fermions at
maximal twist. The light quarks are dynamical degrees of
freedom while in the strange sector we use an Osterwalder-
Seiler valence quark, following the approach employed in
the study of the pseudoscalar meson decay constants
[11,12]. The bare strange valence quark mass is taken to
be the same as the one determined in the meson studies
tuned by requiring that the mass of the kaon at the physical
point matches its physical value. Using the ETMC Nf ¼ 2

configurations [13,14] we calculate the baryon spectrum
for pion masses in the range of 270–500 MeV and at two
values of the lattice spacing corresponding to � ¼ 3:9 and
� ¼ 4:05 with r0=a ¼ 5:22ð2Þ and r0=a ¼ 6:61ð3Þ, re-
spectively, where r0 is determined from the force between
two static quarks. Results are also obtained at a third
� value, namely, � ¼ 3:8, which corresponds to r0=a ¼
4:46ð3Þ. The latter results are not taken into account in the
final analysis due to large autocorrelation effects observed
in the Monte Carlo history for quantities like the PCAC
mass and the plaquette at small sea quark masses. Data at
� ¼ 3:8 are only used as a consistency check of the con-
tinuum extrapolation. For the nucleon mass we also per-
formed the calculation at an even finer value of the lattice
spacing corresponding to r0=a ¼ 8:31ð5Þ and � ¼ 4:2 to
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ensure that indeed the continuum extrapolation using a
weighted average with results at � ¼ 3:9 and � ¼ 4:05
is valid. We find that the baryon masses considered here
show a very weak dependence on the lattice spacing and
are fully compatible with anOða2Þ behavior with an almost
vanishing coefficient of the a2 term. This justifies neglect-
ing the Oða2Þ term in extrapolating results to the contin-
uum limit.

For a fixed value of the lattice spacing we have used up
to five different light quark masses and two different
volumes. The corresponding m�L values are in the range
3.3–7.4, where L is the spatial extent of the lattice. Using
these various values of the lattice spacing, quark masses
and volumes allows us to estimate the volume corrections
and perform a continuum and chiral extrapolation. The
good precision of our results on the baryon masses allows
us to perform a study of chiral extrapolations to the physi-
cal point. This study shows that one of our main uncertain-
ties in predicting the mass at the physical point is caused by
the chiral extrapolations. Another source of systematic
error is the partially quenched approximation that we
have used.

An important issue is the restoration of the explicitly
broken isospin symmetry in the continuum limit. At finite
lattice spacing, baryon masses display Oða2Þ isospin
breaking effects. There are, however, theoretical arguments
[15] and numerical evidences [1,16] that these isospin
breaking effects are particularly pronounced for the neutral
pseudoscalar mass, whereas for other quantities studied so
far by ETMC they are compatible with zero. In this paper
we will demonstrate that also in the baryon sector these
isospin breaking effects are in general small or even com-
patible with zero. For a preliminary account of these results
see Ref. [17].

The paper is organized as follows: The details of our
lattice setup, namely, those concerning the twisted mass
action, the parameters of the simulations, and the interpo-
lating fields used, are given in Sec. II. Section III contains
the numerical results of the baryon masses computed for
different lattice volumes, lattice spacings, and bare quark
masses as well as the Gell-Mann–Okubo (GMO) relations
that are supposed to be fulfilled in the exact SU(3) limit.
Lattice artifacts, including finite volume and discretization
errors, are discussed in Sec. IV, with special emphasis on
the Oða2Þ isospin breaking effects inherent in the twisted
mass formulation of lattice QCD. The chiral extrapolations
are analyzed in Sec. V. Section VI presents a comparison of
our results with those obtained by other collaborations that
use dynamical fermion. Conclusions are given in Sec. VII.

II. LATTICE SETUP

A. The lattice action

For the gauge fields we use the tree-level Symanzik
improved gauge action [18], which includes besides the
plaquette term U1�1

x;�;�, also rectangular (1� 2) Wilson

loops U1�2
x;�;�

Sg ¼ �

3

X
x

�
b0

X4
�;�¼1
1��<�

f1� ReTrðU1�1
x;�;�Þg

þ b1
X4
�;�¼1
���

f1� Re TrðU1�2
x;�;�Þg

�
; (1)

with b1 ¼ �1=12 and the (proper) normalization condi-
tion b0 ¼ 1� 8b1. Note that for b1 ¼ 0 this action reduces
to the usual Wilson plaquette gauge action.
The fermionic action for two degenerate flavors of

quarks in twisted mass QCD is given by

SF ¼ a4
X
x

��ðxÞðDW½U� þm0 þ i��5�
3Þ�ðxÞ; (2)

with �3 the Pauli matrix acting in the isospin space, � the
bare twisted mass, and DW the massless Wilson-Dirac
operator given by

DW½U� ¼ 1

2
��ðr� þr�

�Þ � ar

2
r�r�

�; (3)

where

r�c ðxÞ ¼ 1

a
½U�ðxÞc ðxþ a�̂Þ � c ðxÞ�; and

r�
�c ðxÞ ¼ � 1

a
½Uy

�ðx� a�̂Þc ðx� a�̂Þ � c ðxÞ�:
(4)

Maximally twisted Wilson quarks are obtained by setting
the untwisted quark mass m0 to its critical value mcr, while
the twisted quark mass parameter � is kept nonvanishing
in order to be away from the chiral limit. In Eq. (2) the
quark fields � are in the so-called ‘‘twisted’’ basis. The
‘‘physical’’ basis at maximal twist is obtained by the
simple transformation

c ðxÞ ¼ exp

�
i�

4
�5�

3

�
�ðxÞ;

�c ðxÞ ¼ ��ðxÞ exp
�
i�

4
�5�

3

�
:

(5)

In terms of the physical fields the action is given by

Sc
F ¼ a4

X
x

�c ðxÞ
�
1

2
��½r� þr�

��

þ i�5�
3

�
�ar

2
r�r�

� þmcr

�
þ�

�
c ðxÞ: (6)

In this paper, unless otherwise stated, the quark fields will
be understood as physical fields, c , in particular, when we
define the baryonic interpolating fields.
A crucial advantage of the twisted mass formulation is

the fact that, by tuning the bare untwisted quark massm0 to
its critical value mcr, physical observables are automati-
cally OðaÞ improved. In practice, we implement maximal
twist of Wilson quarks by tuning to zero the bare untwisted
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current quark mass, commonly called PCAC mass, mPCAC,
which is proportional to m0 �mcr up to OðaÞ corrections.
As detailed in Ref. [19], mPCAC is conveniently evaluated
through

mPCAC ¼ lim
t=a�1

P
x
h@4 ~Ab

4ðx; tÞ ~Pbð0Þi
2
P
x
h ~Pbðx; tÞ ~Pbð0Þi ; b ¼ 1; 2; (7)

where ~Ab
� ¼ �����5

�b

2 � is the axial vector current and
~Pb ¼ ���5

�b

2 � is the pseudoscalar density in the twisted

basis. The large t=a limit is required in order to isolate the
contribution of the lowest-lying charged pseudoscalar me-
son state in the correlators of Eq. (7). This way of deter-
mining mPCAC is equivalent to imposing on the lattice the
validity of the axial Ward identity

@� ~Ab
� ¼ 2mPCAC

~Pb; b ¼ 1; 2 (8)

between the vacuum and the charged one-pion zero three-
momentum state.

The value of mcr is determined at each � value at the
lowest twisted mass used in our simulations, a procedure
that preserves OðaÞ improvement and keeps Oða2Þ small
[14,20]. The twisted mass fermionic action breaks parity
and isospin at nonvanishing lattice spacing, as it is apparent
from the form of the Wilson term in Eq. (6). In particular,
the isospin breaking in physical observables is a cutoff
effect of Oða2Þ [21].

To simulate the strange quark in the valence sector
several choices are possible. We consider a quenched
Osterwalder-Seiler fermion [22] with the following action
in the twisted basis:

Ss ¼ a4
X
x

��sðxÞðDW½U� þm0 þ i�s�5Þ�sðxÞ: (9)

This is naturally realized in the twisted mass approach by
introducing an additional doublet of strange quark and
keeping only the positive diagonal component of �3. The
m0 value is taken to be equal to the critical mass deter-
mined in the light sector, thus guaranteeing the OðaÞ
improvement in any observable. The reader interested in
the advantage of this mixed action in the mesonic sector is
referred to Refs. [11,12,23–25].

B. Simulation details

The input parameters of the calculation, namely,�, L=a,
and a� are summarized in Table I. The corresponding
lattice spacing a and the pion mass values, spanning a
mass range from 270 to 500 MeV, are taken from
Ref. [26]. At m� � 300 MeV we have simulations for
lattices of spatial size L ¼ 2:1 fm and L ¼ 2:7 fm at � ¼
3:9 allowing us to investigate finite volume effects. Finite
lattice spacing effects are investigated using two sets of
results at� ¼ 3:9 and� ¼ 4:05. The set at� ¼ 3:8 is used
only as a cross-check and to estimate cutoff errors. These
sets of gauge ensembles allow us to estimate the systematic
errors in order to extract reliable results for the baryon
spectrum.

