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The QCD sum rule technique is employed to investigate pentaquark states with strangeness S ¼ þ1

and IJ� ¼ 012
�, 112

�, 032
�, 132

�. Throughout the calculation, emphasis is laid on the establishment of a valid

Borel window, which corresponds to a region of the Borel mass, where the operator product expansion

converges and the presumed ground state pole dominates the sum rules. Such a Borel window is achieved

by constructing the sum rules from the difference of two independent correlators and by calculating the

operator product expansion up to dimension 14. Furthermore, we discuss the possibility of the contami-

nation of the sum rules by possible KN scattering states. As a result, we conclude that the 032
þ state seems

to be the most probable candidate for the experimentally observed �þð1540Þ, while we also obtain states

with 012
�, 112

�, 132
þ at somewhat higher mass regions.
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I. INTRODUCTION

�þð1540Þ with strangeness S ¼ þ1 and baryon number
B ¼ þ1 is evidently a flavor exotic state with minimal
quark content uudd �s [2]. The first announcement of its
experimental detection was made in 2003 [2], and it has
since confronted the hadron physics community with in-
teresting novel phenomena and unanticipated problems
that have not been solved until the present day.

Presently, the experimental situation of�þð1540Þ seems
to be rather unclear. After the CLAS collaboration has
published several papers on their pentaquark search with
high statistics [3–6], where no signal of �þ could be
found, many people now seem to believe that the penta-
quark does not exist after all and that the whole story was
just ‘‘a curious episode in the history of science’’ [7]. There
are, however still experiments that claim to observe a
signal of �þð1540Þ [8,9] and therefore this issue should
not be considered to be completely settled yet. Additional
experimental results, which either unambiguously confirm
the existence of �þð1540Þ or otherwise can eliminate it
completely, are eagerly waited for.

Theoretically, one not yet well understood property of
�þð1540Þ is its unnaturally narrow width, which was
reported to be even less than 1 MeV [8] and which is
very difficult to explain from our experience with ordinary
baryons. Because�þð1540Þ lies about 100 MeVabove the
KN threshold, one would expect the width to be much
larger than the experimentally measured value. Of course,
there have been many attempts to explain this narrow width
of �þð1540Þ [10–17], but none of these approaches has
completely succeeded yet.

Another problem is the correct assignment of quantum
numbers such as spin and parity to the �þð1540Þ state.
There are many studies, in which states with various quan-
tum numbers were investigated using QCD sum rules [18–
28] or lattice QCD [29–34], but no consistent understand-
ing has yet emerged.
The main subject of the present paper is to determine the

quantum numbers (isospin, spin, and parity) of �þð1540Þ
from a QCD sum rule approach. We therefore study and
compare the sum rules of states with IJ� ¼ 012

�, 112
�, 032

�,
132

�. From this comparison, we aim to determine which of

the investigated quantum numbers is the one that most
likely has to be assigned to the �þð1540Þ state.
Furthermore, we also look for possible excited states below
2 GeV, that may be found in future experiments. For these
purposes we use an improved version of the QCD sum rule
method, which has first been proposed in [27]. The basic
idea of improvement is to use the difference of two corre-
lators to construct the sum rule. The continuum part of the
spectral function is significantly suppressed by this proce-
dure, which therefore helps to find a valid Borel window,
whose existence is a necessary condition for obtaining
reliable results within the QCD sum rule technique.
Moreover, we calculate the operator product expansion
(OPE) up to dimension 14, which is indispensable for a
sufficient convergence of the expansion.
The paper is organized as follows. In Sec. II, the formal-

ism of QCD sum rules is briefly reviewed. The details of
our method, including the interpolating fields employed
and the implications of the improvement mentioned in the
last paragraph are then explained in Sec. III. In Sec. IV, the
results of the analysis for the various quantum numbers are
given in detail. These results are then discussed in Sec. V,
and the conclusion is given in Sec. VI. Finally, the appen-*phil@th.phys.titech.ac.jp
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dix is devoted to the numerical results of the OPE and to
the details of the establishment of the Borel window for the
various sum rules.

II. FORMALISM

A. QCD sum rules

In the QCD sum rule method [35,36], we compute the
two-point function of various operators. It is defined as

�ðqÞ ¼ i
Z

d4xeiqxh0jT½�ðxÞ ��ð0Þ�j0i
� �1ðq2Þq6 þ�2ðq2Þ; (1)

where �ðxÞ is a spin 1
2 operator.�1ðq2Þ is called the chiral-

even, and �2ðq2Þ the chiral-odd part.
Furthermore, the two-point function of a spin 3

2 Rarita-

Schwinger type operator ��ðxÞ is defined as

�ðqÞ ¼ i
Z

d4xeiqxh0jT½��ðxÞ ���ð0Þ�j0i
� �g��½�1ðq2Þq6 þ�2ðq2Þ� þ . . . ; (2)

where the dots stand for other Lorentz structures than g��.

In the present study, we will only need the terms containing
g��. We use the same notation as for the spin 1

2 case and

denote�1ðq2Þ as the chiral-even, and�2ðq2Þ as the chiral-
odd part.

In the QCD sum rule approach, we use the analytic
properties of these two-point functions to extract informa-
tion of the physical states that couple to the operators � or
��. Concretely, the analyticity of Eqs. (1) and (2) allows

one to write down the dispersion relation

�iðq2Þ ¼ 1

�

Z 1

0
ds

Im�iðsÞ
s� q2

þ ðsubtraction termsÞ; (3)

for i ¼ 1, 2. This equation has the same form for both the
spin 1

2 and spin 3
2 case. To handle a possible divergence in

the integral of the right-hand side, usually the subtracted
dispersion relation is used. This means that subtraction
terms have to be added to this equation, which contribute
mainly to the high-energy part of the spectral function. The
significance of these terms for the low-energy region is
hence small. Moreover, the subtraction terms will disap-
pear when the Borel transformation is applied as they are
polynomials of q2. We will thus omit them in the
following.