C. Tuning of the bare strange quark mass

In a previous paper from the ETM Collaboration [11],
pseudoscalar meson masses have been computed for differ-
ent values of the sea and valence quark masses for the � ¼
3:9 gauge configurations. Using the experimental value of

TABLE I. Input parameters ð�;L;�Þ of our lattice calculation and corresponding lattice spacing (a) and pion mass (m�).

� ¼ 4:05, a ¼ 0:0666ð6Þ fm from f� [26], r0=a ¼ 6:61ð3Þ
323 � 64, L ¼ 2:13 fm a� 0.0030 0.0060 0.0080 0.012

No. of confs. 269 253 409 182

m� (GeV) 0.3070(18) 0.4236(18) 0.4884(15) 0.6881(18)

m�L 3.31 4.57 5.27 7.43

� ¼ 3:9, a ¼ 0:0855ð6Þ fm, from f� [26], r0=a ¼ 5:22ð2Þ
243 � 48, L ¼ 2:05 fm a� 0.0030 0.0040 0.0064 0.0085 0.010

No. of confs. � � � 782 545 348 477

m� (GeV) � � � 0.3131(16) 0.3903(9) 0.4470(12) 0.4839(12)

m�L 3.25 4.05 4.63 5.03

323 � 64, L ¼ 2:74 fm a� 0.0030 0.0040

No. of confs. 659 232

m� (GeV) 0.2696(9) 0.3082(6)

m�L 3.74 4.28

� ¼ 3:8, a ¼ 0:0995ð7Þ fm, r0=a ¼ 4:46ð3Þ
243 � 48, L ¼ 2:39 fm a� 0.0060 0.0080 0.0110 0.0165

No. of confs, 215 302 248 244

m� (GeV) 0.3667(17) 0.4128(16) 0.4799(9) 0.5855(10)

m�L 4.44 5.00 5.81 7.09
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the mass ratio of the kaon to the pion, mK=m�, the bare
strange quark mass can be set. We use the value of a�s ¼
0:0217ð22Þ at � ¼ 3:9 taken from Table 2 of Ref. [11]. In a
more recent study of the pseudoscalar decay constant of
kaons and Dmesons [12], the computation was extended to
� ¼ 3:8 and � ¼ 4:05. However, this is still a preliminary
analysis and an ongoing analysis for the accurate extrac-
tion of quark masses is still in progress. One can obtain an
estimate of the bare strange quark mass at a given value of
� by taking the results at � ¼ 3:9 as a reference and using
the scaling relation [27]:

a�sð�Þ ¼
Zpð�Þ

Zpð� ¼ 3:9Þ
að�Þ

að� ¼ 3:9Þa�sð� ¼ 3:9Þ: (10)

The values we use for � ¼ 3:8 and � ¼ 4:05 given in
Table II are obtained by applying Eq. (10). We use the
value of the renormalization constant Zpð�Þ found in the

preliminary analysis of Ref. [28] within the RI’-MOM, a
nonperturbative renormalization scheme [29]. This value is
in agreement with a complementary analysis given in
Ref. [30].

D. Interpolating fields

The low-lying baryons belonging to the octet and dec-
uplet representations of SU(3) are given in Figs. 1 and 2,
respectively. They are classified by giving the isospin, I,
the third component of the isospin, I3, the strangeness (s),
spin, and parity. In order to extract their masses in lattice
QCD we evaluate two-point correlators. We use interpolat-
ing fields to create these states from the vacuum that have
the correct quantum numbers and reduce to the quark
model wave functions in the nonrelativistic limit. The

interpolating fields used in this work are collected in
Tables III [31,32] and IV [31,33] for the octet and decuplet,
respectively.
Local interpolating fields are not optimal for suppressing

excited state contributions. We instead apply Gaussian
smearing to each quark field, qðx; tÞ: qsmearðx; tÞ ¼P

yFðx; y;UðtÞÞqðy; tÞ using the gauge invariant smearing

function

Fðx; y;UðtÞÞ ¼ ð1þ �HÞnðx; y;UðtÞÞ; (11)

constructed from the hopping matrix,

Hðx; y;UðtÞÞ ¼ X3
i¼1

ðUiðx; tÞ	x;y�i þUy
i ðx� i; tÞ	x;yþiÞ:

(12)

Furthermore we apply APE smearing [34] to the spatial
links that enter the hopping matrix. The parameters of the
Gaussian and APE smearing are the same as those used in
our previous work devoted to the nucleon and � masses
[4].

E. Two-point correlators

To extract masses in the rest frame we consider two-
point correlators defined by

C	
X ðt; ~p ¼ ~0Þ ¼ 1

2
Trð1	 �4Þ

� X
xsink

hJXðxsink; tsinkÞ �JXðxsource; tsourceÞi;

t ¼ tsink � tsource: (13)

Space-time reflection symmetries of the action and the
antiperiodic boundary conditions in the temporal direction
for the quark fields imply, for zero three-momentum cor-
relators, that Cþ

X ðtÞ ¼ �C�
X ðT � tÞ. So, in order to de-

crease errors we average correlators in the forward and

TABLE II. Bare strange quark mass used in the valence sector
for different � values.

� ¼ 3:8 � ¼ 3:9 � ¼ 4:05

a�s 0:0208ð15Þð48Þ 0:0217ð22Þ 0:0166ð18Þð29Þ

FIG. 1. The low-lying baryons belonging to the octet repre-
sentation labeled by the value of I3 and hypercharge.

FIG. 2. The low-lying baryons belonging to the decuplet rep-
resentation labeled by the value of I3 and hypercharge.
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backward directions and define

CXðtÞ ¼ Cþ
X ðtÞ � C�

X ðT � tÞ: (14)

In order to decrease correlation between measurements, we
choose the source location randomly on the whole lattice
for each configuration. Masses are extracted from the so-

called effective mass which is defined by

amX
effðtÞ ¼ � logðCXðtÞ=CXðt� 1ÞÞ

¼ amX þ log

�
1þP1

i¼1 cie
�it

1þP1
i¼1 cie

�iðt�1Þ

�
!
t!1amX;

(15)

TABLE III. Interpolating fields and quantum numbers for the baryons in the octet representation.

Strangeness Baryon Interpolating field I Iz

s ¼ 0
p �p ¼ 
abcðuTaC�5dbÞuc 1=2 þ1=2
n �n ¼ 
abcðdTaC�5ubÞdc 1=2 �1=2

s ¼ 1

� ��8 ¼ 1ffiffi
6

p 
abcf2ðuTaC�5dbÞsc þ ðuTaC�5sbÞdc � ðdTaC�5sbÞucg 0 0

�þ ��þ ¼ 
abcðuTaC�5sbÞuc 1 þ1
�0 ��0 ¼ 1ffiffi

2
p 
abcfðuTaC�5sbÞdc þ ðdTaC�5sbÞucg 1 þ0

�� ��� ¼ 
abcðdTaC�5sbÞdc 1 �1

s ¼ 2
�0 ��0 ¼ 
abcðsTaC�5ubÞsc 1=2 þ1=2
�� ��� ¼ 
abcðsTaC�5dbÞsc 1=2 �1=2

TABLE IV. Interpolating fields and quantum numbers for baryons in the decuplet representation.

Strangeness Baryon Interpolating field I Iz

s ¼ 0

�þþ ��þþ
� ¼ 
abcðuTaC��ubÞuc 3=2 þ3=2

�þ ��þ
� ¼ 1ffiffi

3
p 
abcf2ðuTaC��dbÞuc þ ðuTaC��ubÞdcg 3=2 þ1=2

�0 ��0

� ¼ 1ffiffi
3

p 
abcf2ðdTaC��ubÞdc þ ðdTaC��dbÞucg 3=2 �1=2
�� ���

� ¼ 
abcðdTaC��dbÞdc 3=2 �3=2

s ¼ 1

��þ ���þ
� ¼ 1ffiffi

3
p 
abcfðuTaC��ubÞsc þ 2ðsTaC��ubÞucg 1 þ1

��0 ���0
� ¼

ffiffi
2
3

q

abcfðuTaC��dbÞsc þ ðdTaC��sbÞuc þ ðsTaC��ubÞdcg 1 þ0

��� ����
� ¼ 1ffiffi

3
p 
abcfðdTaC��dbÞsc þ 2ðsTaC��dbÞdcg 1 �1

s ¼ 2
��0 ���0

� ¼ 
abcðsTaC��ubÞsc 1=2 þ1=2
��� ����

� ¼ 
abcðsTaC��dbÞsc 1=2 �1=2
s ¼ 3 �� ���

� ¼ 
abcðsTaC��sbÞsc 0 þ0

0 5 10 15
t/a

0.4
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f(t
) N

Λ
Σ
Ξ

FIG. 3 (color online). Effective masses of the octet states for
� ¼ 3:9, a� ¼ 0:004 on a 323 � 64 lattice using 232 configu-
rations.
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FIG. 4 (color online). Effective masses of the decuplet states
for � ¼ 3:9, a� ¼ 0:004 on a 323 � 64 lattice using 232 con-
figurations.
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where �i ¼ mi �mX is the mass difference of the excited
state i with respect to the ground state mass mX.