The imaginary part of the two-point function Im�iðsÞ,
which corresponds to the spectral function of � or ��,

satisfies the following spectral conditions:

Im�1ðsÞ � 0;
ffiffiffi
s

p
Im�1ðsÞ � Im�2ðsÞ � 0: (4)

Thus, the positivity condition only holds for the chiral-even
part, while the spectral function obtained from the chiral-
odd part is allowed to have negative values.

In this study, we employ the usual ‘‘poleþ continuum’’
parametrization for the spectral function, which appears in
the imaginary part of the correlator

Im�iðsÞ ¼ �ð�iÞ2�ðs�m2
�þÞ þ �ðs� sthÞIm�OPE

i ðsÞ:
(5)

The � function for the ground state pole is justified by the
experimental results, which show that the width of
�þð1540Þ is very narrow. The potential contribution of
the KN scattering states, which are not included in the
expression above will be discussed in Sec. III D.
Furthermore, to obtain consistent results, it is important

to choose an appropriate operator in the two-point func-
tion, whose spectral function resembles that of Eq. (5) as
much as possible. In other words, the chosen operator
should couple strongly to the ground state pole (if it exists),
leading to a large value of the residue ð�iÞ and at the same
time should only have a small overlap with the continuum
states, which are included in the parametrization of Eq. (5)
only above the threshold parameter sth. In the present
study, we will try to construct such an operator by consid-
ering linear combinations of two independent operators
and then fixing the mixing angles so that the results are
consistent with the ansatz of Eq. (5).
While the low-energy part of the spectral function below

the threshold parameter sth is phenomenologically parame-
trized as in Eq. (5), the left-hand side of Eq. (3) and the
second term of Eq. (5) are calculated analytically using the
OPE. The results of this calculation can be generally ex-
pressed as follows:

�OPE
1 ðq2Þ ¼ X5

j¼0

C2jðq2Þ5�j logð�q2Þ þ X1
j¼1

C10þ2j

ðq2Þj ;

�OPE
2 ðq2Þ ¼ X5

j¼0

C2jþ1ðq2Þ5�j logð�q2Þ þ X1
j¼1

C11þ2j

ðq2Þj :

(6)

Here, Ci contain various quark and gluon condensates and
numerical factors.
The next step in the calculation is to apply the Borel

transformation, which is defined as

LM½�iðq2Þ� � lim
�q2 ;n!1;
�q2=n¼M2

ð�q2Þnþ1

n!

�
d

dq2

�
n
�iðq2Þ; (7)

where M is the so-called Borel mass. There are several
reasons for using this transformation: firstly, the high-
energy continuum part of the spectral function and the
higher-order terms in the OPE are suppressed by the fac-

tors e�s=M2
and 1=n!, respectively. This considerably im-

proves the accuracy of the sum rules. Secondly, as already
mentioned above, the Borel transformation removes the
subtraction terms in Eq. (3) and therefore eliminates pos-
sible ambiguities originating from these terms.
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Substituting Eq. (5) into the dispersion relation of
Eq. (3), and applying the Borel transformation, the follow-
ing expressions can be obtained:

ð�1Þ2e�m2

�þ=M2 ¼ �
Z sth

0
dse�s=M2

X5
j¼0

C2js
5�j

þ X1
j¼1

ð�1ÞjC10þ2j

�ðjÞðM2Þj�1
� f1ðM; sthÞ; (8)

ð�2Þ2e�m2

�þ=M2 ¼ �
Z sth

0
dse�s=M2

X5
j¼0

C2jþ1s
5�j

þ X1
j¼1

ð�1ÞjC11þ2j

�ðjÞðM2Þj�1
� f2ðM; sthÞ: (9)

From these equations, the expressions for m�þ and ð�iÞ2
can be extracted straightforwardly:

m2
�þðM; sthÞ ¼ 1

fiðM; sthÞ
@fiðM; sthÞ
@ð�1=M2Þ ; (10)

ð�iÞ2 ¼ fiðM:sthÞem
2

�þðM;sthÞ=M2

: (11)

Notice that m�þ can be calculated independently either
from the chiral-even term f1ðM; sthÞ or from the chiral-odd
term f2ðM; sthÞ. In this study we will mainly use f1ðM; sthÞ
to calculate m�þ and refer to f2ðM; sthÞ only for determin-
ing the parity of the investigated state.

Here, the Borel mass M and the threshold parameter sth
are variable parameters, which allow us to obtain distinct
sum rules in Eqs. (10) and (11) for each chosen value ofM
and sth. Comparing these different sum rules, it is possible
to extract information on the shape of the investigated
spectral function and on the physical states that contribute
to the sum rules most strongly. We will discuss this issue in
detail in the later sections.

B. Parity projection

The parity of the presumed ground state pole can not be
determined from the sum rule of the chiral-even (or chiral-
odd) part alone, as �ðxÞ or ��ðxÞ couple to both states with
positive and negative parity regardless of their own intrin-
sic parity. To this end, we use the parity-projected sum
rules [37] to obtain information on the parity of the inves-
tigated state. In this method, instead of Eqs. (1) or (2), the
‘‘old fashioned’’ Green function is considered in the rest
frame ( ~q ¼ 0):

�ofðq0Þ ¼ i
Z

d4xeiqxh0j�ðx0Þ�ðxÞ ��ð0Þj0ij ~q¼0

� �of
1 ðq0Þ�0 þ�of

2 ðq0Þ: (12)

Here, only the spin 1
2 case is shown. This expression leads

then to two independent sum rules for states coupling to
�ðxÞ with positive and negative parity, respectively. These

are given as

j��j2e�ðm�
�þ Þ2=M2 ¼ 1

�

Z qth
0

0
dq0½Im�of

1 ðq0Þ

� Im�of
2 ðq0Þ�e�q2

0
=M2

; (13)

where the intrinsic parity of the operator has been assumed
to be positive. In the opposite case the signs of the right-
hand side have to be switched. qth0 is the threshold parame-

ter corresponding to s1=2th in Eq. (5).

We now have three sum rules, Eqs. (8), (9), and (13),
which must in principle give the same results for m�þ .
However, the OPE of the chiral-odd part�2 has turned out
to contain ambiguous terms in the first power of the strange
quark mass ms, related to an infrared divergence originat-
ing in the perturbative treatment of ms. To circumvent this
problem, we will use only the sum rule of the chiral-even
part of Eq. (8) (where the divergencies do not occur) to
calculate the mass of the ground state. Meanwhile, Eq. (13)

will be applied in the chiral limit ( h �ssi
h �qqi ¼ 1, ms ¼ 0) in

order to determine the parity of the ground state.

C. Borel window

It is well known since the QCD sum rule method has
been formulated, that the condition of an existing Borel
window provides an essential check of the accuracy of the
method. We define the Borel window as the region of the
Borel mass where the following two conditions are satis-
fied:

LM½�OPE
highest order termsðq2Þ�

LM½�OPE
all termsðq2Þ�

� 0:1; (14)

Rsth
0 dse�ðs=M2ÞIm�OPEðsÞR1
0 dse�ðs=M2ÞIm�OPEðsÞ � 0:5: (15)

Equation (14) is a necessary condition for the OPE to
converge. It gives a lower limit for the Borel mass because
the higher-order terms are suppressed for larger M as can
be seen in Eqs. (8) and (9). On the other hand, Eq. (15)
ensures that the low-energy part of the spectral function
dominates the sum rules, and that contributions from high-
energy states do not deteriorate the result. It is therefore
necessary that the high-energy part of the spectral function
is sufficiently suppressed. As the suppression is stronger
for smaller M, this condition gives an upper bound for the
Borel mass.
One may wonder what the rationale for the numbers on

the right-hand side of Eqs. (14) and (15) is. These numbers
are in fact chosen quite reasonably, which can be under-
stood from the following considerations. The main uncer-
tainties in a QCD sum rule calculation in most cases
originate from ambiguities of the vacuum condensates
which often have error bars considerably larger than
10%. This justifies the usage of Eq. (14) as choosing any
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much smaller number than 0.1 on the right-hand side of this
condition would be meaningless. Moreover, in order for the
low-energy states below sth to contribute most strongly to
the sum rules and that thus an inappropriate parametriza-
tion of the high-energy states do not introduce too large
errors, the right-hand side of (15) is also a natural choice,
as is known from experience with sum rules of other
baryons and mesons [36]. Therefore, one can have some
confidence that the errors coming from the neglected
higher-order terms of the OPE and the possible inaccurate
description of the spectral function above sth are under
control if both conditions of Eqs. (14) and (15) are
satisfied.

Let us now discuss the difficulties of establishing a Borel
window in pentaquark studies. As has been discussed
above and also in [25,27,28], the existence of a valid
Borel window is essential for obtaining reliable results
within the QCD sum rule technique. Nevertheless almost
all earlier studies investigating pentaquark states with QCD
sum rules [18–24,26] did not consider this problem and
therefore these results should not be seen as to be
conclusive.

The reason why all these studies have ignored this issue,
is that, in fact, it is very difficult (if not impossible) to
establish a valid Borel window in the conventional QCD
sum rules described so far in this paper. There are basically
two difficulties. Firstly, the convergence of the OPE of the
correlator of a five-quark operator is slower compared to
the case of nonexotic baryons containing only three quarks.
This can be understood from a simple argument: graphs
containing quark loops are multiplied by a factor of ð 1

2�Þ2n
(n: number of quark loops), which comes from the inte-
gration of the momenta in each loop, and the graphs of
higher-order terms, where some of the quark loops are cut,
are thus enhanced [38]. Therefore, one can expect that the
OPE starts to converge only after all the quark loops are
being cut. For the pentaquark calculation, this happens
only for terms of dimension 12 (or higher) and one there-
fore needs to calculate the OPE at least up to dimension 12
to make sure that all the terms with a possible large con-
tribution are included. This problem can in principle be
solved if one calculates the OPE up to high enough orders
(which is a tedious, but straightforward task, if one uses the
vacuum saturation approximation).

The second difficulty is more severe: because of the high
dimensionality of the interpolating field of the pentaquark
(15=2 compared to 9=2 for an ordinary three-quark
baryon), the high-energy part of the spectral function
well above the presumed �þ resonance is enhanced and
therefore in many cases dominates the behavior of the
whole spectral function. This makes it very difficult to
obtain a large enough pole contribution in Eq. (15) for
establishing a valid Borel window. It has thus been a very
hard task to make a reliable prediction on the resonance
�þð1540Þ.

As discussed in the next section, this problem can be
solved by a modification of the standard QCD sum rules
technique, which consists of using, instead of a single
correlator, the difference of two independent correlators
to construct the sum rules. This will be our strategy in this
paper.