In Figs. 3 and 4 we show the effective masses of the
baryons in the octet and decuplet representation, respec-
tively. As can be seen a plateau region can be identified for
all baryons. What is shown in these figures are effective
masses extracted from correlators where smearing is ap-
plied both at the sink and at the source. Although local
correlators are expected to have the same value in the large
time limit, smearing suppresses excited state contributions
yielding a plateau at earlier time separations and a better
accuracy in the mass extraction. Our fitting procedure to

extract mX is as follows: The mass is obtained from the
leading term in Eq. (15), i.e. from a constant fit to mX. A
second fit, including the first excited state, allows us to
estimate the systematic error of the previously determined
mX due to the first excited state for a given plateau range.
The plateau range is then chosen such that the systematic
error on mX drops below 50% of its statistical error This
criterion is in most of the cases in agreement with a
�2=d:o:f: < 1. In the cases in which this criterion is not
satisfied a careful examination of the effective mass is
made to ensure that the fit range is in the plateau region.
The results for the masses of the octet and decuplet at

TABLE V. Baryon masses in the octet representation at � ¼ 3:9 in lattice units.

a� stat. amN am� am�Av am�þ am�0 am�� am�Av am�0 am��

243 � 48
0.0040 782 0.5111(58) 0.5787(42) 0.6075(46) 0.6175(66) 0.6118(48) 0.5959(52) 0.6497(31) 0.6695(42) 0.6372(31)

0.0064 545 0.5514(49) 0.6017(42) 0.6265(48) 0.6487(72) 0.6278(52) 0.6131(52) 0.6636(36) 0.6876(50) 0.6500(36)

0.0085 348 0.5786(67) 0.6198(51) 0.6491(55) 0.6679(62) 0.6529(49) 0.6358(46) 0.6728(43) 0.6956(58) 0.6593(43)

0.0100 477 0.5973(43) 0.6326(36) 0.6522(41) 0.6662(56) 0.6539(43) 0.6429(44) 0.6793(36) 0.6959(49) 0.6683(32)

323 � 64
0.0030 652 0.4958(43) 0.5613(33) 0.5891(42) 0.6069(68) 0.5932(50) 0.5775(39) 0.6382(30) 0.6572(44) 0.6275(26)

0.0040 232 0.5126(46) 0.5750(35) 0.6117(40) 0.6281(73) 0.6158(40) 0.5960(47) 0.6511(34) 0.6748(46) 0.6358(32)

TABLE VI. Baryon masses in the decuplet representation at � ¼ 3:9 in lattice units.

a� stat. am�þþ;� am�þ;0 am��Av am��þ am��0 am��� am��Av am��0 am��� am�

243 � 48
0.0040 782 0.660(14) 0.670(13) 0.7166(82) 0.709(11) 0.7226(81) 0.7222(95) 0.7311(51) 0.7381(59) 0.7200(66) 0.8079(52)

0.0064 545 0.709(11) 0.711(12) 0.7461(84) 0.740(10) 0.7480(93) 0.7489(93) 0.7412(78) 0.7552(76) 0.7344(84) 0.8156(63)

0.0085 348 0.714(12) 0.733(13) 0.7517(88) 0.739(11) 0.760(11) 0.7645(98) 0.7415(85) 0.7529(81) 0.7367(84) 0.8133(66)

0.0100 477 0.7531(67) 0.7559(75) 0.7794(66) 0.7808(62) 0.7809(64) 0.7798(69) 0.7618(73) 0.7741(64) 0.7484(74) 0.8284(51)

323 � 64
0.003 652 0.6234(139) 0.6497(133) 0.6859(96) 0.6838(93) 0.6859(106) 0.7027(101) 0.7058(50) 0.7097(58) 0.7032(53) 0.7926(49)

0.004 232 0.651(16) 0.659(15) 0.713(10) 0.705(12) 0.716(12) 0.7173(99) 0.7291(74) 0.7366(79) 0.7192(72) 0.8037(69)

TABLE VII. Baryon masses in the octet representation at � ¼ 4:05 in lattice units.

a� stat. amN am� am�av am�þ am�0 am�� am�av am�0 am��

323 � 64
0.0030 269 0.4091(60) 0.4540(38) 0.4761(44) 0.4885(62) 0.4774(47) 0.4651(53) 0.5082(31) 0.5177(39) 0.5007(29)

0.0060 253 0.4444(47) 0.4792(47) 0.4944(44) 0.5022(66) 0.4960(45) 0.4834(45) 0.5192(42) 0.5277(50) 0.5112(37)

0.0080 409 0.4714(31) 0.4957(30) 0.5089(31) 0.5179(41) 0.5095(32) 0.5019(31) 0.5262(28) 0.5350(34) 0.5199(25)

TABLE VIII. Baryon masses in the decuplet representation at � ¼ 4:05 in lattice units.

a� stat. am�þþ;� am�þ;0 am��av am��þ am��0 am��� am��av am��0 am��� am�

323 � 64
0.0030 269 0.5381(93) 0.5441(93) 0.5728(79) 0.5673(94) 0.5750(86) 0.5734(80) 0.5772(56) 0.5796(54) 0.5750(56) 0.6361(46)

0.0060 253 0.5505(77) 0.5581(90) 0.5805(66) 0.5754(71) 0.581(11) 0.5844(68) 0.5816(47) 0.5834(50) 0.5802(48) 0.6286(53)

0.0080 409 0.5918(60) 0.5906(63) 0.6078(59) 0.6044(68) 0.5850(74) 0.6099(57) 0.5940(43) 0.6021(50) 0.5873(43) 0.6461(49)
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� ¼ 3:9 are collected in Tables Vand VI, respectively. The
corresponding results for the masses at � ¼ 4:05 are given
in Tables VII and VIII. The errors are evaluated using both
jackknife and the � method [35] to check consistency.

III. RESULTS

The bulk of the numerical results is presented in this
section. Baryon masses are given in lattice units. Our
procedure to convert the results to physical units will be
discussed in the next section.

A. Baryon masses

In Tables V, VI, VII, and VIII we present the masses of
the octet and decuplet states with the lattice input parame-
ters given in Table I. For the isospin multiplets we have
computed separately the masses corresponding to each
isospin component as well as their averaged value. These
results (averaged values in case of isospin multiplets) are
displayed in Figs. 5 and 6. The� ¼ 3:9, L=a ¼ 24 data are

linked by dotted lines to guide the eye. An inspection of the
plots indicates that the lattice artifacts, studied in detail in
the next section, are small. Notice that the natural order of
the �� and �� states comes out to be correct for m� �
300 MeV, while for larger masses this order is inverted.

B. Strange quark mass dependence

The dependence of the masses of baryons with strange-
ness on the bare strange quark mass has been investigated
at � ¼ 3:9 for a� ¼ 0:004. The results are given in
Tables IX and X and displayed in Figs. 7 and 8. The vertical
dotted lines indicate the value of the tuned bare strange
quark mass as given in Table II. The SU(3) symmetric
point �s ¼ � is given by the nucleon and � mass for the
octet and decuplet, respectively. As can be seen in the
SU(3) limit all the octet and decuplet masses converge to
a single point. Possible cutoff effects and the fact that we
only have Nf ¼ 2 simulations can account for the small

deviations. For clarity we only show in Fig. 7 the mass of
�, �Av, and �Av. They should be degenerate with the
nucleon in the limit of �s ¼ �. Indeed, if one computes
the nucleon mass with the same statistics with that used for
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FIG. 5 (color online). Octet states measured in our different
gauge ensembles. Physical points are indicated by their name
symbols (filled circles). The data at � ¼ 3:9, L=a ¼ 24 are
connected by dotted lines to guide the eye.
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FIG. 6 (color online). The same as Fig. 5 but for the decuplet
states.

TABLE IX. Octet masses for � ¼ 3:9, a� ¼ 0:004 on a 243 � 48 lattice as a function of a�s.

a�s stat. am� am�Av am�þ am�0 am�� am�Av am�0 am��

243 � 48
0.0064 597 0.533(8) 0.545(7) 0.549(12) 0.563(5) 0.537(6) 0.545(7) 0.560(11) 0.530(6)

0.0085 316 0.537(10) 0.557(11) 0.559(19) 0.557(12) 0.554(8) 0.563(9) 0.585(14) 0.549(8)

0.0100 316 0.542(9) 0.564(10) 0.567(18) 0.564(11) 0.561(7) 0.574(8) 0.597(13) 0.560(7)

0.0175 315 0.563(8) 0.596(9) 0.600(14) 0.593(9) 0.593(7) 0.626(6) 0.644(8) 0.610(6)

0.0200 308 0.568(8) 0.606(8) 0.609(13) 0.602(9) 0.603(6) 0.641(6) 0.660(8) 0.625(5)

0.0250 311 0.584(7) 0.626(6) 0.627(12) 0.619(8) 0.620(6) 0.671(5) 0.688(7) 0.656(5)

0.0400 316 0.624(7) 0.674(6) 0.676(10) 0.667(7) 0.672(6) 0.751(4) 0.764(5) 0.738(4)

0.0800 314 0.718(7) 0.780(5) 0.787(7) 0.772(7) 0.776(7) 0.935(3) 0.945(4) 0.926(3)
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�Av and �Av, one finds them to be degenerate within the
errors as can be seen in Fig. 7.