III. DETAILS OF THE METHOD

A. Interpolating fields

To carry out QCD sum rule calculations, one first has to
construct appropriate operators, which carry the desired
quantum numbers. These operators should be chosen to
couple strongly to the state that one wants to investigate,
although this is not always a trivial task. The interpolating
fields that we use in the present study are described in this
section. Our general strategy is to assemble two indepen-
dent operators for each quantum number and set up general
interpolating fields by considering linear combinations of
them.
All the operators used in this study are built from two ud

diquarks and an �s antiquark, so that their KN component
on the operator level is as small as possible. We therefore
hope that these operators only have a small overlap with
the KN scattering states while they should couple strongly
to the possible pentaquark resonance. For orientation, the
properties of the employed ud diquarks are given in
Table I.

1. The IJP ¼ 012
� and 112

� states

For the isosinglet case with spin 1
2 , we use the following

two operators. The same ones were used in [27], where the
IJP ¼ 012

� states were investigated with a similar strategy

as in this paper.

�I¼0
1 ðxÞ ¼ 	cfg½	abcuTa ðxÞC�5dbðxÞ�

� ½	defuTd ðxÞC���5deðxÞ����5C�sTg ðxÞ; (16)

�I¼0
2 ðxÞ ¼ 	cfg½	abcuTa ðxÞCdbðxÞ�

� ½	defuTd ðxÞC���5deðxÞ���C�sTg ðxÞ: (17)

Here, a; b; . . . are color indices,C is the charge conjugation
matrix and T stands for the transposition operation. These
fields both have positive intrinsic parity. They are con-

TABLE I. The quantum numbers of the ud diquarks used in
this study. a; b; . . . are color indices and C ¼ i�2�0 stands for
the charge conjugation matrix.

Diquarks I J �

	abcðuTaC�5dbÞ 0 0 þ
	abcðuTaCdbÞ 0 0 �
	abcðuTaC���5dbÞ 0 1 �
	abcðuTaC��dbÞ 1 1 þ
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structed from a scalar diquark, a vector diquark and an
antistrange quark operator in the case of �1 and from a
pseudoscalar diquark, a vector diquark, and an antistrange
quark operator in the case of �2. To project out the spin 1

2

component, both operators have been multiplied by �� and
�1 is furthermore multiplied by �5 to get the correct
intrinsic parity. It must be remembered that even though
the intrinsic parity of these operators is positive, it can
couple to both states with positive and negative parity.

By introducing a mixing angle �01=2, a general operator

can be constructed from �I¼0
1 ðxÞ and �I¼0

2 ðxÞ:
�I¼0ðxÞ ¼ cos�01=2�

I¼0
1 ðxÞ þ sin�01=2�

I¼0
2 ðxÞ: (18)

This is the operator that will be used in the actual calcu-
lation. Here, we are in principle allowed to choose any
value for the mixing angle. The strategy for determining
this free parameter will be given in the following
subsection.

For the isotriplet, we employ the following two opera-
tors, which have a form similar to the isosinglet case

�I¼1
1 ðxÞ ¼ 	cfg½	abcuTa ðxÞC�5dbðxÞ�

� ½	defuTd ðxÞC��deðxÞ���C�sTg ðxÞ; (19)

�I¼1
2 ðxÞ ¼ 	cfg½	abcuTa ðxÞCdbðxÞ�

� ½	defuTd ðxÞC��deðxÞ����5C�sTg ðxÞ: (20)

The notation is the same as before. The difference to the
fields with I ¼ 0 is that instead of a vector diquark, we here
have an axial-vector diquark, which carries isospin I ¼ 1.
Moreover, note that both the operators are multiplied by
ð��5Þ to obtain positive intrinsic parity for �I¼1

1 ðxÞ and
�I¼1
2 ðxÞ. Analogously to the isosinglet case, we construct a

general operator by introducing a mixing angle �11=2:

�I¼1ðxÞ ¼ cos�11=2�
I¼1
1 ðxÞ þ sin�11=2�

I¼1
2 ðxÞ: (21)

2. The IJP ¼ 032
� and 132

� states

The construction of the operators with spin 3
2 can be done

in a similar fashion as for spin 1
2 . There are, however, some

additional steps arising from the properties of the spin 3
2

Rarita-Schwinger type fields. These are, for instance, dis-
cussed in [28,39], and we do not repeat the details here. We
only state the result of how the spin 3

2 components can be

extracted. In the case of Rarita-Schwinger fields, the two-
point function of Eq. (2) generally contains various differ-
ent tensor structures, with contributions from states with
spin 1

2 and
3
2 . It can be shown that the terms proportional to

g�� receive only contributions from the spin 3
2 states.

Therefore, if one considers only the two terms

���ðqÞ ¼ �g��½�1ðq2Þq6 þ�2ðq2Þ� þ . . . ; (22)

the spin 1
2 contributions will automatically be eliminated.