The corresponding results for the decuplet baryons are
displayed in Fig. 8. As can be seen, also in the case of the
decuplet masses there is convergence to the � mass as
predicted in the exact SU(3) limit �s ¼ �.

The �s dependence of the strange baryon masses pro-
vides an estimate of systematic errors due to the uncer-
tainty in the tuning of the strange quark mass. As already
explained, the kaon mass at the physical point is used to fix
�s. This gives a�s ¼ 0:0217ð22Þ. The 
10% uncertainty
leads to a corresponding error in the strange baryon masses
that can be estimated by the variation of their masses in the
vicinity of �s. At � ¼ 0:004 we estimate an error that is
comparable to the statistical error. In what follows we will
analyze our results taking into account only statistical
errors. This analysis shows that when the statistical error
is given on the final results of strangeness nonzero baryon
masses one must bear in mind that there is a systematic
error of about the same magnitude due to the strange quark
mass determination.

C. Gell-Mann–Okubo relation

Assuming a small SU(3) breaking, Okubo derived inter-
esting relations among baryon masses. We examine in this
section how well the GMO relations [36] are fulfilled for
the baryon masses obtained on our lattices at different pion
mass values. As we will discuss in detail in the next
section, volume and discretization effects are small, and
therefore it suffices to analyze the � ¼ 3:9 and L ¼ 24�
48 results. For this study we use the lattice spacing deter-
mined from f� to convert to physical units.
For the JP ¼ 1=2þ octet the GMO relation can be

written in the form:

M� þMN

2
¼ 3M� þM�

4
: (16)

The results are displayed in Fig. 9 where the left- and right-
hand side terms of Eq. (16) are separately plotted as a
function of m2

�. The difference between the two terms is
compatible with zero at any pion mass. The experimental
values, shown by the squares, are, respectively, 254 and
248 MeV. These results are similar to those presented in
Ref. [37] using a mixed action setup with valence domain
wall fermions on rooted staggered sea fermions.

TABLE X. Decuplet masses for � ¼ 3:9, a� ¼ 0:004 on a 243 � 48 lattice as a function of a�s.

a�s stat. am��Av am��þ am��0 am��� am��Av am��0 am��� am�

243 � 48
0.0064 597 0.665(12) 0.658(18) 0.669(14) 0.669(14) 0.636(9) 0.645(12) 0.628(9) 0.678(14)

0.0085 316 0.695(19) 0.719(13) 0.713(16) 0.733(9) 0.648(11) 0.670(15) 0.624(10) 0.734(11)

0.0100 316 0.700(18) 0.722(12) 0.715(15) 0.697(22) 0.658(9) 0.680(13) 0.636(9) 0.744(10)

0.0175 315 0.721(14) 0.729(14) 0.736(12) 0.718(19) 0.705(7) 0.722(8) 0.690(7) 0.796(6)

0.0200 308 0.725(14) 0.734(13) 0.741(11) 0.718(17) 0.720(6) 0.734(7) 0.704(7) 0.807(7)

0.0250 311 0.740(13) 0.735(16) 0.753(11) 0.740(17) 0.747(6) 0.759(6) 0.733(6) 0.838(6)

0.0400 316 0.778(11) 0.770(13) 0.788(9) 0.778(15) 0.821(5) 0.831(5) 0.811(5) 0.934(4)

0.0800 314 0.864(7) 0.854(11) 0.870(8) 0.865(9) 0.993(4) 0.996(5) 0.987(4) 1.169(3)
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FIG. 7 (color online). Masses for octet baryons at � ¼ 3:9 and
a� ¼ 0:004 on a lattice of size 243 � 48 as a function of a�s.
The vertical dashed line indicates the value of the tuned bare
strange quark mass. The dotted lines are to guide the eye.
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FIG. 8 (color online). The same as for Fig. 7 but for the
decuplet baryons.
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For the JP ¼ 3=2þ decuplet, the GMO relations predict
equal mass difference among two consecutive (�S ¼ 1)
isospin multiplets:

M�� �M� ¼ M�� �M�� ¼ M� �M�� : (17)

The results for the decuplet baryons are displayed in Fig. 9.
As can be seen, the equalities of Eq. (17) are strongly
violated; the three mass differences of Eq. (17) are spread
over about 200 MeV for the range of pion masses that have
been computed. The experimental values for these mass
differences are 153, 149, and 139 MeV, shown in the plot
by the squares. In the lattice results the larger deviation
comes from M�� �M�� , while for M�� �M� and M� �
M�� the mass differences are smaller. The mass difference
M�� �M�� is increasing as the pion mass decreases.
Unfortunately, with our present statistics it is unclear
whether this increase is sufficient to bring this mass dif-
ference in agreement with experiment but the trend is
definitely in the right direction.

A third relation exists that connects the JP ¼ 1=2þ octet
masses with the JP ¼ 3=2þ decuplet masses, which reads
as

3M� �M� � 2MN ¼ 2ðM�� �M�Þ: (18)

Experimentally, this relation is fulfilled at the 10% level
yielding 276 MeV for the left-hand side and 305 MeV for
the right-hand side of Eq. (18). These values are shown by
the filled squares in Fig. 9. The corresponding lattice
results are shown in the same figure. One can see that, as
in the octet case, the relation of Eq. (18) is satisfied within
our statistical uncertainties at each pion mass. It also

approaches the experimental results with decreasing pion
mass.
Fulfillment of the GMO relations is considered a success

of SU(3) symmetry. Therefore one would expect that these
relations are better satisfied as we approach the SU(3) limit
a� ¼ a�s ¼ 0:0217, up to discretization effects. This
corresponds to about m2

� 
 0:50 GeV2. For the decuplet
mass relation given in Eq. (17) it is unclear if this would be
indeed satisfied by the lattice data, whereas the other two
relations are fulfilled at all masses.

IV. SYSTEMATICS

In order to compare our lattice results collected in
Tables V, VI, VII, and VIII, to the physical masses we
need to check for finite volume and cutoff effects, and carry
out the extrapolation to the physical light quark mass. The
strange quark was fixed to the physical value using the
kaon mass with the light quarks extrapolated to the physi-
cal point as explained in Sec. II B. A check of the effect of
this tuning on baryon masses has been discussed in
Sec. III B. In this section we discuss finite volume and
cutoff effects, in particular, the isospin breaking.

A. Finite volume effects

Finite volume corrections to the nucleon mass inNf ¼ 2

lattice QCD have been studied in Ref. [5] within the p
expansion which assumes that finite size effects originate
from pions that propagate around the spatial box. Using
relativistic SU(2) baryon chiral perturbation theory (�PT)
[38], the finite volume corrections to the nucleon mass to
Oðp4Þ are
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FIG. 9 (color online). Gell-Mann–Okubo relations for the baryon octet (left panel), decuplet (middle panel), and mixed octet
decuplet (right panel) as a function of m2

�. Vertical lines correspond to the physical results. Data were obtained from simulations at
� ¼ 3:9 and L=a ¼ 24. The lattice spacing determined from f� is used to convert to physical units.
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mNð1Þ ¼ mNðLÞ � 	maðLÞ � 	mbðLÞ; (19)

where

	maðLÞ ¼ 3g2Am
0
Nm

2
�

8�2f2�

Z 1

0
dx

�X0

n

K0ðLjnj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm0

NÞ2x2 þm2
�ð1� xÞ

q
Þ;

	mbðLÞ ¼ 3m4
�

2�2f2�

X0

n

�
ð2c1 � c3ÞK1ðLjnjm�Þ

Ljnjm�

þ c2
K2ðLjnjm�Þ
ðLjnjm�Þ2

�
: (20)

K�ðxÞ is the modified Bessel function and the sum is over
all integer vectors n excluding n ¼ 0. The parameters m0

N

and c1 are determined by fitting first the nucleon mass to
the same order [39–41] given by

mN ¼ m0
N � 4c1m

2
� � 3g2A

16�f2�
m3

� � 4E1ð�Þm4
�

þ 3m4
�

16�2f2�

�
1

4

�
c2 � 2g2A

m0
N

�

�
�
c2 � 8c1 þ 4c3 þ g2A

m0
N

�
log

�
m�

�

��
: (21)

We take the cutoff scale � ¼ 1 GeV, f� ¼ 130:70 MeV
and fix the dimension two low energy constants c2 ¼
3:2 GeV�1 [42] and c3 ¼ �3:45 GeV�1 [40,43]. These
values are consistent with empirical nucleon-nucleon
phase shifts [44,45]. The counterterm E1 is taken as an
additional fit parameter. Using the values for c1 and m0

N

determined from the fit to the nucleon mass we estimate the
volume corrections given in Table XI. As can be seen the
corrections for our lattices are, in all cases except one,
smaller than the statistical errors. In the analysis that
follows we will use the volume corrected nucleon mass.