Note that there is a minus sign on the right-hand side of
Eq. (22), which is a consequence of the properties of the
Rarita-Schwinger field.
To study the isosinglet states we employ the following

interpolating fields:

�I¼0
1;� ðxÞ ¼ 	cfg½	abcuTa ðxÞC�5dbðxÞ�

� ½	defuTd ðxÞC���5deðxÞ�C�sTg ðxÞ; (23)

�I¼0
2;� ðxÞ ¼ 	cfg½	abcuTa ðxÞCdbðxÞ�

� ½	defuTd ðxÞC���5deðxÞ��5C�sTg ðxÞ: (24)

These operators have the same structure as the ones with
spin 1

2 [Eqs. (16) and (17)]. The only difference is that �
��5

in front of C�sT has been omitted here, which allows the
operators to couple to spin 3

2 states and lets the intrinsic

parity become positive. As above, a general operator is
then constructed by a linear combination of�I¼0

1;� and�I¼0
2;� :

�I¼0
� ðxÞ ¼ cos�03=2�

I¼0
1;� ðxÞ þ sin�03=2�

I¼0
2;� ðxÞ: (25)

This is the same kind of operator that has been used in our
previous work [28]. In this paper we will merely restate the
results that have been obtained there in order to compare
them with the results from the other quantum numbers.
Finally, for the isotriplet case, we will use the operators

given below:

�I¼1
1;� ðxÞ ¼ 	cfg½	abcuTa ðxÞC�5dbðxÞ�

� ½	defuTd ðxÞC��deðxÞ��5C�sTg ðxÞ; (26)

�I¼1
2;� ðxÞ ¼ 	cfg½	abcuTa ðxÞCdbðxÞ�

� ½	defuTd ðxÞC��deðxÞ�C�sTg ðxÞ: (27)

The structure of these operators is almost the same as the
ones with quantum numbers IJP ¼ 112

�. Here again, com-

pared with Eqs. (19) and (20) the matrices ���5 have been
omitted in order to construct Rarita-Schwinger fields
which couple to spin 3

2 states and to adjust the intrinsic

parity to be positive. As in all the cases above, a general
operator �I¼1

� is constructed from �I¼1
1;� and �I¼1

2;� , which

will then be used to formulate the sum rules

�I¼1
� ðxÞ ¼ cos�13=2�

I¼1
1;� ðxÞ þ sin�13=2�

I¼1
2;� ðxÞ: (28)

B. Determination of the Borel mass, threshold
parameter, and mixing angle

The Borel mass M appears in the formulation of QCD
sum rules when the Borel transformation is applied in
Eq. (7), the threshold parameter sth in the
‘‘poleþ continuum’’ ansatz of Eq. (5), and the mixing
angles �IJ in the general expressions for the interpolating
fields in Eqs. (18), (21), (25), and (28). In this subsection,
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our strategy of determining these parameters will be
explained.

Let us first discuss the question of how the Borel massM
has to be determined. As mentioned in the last section, it
first has to be checked whether one can establish a valid
Borel window from the sum rules. If not, the sum rules will
not work and it will not be possible to obtain any reliable
results from them. If one is able to find a valid Borel
window, M has to be chosen within its boundaries. As
will be discussed below, when the sum rules ‘‘work
well,’’ the dependence of the results on M should be small
and therefore it will not strongly depend on the exact
position on M inside of the Borel window.

Next, our strategy of determining the threshold parame-
ter sth will be explained. Assuming that the low-energy part
of the spectral function is dominated by a narrow reso-
nance pole, the values of the resonance mass [given in
Eq. (10)] and the residue [Eq. (11)] should not strongly
depend on M and sth. This is easily understood when one
considers the (ideal) case, when the spectral function is
given by a single � function below sth. Rewriting the right-
hand side of Eq. (10), we obtain

@
@ð�1=M2Þ

Rsth
0 dse�s=M2

Im�ðsÞRsth
0 dse�s=M2

Im�ðsÞ
¼

Rsth
0 dse�s=M2

sIm�ðsÞRsth
0 dse�s=M2

Im�ðsÞ :

(29)

If Im�ðsÞ is a simple � function specified as Im�ðsÞ ¼
�ð�Þ2�ðs�m2Þ þ �ðs� sthÞIm�0ðsÞ, then Eq. (29) gives
m2 and does not depend onM and sth. On the other hand, if
Im�ðsÞ is described by some continuous positive curve,
which corresponds to the scattering states, Eq. (29) should

be a rising curve, because of the weight factor e�s=M2
,

which suppresses the part of the integral with large s values
when M is small. Furthermore, Eq. (29) should have an
increasing value when sth is raised, as higher values of s
will be included in the integral.

Following the arguments above, it can be understood
that the threshold parameter sth has to be chosen so that the
dependence of the calculated resonance mass and its resi-
due is smallest, because this corresponds to the case of the
largest contribution of a narrow ground state pole to the
spectral function. On the other hand, if no such value for sth
can be found, we can assume that the spectral function is
dominated by the scattering states.

We therefore set up the following two conditions, by
which we determine sth (called in the following the con-
ditions of pole domination):

(1) A sufficiently wide Borel window exists.
(2) m�þðM; sthÞ should only weakly depend on the

Borel mass M and on the threshold parameter sth.

Condition 1) is essential to obtain reliable results with the
QCD sum rule method, while 2) follows from the discus-
sion above. The problem that arises here, is how we should
quantitatively define the ‘‘weak dependence’’ of condi-

tion 2). In other words, how ‘‘weak’’ should the depen-
dence onM and sth be that one can be unambiguously sure
not just to observe scattering states? This important prob-
lem will be discussed in the part of the result section, which
deals with KN scattering states.
Finally, the mixing angle �IJ has to be fixed. To do this,

we repeat the analysis outlined above for various values of
�IJ and at the end choose the one for which the conditions 1)
and 2) are best satisfied. This concludes our discussion
about the determination of the different parameters that
appear in the sum rules.