Concerning the other baryons a recent analysis using
SU(3) heavy baryon chiral perturbation theory has shown

that the volume corrections are smaller than for the nucleon
[46]. Given that the volume corrections found for the
nucleon are smaller than the statistical errors we can safely
neglect any volume corrections for the other baryons com-
puted in this work. This is also corroborated by our lattice
results at a� ¼ 0:004 where simulations at two volumes
are used.

B. Isospin breaking

The twisted mass action breaks isospin explicitly to
Oða2Þ. How large this breaking is depends on the size of
the Oða2Þ terms. It was shown that this cutoff effect is
particularly large for the neutral pion [15] but small for
other quantities. Indeed we verified that isospin breaking
between the �þþ;0 and �þ;� is consistent with zero for
lattice spacings below about 0.1 fm [4]. We here address
this issue for the octet and decuplet baryons. We show in
Fig. 10 the mass differences for the �, �, �, ��, and ��
charge multiplets as a function of the pion mass at two
values of �.
As can be seen, we confirm that for the� system isospin

breaking is consistent with zero. This is also true for the��

TABLE XI. Volume correction to the nucleon mass.

am� amNðLÞ a	aðLÞ þ a	bðLÞ
� ¼ 3:9, 243 � 48

0.1362 0.5111(58) 0.0068

0.1684 0.5514(49) 0.0046

0.1940 0.5786(67) 0.0026

0.2100 0.5973(43) 0.0021

� ¼ 3:9, 323 � 64
0.1168 0.4958(34) 0.0014

0.1338 0.5126(46) 0.0011

� ¼ 4:05, 323 � 64
0.1038 0.4091(60) 0.0035

0.1432 0.4444(47) 0.0018

0.1651 0.4714(31) 0.0012

FIG. 10 (color online). Mass splitting versus the pion mass at
� ¼ 3:9 (filled triangles) and � ¼ 4:05 (open circles) from top
to bottom: �þ and �0, �0 and ��, �þþ and �þ, ��þ and ��0,
and ��0 and ���.
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and�� as well as for the� at the smaller lattice spacing. In
the case of the � we observe a nonzero splitting that
decreases with the lattice spacing. If one interpolates the
results at the two � values to the same pion mass, as

discussed in more detail in the next section, and makes a
linear extrapolation in a2 one finds that this splitting goes
to zero in the continuum limit as expected. Whereas this
confirms that this splitting is a cutoff effect, to perform a

TABLE XII. Octet masses computed at reference pion masses in units of r0 at � ¼ 3:9 and � ¼ 4:05 and at the continuum limit.

r0m� r0mN r0m� r0m�Av: r0m�þ r0m�0 r0m�� r0m�Av: r0m�0 r0m��

� ¼ 3:9
0.60 2.571(23) 2.922(18) 3.062(22) 3.156(36) 3.084(26) 3.004(21) 3.324(16) 3.421(23) 3.271(14)

0.70 2.671(24) 3.001(18) 3.193(21) 3.279(38) 3.215(21) 3.111(25) 3.399(18) 3.523(24) 3.319(17)

0.80 2.757(30) 3.085(25) 3.212(29) 3.318(42) 3.219(31) 3.144(31) 3.433(21) 3.555(30) 3.363(21)

0.90 2.880(26) 3.156(22) 3.286(25) 3.404(38) 3.293(27) 3.215(27) 3.472(19) 3.598(26) 3.401(19)

1.00 2.992(35) 3.226(27) 3.381(29) 3.482(33) 3.401(26) 3.310(24) 3.507(23) 3.629)30) 3.436(23)

1.10 3.111(23) 3.305(19) 3.405(21) 3.477(29) 3.414(22) 3.358(23) 3.547(19) 3.633(26) 3.491(17)

� ¼ 4:05
0.60 2.600(43) 2.946(29) 3.107(32) 3.199(46) 3.115(34) 3.034(38) 3.336(23) 3.400(29) 3.287(22)

0.70 2.692(40) 3.008(25) 3.152(29) 3.233(41) 3.161(31) 3.080(35) 3.362(21) 3.425(26) 3.313(19)

0.80 2.788(46) 3.074(32) 3.200(34) 3.269(49) 3.209(36) 3.127(40) 3.391(25) 3.451(32) 3.340(24)

0.90 2.874(32) 3.135(32) 3.242(30) 3.295(45) 3.253(31) 3.165(31) 3.418(28) 3.474(34) 3.364(25)

1.00 2.984(33) 3.205(32) 3.298(30) 3.348(45) 3.308(31) 3.230(31) 3.448(29) 3.504(34) 3.397(25)

1.10 3.119(21) 3.283(20) 3.370(21) 3.430(27) 3.373(21) 3.325(21) 3.481(19) 3.539(23) 3.440(17)

Continuum limit

0.60 2.577(20) 2.929(15) 3.077(18) 3.173(28) 3.095(21) 3.011(18) 3.328(13) 3.413(18) 3.275(12)

0.70 2.676(21) 3.003(15) 3.179(17) 3.258(28) 3.198(17) 3.101(20) 3.383(13) 3.477(18) 3.316(13)

0.80 2.766(25) 3.080(20) 3.207(22) 3.297(32) 3.215(23) 3.138(24) 3.415(16) 3.506(22) 3.353(16)

0.90 2.878(20) 3.149(18) 3.267(19) 3.359(29) 3.275(20) 3.193(20) 3.456(16) 3.552(21) 3.387(15)

0.10 2.988(24) 3.217(21) 3.342(21) 3.436(26) 3.363(20) 3.280(19) 3.484(18) 3.573(23) 3.418(17)

1.10 3.116(15) 3.295(14) 3.387(15) 3.452(20) 3.392(15) 3.340(15) 3.514(13) 3.580(17) 3.465(12)

TABLE XIII. The same as Table XII but for the decuplet baryons.

r0m� r0m�Av: r0m��Av: r0m��þ r0m��0 r0m��� r0m��Av: r0m��0 r0m��� r0m�

� ¼ 3:9
0.60 3.312(51) 3.565(51) 3.558(49) 3.564(56) 3.660(53) 3.671(27) 3.689(31) 3.662(28) 4.131(26)

0.70 3.419(57) 3.719(55) 3.679(65) 3.735(61) 3.744(52) 3.805(39) 3.845(41) 3.754(38) 4.195(36)

0.80 3.631(48) 3.850(50) 3.824(62) 3.856(55) 3.853(55) 3.856(46) 3.925(45) 3.812(49) 4.252(37)

0.90 3.727(42) 3.907(44) 3.871(55) 3.918(49) 3.924(49) 3.873(41) 3.947(40) 3.839(44) 4.259(33)

1.00 3.761(47) 3.911(46) 3.839(55) 3.954(58) 3.981(52) 3.862(45) 3.922(43) 3.840(44) 4.240(35)

1.10 3.950(27) 4.075(35) 4.085(33) 4.081(34) 4.074(36) 3.981(38) 4.046(34) 3.909(39) 4.328(27)

� ¼ 4:05
0.60 3.524(47) 3.769(57) 3.732(67) 3.787(65) 3.766(58) 3.806(40) 3.823(39) 3.789(40) 4.221(34)

0.70 3.581(43) 3.789(52) 3.752(62) 3.803(57) 3.795(53) 3.817(37) 3.832(36) 3.802(37) 4.202(30)

0.80 3.615(50) 3.808(60) 3.773(71) 3.819(70) 3.822(61) 3.828(43) 3.842(42) 3.816(43) 4.183(37)

0.90 3.617(40) 3.804(45) 3.768(49) 3.834(76) 3.829(46) 3.829(32) 3.834(34) 3.825(33) 4.141(36)

1.00 3.718(41) 3.876(46) 3.844(49) 3.851(76) 3.901(47) 3.862(32) 3.882(35) 3.847(33) 4.171(36)

1.10 3.922(40) 4.028(39) 4.007(45) 3.868(49) 4.042(38) 3.931(29) 3.987(33) 3.885(29) 4.277(33)

Continuum limit

0.60 3.439(35) 3.656(38) 3.619(40) 3.660(42) 3.709(39) 3.712(22) 3.741(24) 3.704(23) 4.164(21)

0.70 3.520(49) 3.755(38) 3.717(45) 3.771(42) 3.768(37) 3.811(27) 3.838(27) 3.778(26) 4.199(23)

0.80 3.623(35) 3.833(38) 3.802(47) 3.841(43) 3.839(41) 3.841(31) 3.880(30) 3.814(32) 4.217(26)

0.90 3.668(29) 3.856(32) 3.813(36) 3.893(41) 3.874(34) 3.845(25) 3.882(26) 3.830(26) 4.205(24)

1.00 3.735(30) 3.893(32) 3.842(37) 3.916(46) 3.937(35) 3.862(26) 3.898(27) 3.845(26) 4.207(25)

1.10 3.935(20) 4.054(26) 4.058(27) 4.013(28) 4.059(26) 3.949(23) 4.016(24) 3.893(23) 4.307(21)
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proper analysis one would need results at an additional
lattice spacing. For the current work we conclude that
isospin splitting at these two lattice spacings is negligible
for all baryons expect for the�, where an isospin breaking
of about 6% is observed that vanishes at a rate proportional
to a2.

C. Continuum extrapolation

In order to assess cutoff effects we use results at� ¼ 3:9
and � ¼ 4:05. The lattice results, expressed in units of the
Sommer scale r0, are interpolated to the same pion mass in
units of r0 at each � value. We give the interpolated results
at six values of m�r0 in Tables XII and XIII. Interpolating
linearly or using leading order one-loop chiral perturbation
theory gives values that are within error bars. Given the
small size of the cutoff effects, a weighted average of the

baryon masses between these two � values gives an esti-
mate of the values in the continuum limit. It must be
stressed that estimating the strange quark mass at � ¼
4:05 using Eq. (10) may cause residual cutoff effects on
the few percentage level that are not taken into account
with the continuum extrapolation as performed here. The
results obtained from the weighted averaging of data at
� ¼ 3:9 and� ¼ 4:05 are listed in Tables XII and XIII and
are plotted in Figs. 11 and 12. In the figures we also include
results at � ¼ 3:8. If cutoff effects are small for all
� values then results at � ¼ 3:8 should fall onto the
same line. As can be seen this is best fulfilled for the
nucleon mass. Furthermore for the nucleon and the � we
also show results at a smaller value of the lattice spacing
corresponding to � ¼ 4:2. Essentially, the a2 dependence
of the nucleon and � mass as computed at � ¼ 3:9, 4.05,
and 4.2 is consistent with a constant behavior, verifying
that for lattice spacings below 0.1 fm cutoff effects are
indeed small. For the � mass results at � ¼ 3:8, 3.9 and
� ¼ 4:05 are consistent with a constant. This holds ap-
proximately also for the other baryons. Within the statisti-
cal errors one therefore concludes that for lattice spacings
below 0.1 fm cutoff effects are under control.

FIG. 11 (color online). Constant extrapolation to the contin-
uum limit for the octet baryons. Stars are for r0m� ¼ 0:615,
filled triangles for r0m� ¼ 0:7, open circles for r0m� ¼ 0:8,
open triangles for r0m� ¼ 0:9, filled circles for r0m� ¼ 1:0,
rhombii for r0m� ¼ 1:1, and crosses for r0m� ¼ 1:25. The open
squares show the extracted continuum value. For the nucleon we
also show results at � ¼ 4:2. For the �þ and �0 we omit the
case r0m� ¼ 1:0 and shift results at r0m� ¼ 1:25 and r0m� ¼
0:8 for clarity.

FIG. 12 (color online). Constant extrapolation to the contin-
uum for the decuplet. The notation is the same as in Fig. 11.
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D. Fixing the lattice spacing

In order to convert to physical units we need to fix the
lattice spacing. The value of the lattice spacings given in
Table I was extracted using the pion decay constant.
Equivalently, by extrapolating the pion decay constant to
the physical point one finds r0 ¼ 0:439ð25Þ fm [47], where
the systematic error is added to the statistical one. Knowing
r0 and the ratio r0=a one can determine the lattice spacing.

Alternatively, the nucleon mass can be used to set the
scale and this determination seems natural if one is inter-
ested in the study of the baryon spectrum. Our data at � ¼
3:9 and � ¼ 4:05 do not show significant lattice spacing
effects. Therefore we can make a combined fit using con-
tinuum chiral perturbation theory to determine the value of
rN0 , where the superscript N denotes using the nucleon

mass. Chiral corrections to the nucleon mass are known
to Oðp4Þ within several expansion schemes. We use the
same schemes as in Refs. [4,48]. The fits are shown in
Fig. 13. Using the Oðp3Þ result, which is well established,
to extrapolate to the physical pion mass we obtain rN0 ¼
0:465ð6Þ fm. If we instead use the data at� ¼ 3:9 and� ¼
4:05 to perform the continuum limit as discussed in the
previous section and then fit, we find rN0 ¼ 0:471	
0:006ðstatÞ 	 0:015ðsystÞ fm. The systematic error is due
to the interpolation to a fixed value of m�r0 and it is
estimated by comparing the value of r0 obtained when
linear interpolation is used to the one obtained using
Oðp3Þ. Furthermore, we take the difference in the value
of r0 obtained using continuous results and the value found
by fitting the lattice data at � ¼ 3:9 and � ¼ 4:05 to be the
systematic error due to cutoff effects. We therefore take
rN0 ¼ 0:465ð6Þð14Þ fm, which is in agreement with r0 ex-

tracted from the value of the pion decay constant, f�.
Using the values of r0=a ¼ 5:22ð2Þ and r0=a ¼ 6:61ð3Þ
at � ¼ 3:9 and � ¼ 4:05, we find for the lattice spacings
a�¼3:9 ¼ 0:089ð4Þ fm and a�¼4:05 ¼ 0:070ð3Þ fm. These

values for the lattice spacing extracted using the nucleon
mass at the physical point are in agreement with those
determined from the pion decay constant. This constitutes
a nice consistency check of our lattice formulation. In what
follows we will use the lattice spacing extracted from the
nucleon mass using Oðp3Þ heavy baryon chiral perturba-
tion theory to convert the rest of the masses into physical
units.

V. CHIRAL EXTRAPOLATION

Given that the cutoff effects are almost negligible in our
simulations, we apply continuum chiral perturbation the-
ory to extrapolate lattice results at � ¼ 3:9 and � ¼ 4:05
to the physical pion mass. In particular, we will use SU(2)
�PT [49] for two reasons: the first being that our simula-
tions are done for two mass-degenerate dynamical quarks
and the second because it was shown that SU(3) �PT fails
to describe lattice data [46]. We would like to stress how-
ever that the issue of the applicability of SU(3) �PT is not
entirely settled and e.g. SU(3) fits to lattice results using
staggered fermions were claimed to produce reasonable fits
[50,51].
The baryon masses to leading order (LO) SU(2) heavy

baryon chiral perturbation (HB�PT) are given by

mLO
X ðm�Þ ¼ mð0Þ

X � 4cð1ÞX m2
�; (22)

with two fit parameters, the baryon mass in the chiral limit

mð0Þ
X , and cð1ÞX , which gives the leading contribution to the

�X term.
The leading one-loop results for the nucleon and the� in

HB�PTwere first derived in Ref. [52] and successful fits to
lattice data on the nucleon and � were discussed in our
previous study [4]. A natural generalization of the Oðp3Þ
results for the nucleon and � to the rest of the octet and
decuplet baryons [53,54] is given by

mNðm�Þ ¼ mð0Þ
N � 4cð1ÞN m2

� � 3g2A
16�f2�

m3
�;

m�ðm�Þ ¼ mð0Þ
� � 4cð1Þ� m2

� � g2��

16�f2�
m3

�;

m�ðm�Þ ¼ mð0Þ
�

� 4cð1Þ
�
m2

� � 2g2�� þ g2��=3

16�f2�
m3

�;

m�ðm�Þ ¼ mð0Þ
�

� 4cð1Þ
�
m2

� � 3g2
��

16�f2�
m3

�;

(23)

for the octet baryons and

FIG. 13 (color online). Determination of rN0 with a simulta-
neous fit to the lattice data at � ¼ 3:9 and � ¼ 4:05. The
asterisks denote the physical point determined by the value of
rN0 by using Oðp3Þ and Oðp4Þ �PT as described in Ref. [4].
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m�ðm�Þ ¼ mð0Þ
� � 4cð1Þ� m2

� � 25

27

g2��
16�f2�

m3
�;

m�� ðm�Þ ¼ mð0Þ
�� � 4cð1Þ

��m2
� � 10

9

g2����

16�f2�
m3

�;

m�� ðm�Þ ¼ mð0Þ
�� � 4cð1Þ

��m2
� � 5

3

g2
����

16�f2�
m3

�;

m�ðm�Þ ¼ mð0Þ
� � 4cð1Þ� m2

�;

(24)

for the decuplet baryons.

In addition we consider a cubic term of the following
form:

mXðm�Þ ¼ mð0Þ
X � 4cð1ÞX m2

� þ cð2ÞX m3
�; (25)

treating cð2ÞX as an additional fit parameter.
The next-to-leading order (NLO) SU(2) �PT results [49]

for the octet are given by

mNLO
N ðm�Þ ¼ mLO

N ðm�Þ � 3g2A
16�f2�

m3
� � 8g2N�

3ð4�f�Þ2
F ðm�;�N�; �Þ;

mNLO
� ðm�Þ ¼ mLO

� ðm�Þ �
g2��

ð4�f�Þ2
F ðm�;���; �Þ �

4g2���

ð4�f�Þ2
F ðm�;���� ; �Þ;

mNLO
�

ðm�Þ ¼ mLO
�
ðm�Þ �

2g2��
16�f2�

m3
� � g2��

3ð4�f�Þ2
F ðm�;����; �Þ �

4g2���

3ð4�f�Þ2
F ðm�;���� ; �Þ;

mNLO
�

ðm�Þ ¼ mLO
�
ðm�Þ �

3g2
��

16�f2�
m3

� � 2g2
���

ð4�f�Þ2
F ðm�;���� ; �Þ;