C. Establishment of a valid Borel window

As was pointed out in Sec. II C, it has so far been very
difficult to establish a valid Borel window in QCD sum rule
studies of pentaquarks. We aim to solve this problem by a
modification of the standard QCD sum rules technique
[27]. The idea is to use, instead of a single correlator, the
difference of two independent correlators to construct the
sum rules. By this trick, it is hoped that we will achieve a
large cancellation of the high-energy part of the spectral
function, due to the restored chiral symmetry in this region.
We will then be able to obtain a large pole contribution,
which (if the OPE is calculated up to a sufficiently high
dimension) will make it possible to establish a valid Borel
window.
To illustrate this point more concretely, let us consider

the difference of two independent correlators that have
been constructed in the second part of this section. We
take as an example the operators with quantum numbers
IJP ¼ 012

�. In the same way as it was shown in [28] for

operators of spin 3
2 , the operators of Eqs. (16) and (17) can

be expressed with the help of the operators 
1 and 
2,
which belong to different chiral multiplets:


1 ¼ �2ðuTRCdRÞ½ðuTLC��dRÞ � ðuTRC��dLÞ���C�sTR

� 2ðuTLCdLÞ½ðuTLC��dRÞ � ðuTRC��dLÞ���C�sTL;


2 ¼ 2ðuTRCdRÞ½ðuTLC��dRÞ � ðuTRC��dLÞ���C�sTL

þ 2ðuTLCdLÞ½ðuTLC��dRÞ � ðuTRC��dLÞ���C�sTR:

(30)

Here, the color indices are omitted for simplicity. 
1 be-

longs to the ð3; 15Þ � ð15; 3Þ multiplet of the chiral
SUð3ÞL 	 SUð3ÞR group with 4(1) right-handed and 1(4)
left-handed quarks, and 
2 to the ð8; 8Þ multiplet with 3(2)
right-handed and 2(3) left-handed quarks.
Using these chiral operators, �I¼0

1 and �I¼0
2 are given as

�I¼0
1 ¼ 1

2ð
1 þ 
2Þ; �I¼0
2 ¼ 1

2ð
1 � 
2Þ: (31)

Thus, the correlator of the general operator of Eq. (18),
denoted as �0

1=2ðq2; �01=2Þ � h�I¼0 ��I¼0i, can be expressed
as follows:

GUBLER et al. PHYSICAL REVIEW D 80, 114030 (2009)

114030-6



�0
1=2ðq2; �01=2Þ ¼ 1

4½h
1
�
1i þ h
2

�
2i�
þ 1

4 cosð2�01=2Þ½h
1
�
2i þ h
2

�
1i�
þ 1

4 sinð2�01=2Þ½h
1
�
1i � h
2

�
2i�: (32)

The first term of this expression does not depend on the
mixing angle �01=2, but is expected to couple strongly to the

high-energy continuum states because this term can have
perturbative parts. On the other hand, compared with the
first term, the coupling to the high-energy states of the
other two terms is expected to be smaller, which can be
understood from the following arguments. The perturba-
tive part of the second of Eq. (32) term vanishes because 
1

and 
2 belong to different chiral multiplets and therefore at
least one nonperturbative quark condensate related to chi-
ral symmetry breaking is needed to connect them. As the
perturbative term largely couples to the high-energy states,
their contributions will be suppressed in this term.
Considering the third term, it is possible to cancel the
leading perturbative terms with an appropriate normaliza-
tion of 
1 and 
2. Note that we here have implicitly used
the positivity condition of the spectral function. As is seen
in Eq. (4), this assumption is not necessarily valid for the
chiral-odd part, but we employ in this paper only the sum
rule of the chiral-even part and the parity-projected sum
rules, where the positivity condition holds.

Therefore, by taking the difference of two correlators

with different mixing angles �01=2 and �
00
1=2, the first term in

Eq. (32) will be eliminated, and a strong suppression of the
high-energy continuum part can be obtained. It will thus
become possible to establish a valid Borel window.Writing
this difference down, we get

�0
1=2ðq2; �01=2Þ ��0

1=2ðq2; �0
0
1=2Þ

¼ 1
2 sinð�01=2 � �0

0
1=2Þfcosð�01=2 þ �0

0
1=2Þ½h
1

�
1i � h
2
�
2i�

� sinð�01=2 þ �0
0

1=2Þ½h
1
�
2i þ h
2

�
1i�g; (33)

which will be used to formulate the sum rules. It is under-

stood that the factor sinð�01=2 � �0
0

1=2Þ has no influence on

the mass of the ground state, calculated in Eq. (10). We

hence fix it at �01=2 � �0
0
1=2 ¼ �

2 and will only keep �01=2 þ
�0

0
1=2 � �0

1=2 as a free parameter, which will have to be

determined by the conditions stated in the last subsection.

D. Possible contribution of KN scattering states

We have in this paper several times mentioned the
possible influence of the KN scattering states to the sum
rules. Generally, if such scattering states have the same
quantum numbers as the interpolating fields, they may
always contribute to the sum rules to a certain extent, so
we have to find a way to distinguish them from narrow pole
states that we are really interested in. We have already
mentioned in the discussion of Eq. (29), that in the ideal
case when only one narrow pole is present in the spectral
function, the results of the sum rules should not depend on
the Borel mass M and the threshold parameter sth. When
only scattering states contribute to the spectral function,
this behavior should change. The nature and extent of this
change will be illustrated in this section.
Let us first consider how the contribution of the KN

scattering states to the spectral function should look like. It
is known that the KN interaction in the S ¼ þ1 channel is
weak and slightly repulsive for I ¼ 0, while the repulsion
is stronger for I ¼ 1 [40,41]. As an illustration, we will
here use phase space as a first approximation of the KN
spectral function, which thus corresponds more closely to
the I ¼ 0 case. Nevertheless, the qualitative behavior of
the results of this section does not strongly depend on the
detailed form of the spectral function and can therefore be
considered to be quite general.
In the case of spin 1

2 states, the contribution of KN phase

space to the spectral function can be expressed as follows:

�ðs ¼ q2Þ ¼ 1

�
j�KNj2Im

�
ð�iÞ

Z d4p

ð2�Þ4
1

ðq� pÞ2 �m2 þ i	
�5

p6 þM

p2 �M2 þ i	
ð��5Þ

�
: (34)

Here, �KN is the coupling of the used interpolating field to
the KN scattering states. m and M are the masses of the
kaon and the nucleon, respectively. The �5‘s are necessary
because of the P-wave coupling of our interpolating field to
the nucleon and kaon fields.