(26)

and for the decuplet baryons:

mNLO
� ðm�Þ ¼ mLO

� ðm�Þ � 25

27

g2��
16�f2�

m3
� � 2g2�N

3ð4�f�Þ2
F ðm�;��N�; �Þ;

mNLO
�� ðm�Þ ¼ mLO

�� ðm�Þ � 10

9

g2����

16�f2�
m3

� � 2

3ð4�f�Þ2
½g2���F ðm�;�����;�Þ þ g2���F ðm�;�����;�Þ�;

mNLO
�� ðm�Þ ¼ mLO

�� ðm�Þ � 5

3

g2
����

16�f2�
m3

� � g2
���

ð4�f�Þ2
F ðm�;�����;�Þ;

mNLO
� ðm�Þ ¼ mLO

� ðm�Þ;

(27)

with the nonanalytic function [55]

F ðm;�; �Þ ¼ ðm2 ��2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p
log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p

�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p
�
� 3

2
�m2 log

�
m2

�2

�
� �3 log

�
4�2

m2

�
; (28)

depending on the threshold parameter �XY ¼ mð0Þ
Y �mð0Þ

X and on the scale � of chiral perturbation theory, fixed to � ¼
1 GeV. For �> 0 the real part of the function F ðm;�; �Þ has the property

F ðm;��; �Þ ¼
��F ðm;�; �Þ m< �;
�F ðm;�; �Þ þ 2�ðm2 ��2Þ3=2 m> �;

(29)

which corrects a typo in the sign of the second term in Ref. [8]. In our fits, the nucleon axial charge gA and pion decay
constant f� are fixed to their experimental values (we use the convention such that f� ¼ 130:70 MeV). The remaining
pion-baryon axial coupling constants are taken from SU(3) relations [49]:

octet: gA ¼ Dþ F; g�� ¼ 2F; g�� ¼ D� F; g�� ¼ 2D;

decuplet: g�� ¼ H ; g���� ¼ 2

3
H ; g���� ¼ 1

3
H ;

transition: g�N ¼ C; g��� ¼ 1ffiffiffi
3

p C; g��� ¼ 1ffiffiffi
3

p C; g��� ¼ � 1ffiffiffi
2

p C:

(30)
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As can be seen, in the octet case, and once gA is fixed,
the axial coupling constants depend on the single parame-
ter written as � ¼ D

DþF . Its value is poorly known. It can be
taken either from the quark model (� ¼ 3=5), from the
phenomenology of semileptonic decays, or from hyperon-
nucleon scattering. We take 2D ¼ 1:47 or � ¼ 0:58 as
given in Ref. [49]. The decuplet coupling constants depend
on a single parameter for which we again take the value
H ¼ 2:2 from Ref. [49]. This value is not far from that
predicted by SU(6) symmetry, H ¼ 9

5 gA ¼ 2:29, used in
our previous work [4] resulting in the same cubic term for
the nucleon and �. For fixing the octet-decuplet transition
couplings we take the value C ¼ 1:48 from Ref. [55].

With the coupling constants fixed in this way, the LO,
the one-loop as well as the NLO fits are left with the two

independent fit parameters mð0Þ
X and cð1ÞX . All mass parame-

ters mð0Þ
X are treated independently unlike what is done in

Ref. [49], where a universal mass parameter was used for
all barons with the same strangeness.

It is worth commenting on the absence of an explicit
cubic term in the expressions for the� and�masses given
by Eqs. (26) and (27), which is of a different origin in each
case. In the case of �, it follows from the absence of light
valence quarks. The absence of a cubic term in the NLO
expression of � is a consequence of treating m� 
M� �
M� in �PT expansions, which however is not satisfied

either by the experimental values nor by the lattice results,
but rather indicate M� �M� � m�. It is thus justified to
consider the � ! 0 limit of the nonanalytic function (28)

F ðm�;� ! 0; �Þ ¼ �m3
�;

which generates a cubic term for the � and slightly modi-
fies the one for�. The corresponding expressions are given
by

m�ðm�Þ ¼ mð0Þ
� � 4cð1Þ� m2

� � g2��

16�f2�
m3

�;

m�ðm�Þ ¼ mð0Þ
�

� 4cð1Þ
�
m2

� � 2g2�� þ g2��=3

16�f2�
m3

�;

(31)

in agreement with the results of Eq. (23).
The expressions for the strange baryon masses to NNLO

in �PT given in Ref. [49] involve in general more unknown
low energy constants and only if we perform a constrained
fit do we have enough data to extract them. We found
however no real advantage in using constrained fits, which
generally gave larger �=d:o:f: and did not improve the
prediction of the mass at the physical point as compared
to the unconstrained fits. For the nucleon,� and�masses,
unconstrained fits can still be performed with four fit

parameters [8], namely, mð0Þ, cð1Þ, �, and � appearing in
the expressions of NNLO �PT given below:

mNNLO
N ðm�Þ ¼ mNLO

N ðm�Þ þm4
�

�
�N þ 16g2�Nc

ð1Þ
N

ð4�f�Þ2
� 9g2�N

4mð0Þ
N ð4�f�Þ2

� 45g2A

324mð0Þ
N ð4�f�Þ2

�
þ 16g2�Nc

ð1Þ
N

ð4�f�Þ2
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�
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log

�
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�

�2

��
12cð1ÞN � 3�N

4�f�
� 27g2A

16mð0Þ
N

� 5g�N
2mNð0Þ

�
; (32)

mNNLO
� ðm�Þ ¼ mNLO
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; (33)

mNNLO
� ðm�Þ ¼ mNLO

� ðm�Þ þ m4
�

ð4�f�Þ3
�
�� log

�
m2

�

�2

�
þ ��

�
; (34)

where

J ðm;�; �Þ ¼ m4 log

�
m2

�2

�
þ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i


p
log

�
��

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 �m2 þ i
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p
�
þ 2�2 log

�
4�2

m2

�
; (35)

and the real part of J satisfies

J ðm;��; �Þ ¼
�
J ðm;�; �Þ m< �;
J ðm;�; �Þ � 2��ðm2 ��2Þ1=2 m> �:

(36)

LOW-LYING BARYON SPECTRUM WITH TWO DYNAMICAL . . . PHYSICAL REVIEW D 80, 114503 (2009)

114503-15



Using the above Ansätze the chiral extrapolations of
lattice results at � ¼ 3:9 and � ¼ 4:05 given in
Tables V, VI, and VII are performed. In Fig. 14 we show
the fits for the nucleon in units of r0. The nucleon mass at
the physical point has been expressed in units of r0 using
the value determined from the nucleon mass as well as
from the pion decay constant. As can be seen these values
are consistent. The Oðp3Þ being the one used to determine
the scale passes through the physical point. The other
curves show the dependence on the chiral Ansatz used. It
comes as no surprise that the NLO result does badly for the
nucleon underestimating the mass at the physical point,
whereas the NNLO fits overcorrect and yield a higher
mass. Lattice results at� ¼ 3:9 and 4.05 expressed in units
of r0 fall on a universal curve confirming that finite cutoff
effects are small. Therefore we corroborate the conclusion
that we can use continuum chiral perturbation theory to
extrapolate lattice results at� ¼ 3:9 and� ¼ 4:05. For the
chiral extrapolation of the other baryons we use the scale
determined from the nucleon mass to convert to physical
units.

We show in Fig. 15 the chiral extrapolation for the �
mass and in Figs. 16, 18, and 20 the chiral extrapolations
for the octet baryon masses. In Figs. 17, 19, and 21 we
show the corresponding fits for the decuplet baryons. We
emphasize that the physical point is not included in these
fits.

The LO expression describes well the lattice results but
leads to extrapolated values inconsistent with the experi-

FIG. 14 (color online). Chiral extrapolation of the nucleon
mass in units of r0. Filled triangles and squares are results at
� ¼ 3:9 on 243 � 48 and 323 � 64 lattice sizes, respectively.
Open triangles are results at � ¼ 4:05. We show chiral extrap-
olations linear in m2

� as in Eq. (22), to Oðp3Þ as in Eq. (23), fit
including a cubic term as in Eq. (25), NLO and NNLO in SU(2)
chiral perturbation theory as in Eqs. (26) and (32), respectively.
We include an error band only for the Oðp3Þ fit for clarity. The
physical point shown by the asterisk uses the value of r0
extracted from f�, whereas the cross uses rN0 determined from

the nucleon mass.

FIG. 15 (color online). Chiral extrapolation of the �mass. The
notation is the same as that in Fig. 14 but in physical units. Here
we also include an error band for the cubic fit.

FIG. 16 (color online). Chiral extrapolation of the � mass in
physical units. We show chiral extrapolations linear in m2

�, using
Eq. (25) with a cubic term, Oðp3Þ given in Eq. (23) and NLO
SU(2) chiral perturbation theory given in Eq. (26). The rest of the
notation is the same as that in Fig. 15.

FIG. 17 (color online). Chiral extrapolation of the �� mass.
The notation is the same as that in Fig. 16.
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mental point. The Oðp3Þ HB�PT expansion given in

Eqs. (23) and (24) with two fit parameters mð0Þ and cð1Þ
provides a good description of lattice data and the results
extrapolated to the physical point are, in general, in agree-
ment with experiments. The NLO leads to a clear improve-
ment in the case of the � and � masses, whereas for the
rest of the baryons the improvement is marginal. Apart
from the preceding remarks, there is no clear advantage in
using higher order fits, especially NNLO, which even turns
out to be numerically unstable for the case of the � and �
masses. Therefore our main conclusion is that the Oðp3Þ
HB�PT provides a reasonable description for the nucleon
and�masses, whereas for the strange baryon masses NLO
SU(2) is preferable, yielding values at the physical point
that are in agreement with experiment.

We use the relation m2
� 
� to evaluate the nucleon

� term by computing m2
�

dMN

dm2
�
. Using our Oðp3Þ fit we

find �N ¼ 64:2ð9Þ MeV in agreement with the value given
in Ref. [4]. Applying the same relation to the other baryons
we can evaluate the corresponding� term for them. We list
in Table XIV the values we obtain using the nucleon mass

to set the scale. As can be seen, the value extracted depends
on the fitting Ansatz. In the most interesting case of the
nucleon the result of Oðp3Þ changes by 2 standard devia-
tions if the coefficient of the cubic term in m� is fitted. In
the case of the� fitting the cubic term gives the same value
as that obtained when using Oðp3Þ, which agrees with the
value found in the case of the nucleon. This is another
indication of the argument presented above in favor of the
presence of a cubic term in m� of comparable size as that
of the nucleon. The main conclusion drawn from allowing
the coefficient of the cubic term to be determined from the
data is that the value of the � term for all baryons except
the � is comparable within error to the value of the
nucleon � term. Comparing to the results of NLO we
can see that for the nucleon this fit produces too much
curvature as already observed for instance in Ref. [8]. For
the other baryons a reasonable value is obtained depending
on the quality of the fits.

FIG. 18 (color online). Chiral extrapolation of the�mass. The
notation is the same as that in Fig. 16.

FIG. 19 (color online). Chiral extrapolation of the �� mass.
The notation is the same as that in Fig. 16.

FIG. 20 (color online). Chiral extrapolation of the�mass. The
notation is the same as that in Fig. 16.

FIG. 21 (color online). Chiral extrapolation of the� mass. We
show chiral extrapolations linear in m2

�, using Eq. (25), and
NNLO in SU(2) chiral perturbation theory given in Eq. (34). The
rest of the notation is the same as that in Fig. 14.
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VI. COMPARISON WITH OTHER LATTICE
RESULTS AND WITH EXPERIMENT

In this section we show a comparison of recent lattice
results on the baryon masses from various collaborations in
Figs. 22 and 23. For our results we use the lattice spacing

determined from the nucleon mass to convert physical
units. Results from the other collaborations are converted
to physical units using the lattice spacing that they provide.
The level of agreement of lattice QCD results using a
variety of fermion discretization schemes before taking
the continuum limit or other lattice artifacts into account
is quite impressive. Small discrepancies seen mainly in the
decuplet masses can be attributed to lattice artifacts. In
particular, results using asqtad improved staggered fermi-
ons may suffer the most from discretization errors. The
MILC Collaboration has simulations on finer lattices and
an update on the masses is expected in the near future. We
note that results very close to the physical point obtained

TABLE XIV. � term in MeV using the fit parameters determined from Oðp3Þ �PT, using a cubic fit Eq. (25) and NLO. We used the
scale from the nucleon mass to convert to physical units.

�N �� ��Av: ��Av:
��Av: ���Av: ���Av: ��

Oðp3Þ 64.2(8) 34.7(9) 37.1(8) 9.7(1.1) 62.2(1.1) 38.0(1.7) 17.3(1.3) 6.3(1.3)

Fit with cubic term 33.4(6.9) 33.7(9.8) 35.6(10.6) 26.3 (7.7) 25.7 (2.5) 24.2 (6.4) 32.4 (13.4) 2.9(1.4)

NLO 92.5(7) 52.8(8) 43.3(9) 17.2(1.0) 79.5(1.0) 44.1(1.7) 27.9(1.3) 6.3(1.3)

FIG. 22 (color online). Comparison of the masses for the low-
lying octet baryons. Results from this work are shown by the
filled (black) triangles for L ¼ 2:1 fm and (blue) squares for
L ¼ 2:7 fm with a ¼ 0:089 fm and with the open (red) triangles
for L ¼ 2:1 fm and a ¼ 0:070 fm. Results with the hybrid
action (LHPC) are shown with the (green) asterisks for a ¼
0:124 fm and results using Nf ¼ 2þ 1 Clover fermions (PACS-

CS) with the open (orange) circles and a ¼ 0:0907 fm. For the
nucleon we also show results using Nf ¼ 2þ 1 asqtad improved

staggered fermions (MILC) denoted by the filled (light blue)
circles. The physical masses are shown by the (purple) star.

FIG. 23 (color online). Comparison of masses for the low-
lying decuplet baryons. The notation is the same as that of
Fig. 22.
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using Clover fermions from the PACS-CS Collaboration
[6] may have large finite volume effects due to the fact that
m�L < 3:5 in this simulation.

Finally we show our continuum results in Fig. 24.
We take the continuum limit using results at � ¼ 3:9 and
� ¼ 4:05 after interpolating at a given value of r0m�. The
continuum values used are collected in Tables XIII and
XIV for the octet and decuplet, respectively. Residual cut-
off effects that may result from using Eq. (10) to estimate
�s at � ¼ 4:05 are not included in the systematic errors.
For the nucleon and the � we use Oðp3Þ to extrapolate to
the physical point as done in our previous work [4]. For the
strangeness nonzero baryons we use NLO SU(2) HB�PT
to extrapolate to the physical point. In the statistical error
we have added the error arising from the uncertainty in rN0 ,
i.e. the difference in the resulting masses when we use
rN0 ¼ 0:471 fm and rN0 	 0:021 fm to set the scale. As can

be seen, our results compare well with experiment within
the estimated uncertainties.

VII. SUMMARYAND CONCLUSIONS

The focus of this work is the computation of the low-
lying baryon masses using twisted mass fermions at maxi-
mal twist. It is in line with ongoing efforts by other lattice
collaborations worldwide to predict the baryon spectrum
from first principles. Comparison of lattice results with
experiment is regarded as an important benchmark for
lattice QCD and justifies the use of different lattice actions,
each with different systematic errors. For example, the

twisted mass action with only one parameter to tune,
provides automatic OðaÞ improvement. However it re-
stores isospin symmetry only in the continuum limit. We
have examined the consequences of isospin breaking on
the baryon masses and found them to be either small or
compatible with zero. On our finer lattice at � ¼ 4:05
nonvanishing isospin breaking is obtained only in the
case of the Cascade where we find that m�0 �m�� 

50 MeV. Finite volume corrections are estimated in the
case of the nucleon and found to be smaller than statistical
errors. The continuum extrapolation using results at � ¼
3:9 and � ¼ 4:05 are verified using a finer lattice at � ¼
4:2 in the case of the nucleon supporting the analysis
carried out. Therefore this study shows that both cutoff
effects and finite volume corrections are small and contin-
uum results can be extracted using lattice data at � ¼ 3:9
and � ¼ 4:05.
An investigation of the Gell-Mann–Okubo relations has

been carried out. For the octet baryon masses we find that
these relations are satisfied at all pion masses even at a
nonvanishing lattice spacing. For the decuplet baryon
masses we see deviations and it will be interesting to study
these relations at finer values of the lattice spacing and
smaller quark masses.
Comparison of the results at given lattice spacings with

those of other collaborations reveals consistency among
groups using improved actions with lattice spacing being
smaller than 0.1 fm. This is a nontrivial consistency check
of several lattice formulations directly on lattice data with-
out the necessity of any extrapolations. This level of agree-
ment among different lattice actions is a welcome outcome
of the collective effort of several collaborations. The final
continuum results at the physical limit shown in Fig. 24 are
in excellent agreement with experiment. The largest un-
certainty in the final value comes from systematic errors in
setting the scale, which are an order of magnitude larger
than statistical errors.
Besides the masses we have extracted from the

various fits the � term. To Oðp3Þ �PT we find a value of
64(1) MeV for the nucleon � term. Allowing the coeffi-
cient of the cubic term in m� to be determined from the
data yields a smaller value of 39(12) MeV albeit with a
large statistical error. Fitting with the latter Ansatz pro-
duces for all baryons expect the � a value of the � term
compatible with that of the nucleon. Clearly this is a result
that requires further study. In particular, results at smaller
pion masses will help to better determine the curvature of
fits.
The next step for the ETM Collaboration is to perform

the analysis using a dynamical strange quark. Within the
twisted mass formalism this is accomplished by simulating
a nondegenerate doublet. Such NF ¼ 2þ 1þ 1 simula-
tions are already available at two values of the lattice
spacing [56] comparable to the ones studied in this work.
This future study will provide a nice comparison to the
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FIG. 24 (color online). The octet and decuplet spectrum. The
values shown are obtained after taking the continuum limit and
after the extrapolation to the physical point is carried out. For the
nucleon and � we used Oðp3Þ and for the rest NLO SU(2)
HB�PT for the chiral extrapolations.
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present work and enable us to gauge unquenching effects
in the strange quark sector.
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