Going to the rest frame ( ~q ¼ 0), the integral can be
easily calculated and one gets

�ðq20Þ ¼
1

4�2
j�KNj2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
N �M2

q
4q0

ð�0EN �MÞ; (35)

where EN is the energy of the nucleon, expressed as

EN ¼ q20 þM2 �m2

2q0
: (36)

Therefore, the spectral function for the chiral-even part has
the form

1

�
Im�KN

1 ðq20Þ ¼
1

4�2
j�KNj2

EN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
N �M2

q
4q20

; (37)

which contains contributions from both positive and nega-
tive parity states.
For spin 3

2 states, similar considerations can be applied,

although there are some complications coming from pro-
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jecting out the contributions of the spin J ¼ 3
2 states from the correlator. In this case, the spectral function is expressed as

�ðs ¼ q2Þ ¼ 1

�

j�0
KNj2
m2

Im

�
ð�iÞ

Z d4p

ð2�Þ4
ðq� pÞ�ðq� pÞ�
ðq� pÞ2 �m2 þ i	

p6 þM

p2 �M2 þ i	

���������J¼3=2
; (38)

and the J ¼ 3
2 projection is most easily done by applying

the projection operator

P��ðqÞ ¼ g�� �
2q�q�

3q2
� 1

3
����

� 1

3q2
ðq��� � q���Þq6 : (39)

Then, only considering the terms proportional to g�� and
again going to the rest frame, one obtains

�ðq20Þ ¼
1

12�2m2
j�0

KNj2
ðE2

N �M2Þ3=2
4q0

g��ð�0EN þMÞ
þ . . . ; (40)

from which finally the spectral function of the chiral-even
part can be extracted:

1

�
Im�KN

1 ðq20Þ ¼
1

12�2m2
j�0

KNj2
ENðE2

N �M2Þ3=2
4q20

:

(41)

This expression again contains contributions from both
positive and negative parity.

Next, we compute the results that would be obtained by
the QCD sum rules if only the KN scattering states con-

tribute to the spectral function. This means that we calcu-
late the quantity corresponding to Eq. (10) or Eq. (29),
where for �ðsÞ, we now use the expressions obtained
above. The results for spin 1

2 and spin 3
2 are given in Fig. 1.

It is clearly seen that while the dependence on the Borel
mass M is relatively weak, the results depend strongly on
the threshold parameter sth. This can intuitively be under-
stood from the fact that the spectral function containing
only the phase space contribution is a fastly growing
function with increasing energy. Therefore, the high-
energy regions below the threshold parameter will domi-
nate the integral of Eq. (29), which then leads to a behavior
as seen in Fig. 1, with a strong dependence on sth.
Furthermore, this dominance of the high-energy states
will make it difficult to obtain a large value for the pole
contribution and to establish a valid Borel window.
Note that we have here assumed that �KN and �0

KN to be
constants with dimension ½GeV5�. They could in principle
also have a dependence on q0 such as const:� q50, which
would result in Eqs. (37) and (41) being multiplied by q100 .

We have checked this case, finding that the results are
altered quantitatively, namely, that the mass is shifted
upwards while the difference between the different thresh-
old curves increases. Nevertheless, our quantitative discus-
sion above does not have to be changed, as our observation
of a large dependence of the results on sth is even more
apparent in this case.
The results of this section show that the dependence of

m2
�þðM; sthÞ on sth provides us with an indicator of how
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FIG. 1. The ‘‘mass of the ground state pole’’ of spin 1
2 (left) and

3
2 (right), obtained when only the KN scattering states contribute to

the spectral function. Equation (37) and (41) have been used as the expression of the spectral function of the chiral-even part.
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much the KN scattering states contribute to the sum rule: a
linear dependence of the same (or larger) extent as in Fig. 1
suggests a strong contribution of the scattering states,
while a significantly smaller dependence indicates that a
narrow pole exists and is the dominant structure in the
spectral function. Similar arguments have already been
discussed earlier in [42].

IV. RESULTS

A. Preliminaries

We summarize in this subsection general issues common
to the sum rules of all the various quantum numbers, and
explain the parameters, conventions and basic approxima-
tions used in the calculation.

One important feature of the results for all quantum
numbers is, that the perturbative term C0 vanishes when
the difference of the two correlators is taken. This corre-
sponds to the suppression of the contribution of the high-
energy states as was discussed in the last section. The
detailed results of the OPE of both the chiral-even and
chiral-odd part are given in Appendix A.

We will for all quantum numbers first investigate the
sum rule for the chiral-even part and after that consider the
parity-projected sum rules, where both the results of the
chiral-even and chiral-odd parts have to be used. However,
as mentioned before, the results of the OPE calculation of
the chiral-odd part have turned out to contain some ambig-
uous terms in the first power of the strange quark mass ms,
related to an infrared divergence. It is important to note
here that this kind of divergence is artificially arising
because we are expanding our results in ms and are ignor-
ing higher-order terms. It should thus in principle be
possible to remove this divergence by taking the full de-
pendence on ms into account without resorting to any
expansion, although this may be difficult to achieve in
practice. In any case, to avoid this kind of artificial ambi-
guity, the results of the parity-projected sum rules will be
given only in the chiral limit (ms ¼ 0, h�ssi ¼ h �qqi). Hence,
our strategy will be to use the results of the chiral-even part
to calculate the mass of the investigated state, while wewill
employ the parity-projected sum rules to determine only
the parity of the state.

The values of the mixing angles and threshold parame-
ters are obtained using the conditions of pole domination of
Sec. III B. We will use the same values for both the sum
rule of the chiral-even part and the parity-projected sum
rules.

The values of the condensates and other used parameters
are given in Table II. These are standard values for QCD
sum rule calculations [36,43], but they of course all have a
certain range and the results will therefore depend on what
exact values have been chosen for the condensates and
other parameters. In the last part of this result section we
will show to what extent the results will be influenced by
the uncertainties of these parameters.

Finally, 
, the last parameter of Table II, will now be
explained. It parametrizes the possible violation of the
vacuum saturation approximation and is used as follows:

h �qq �qqi ¼ 
h �qqi2;
h �qq �qq �qqi ¼ 
2h �qqi3;

h �qq �qg� 
Gqi ¼ 
h �qqih �qg� 
 Gqi;
h �qg� 
 Gq �qg� 
Gqi ¼ 
h �qg� 
Gqi2;

. . .

(42)

All the results shown below are obtained with 
 ¼ 1,
which means that the vacuum saturation approximation
has been assumed. This approximation has been shown
to be valid in the leading order of the large Nc expansion,
even though the 1

Nc
corrections may be quite large. We have

checked to what extent the results change when this ap-
proximation is broken up to values of 
 ¼ 2. These
changes will be included in the estimation of the error.
The results of the various sum rules are given in the

following. To allow a direct comparison between the dif-
ferent quantum numbers, all the plots corresponding to the
same quantity are shown in the same figure.

B. IJ� ¼ 012
�

We first show our obtained results for the isosinglet,
spin 1

2 case. This quantum number has been already fre-

quently investigated as a possible assignment for
�þð1540Þ in QCD sum rules [18–23,26,27] and lattice
QCD [29–32]. As for QCD sum rules, most of these
calculations have problems in the establishment of the
Borel window. In [27], this problem was avoided by taking
the similar approach with that of the present paper, but we
found some mistakes in the computation of the OPE be-
yond dimension 8. After correcting them, we got the
present result which excludes the positive parity state
obtained in [27].

TABLE II. Values of all the parameters used throughout this
paper, given at a scale of 1 GeV [36,43]. The parameter 

describes the possible breaking of the vacuum saturation ap-
proximation and is explained in this subsection.

h �qqi �ð0:23� 0:02 GeVÞ3
h�ssi
h �qqi 0:8� 0:2

h �qg�
Gqi
h �qqi 0:8� 0:1 GeV2

h�sg�
Gsi
h�ssi 0:8� 0:1 GeV2

h�s

� G2i 0:012� 0:004 GeV4

ms 0:12� 0:06 GeV

 1� 2
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1. Sum rule for the chiral-even part

Using the operators of Eqs. (16) and (17), we first
determine the mixing angle�0

1=2 and the threshold parame-

ter sth. The values that we have obtained are, �0
1=2 ¼

�0:22 and
ffiffiffiffiffiffi
sth

p ¼ 2:2 GeV. Furthermore, checking the

convergence of the OPE and investigating the value of
the pole contribution, we have confirmed that a Borel
window exists for 1:2 GeV & M & 1:6 GeV (for details,
consult Figs. of Appendix B).

The calculated value of the ground state mass
m�þðM; sthÞ of Eq. (10) is given in Fig. 2 (top left) as a
function of the Borel mass M. The boundary of the Borel
window for the case of

ffiffiffiffiffiffi
sth

p ¼ 2:2 GeV are indicated by

the two arrows. One can see that the obtained value is about
1.5 GeV within the Borel window. Even though we have
found a wide Borel window, the curves shown in Fig. 2
exhibit quite a large dependence on M and sth, which
suggests that the spectral function only contains KN scat-

tering states and not a narrow pole. On the other hand, as
will be shown later, the result of the parity-projected sum
rules are fairly stable againstM and sth, which rather points
to a narrow pole in the ground state. The interpretation
these different results will be discussed below.
The result of the residue, calculated from Eq. (11) is

given in Fig. 3. As well as for the mass, the results for the
residue depend on M and sth quite strongly.

2. Parity-projected sum rules

As already mentioned before, we will use the parity-
projected sum rules in the chiral limit. This is justified, as
we have confirmed in the sum rules of the chiral-even part
that the qualitative behavior of the results does not change
when this limit is taken. To show the strength of the
contribution of the positive and negative parity states in
the spectral function of the sum rule, the residues of the
parity-projected sum rules [Eq. (13)] are given in Fig. 4. It
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is clear from this figure that the negative parity states
dominate and that therefore negative parity has to be
assigned the state investigated in the last section. Further-
more, the mass calculated from the negative parity sum
rule of Eq. (13) is shown in Fig. 5, together with the Borel
window for the threshold parameter

ffiffiffiffiffiffi
sth

p ¼ 2:2 GeV. As is
seen in the figure, a valid Borel window is established
around 1:2 GeV & M & 1:3 GeV and the obtained value
is consistent with the one of the chiral-even sum rule.
Moreover, the dependencies on both M and sth are very
small, which in contrast to the chiral-even case rather
points to a narrow ground state pole and not to KN scat-
tering states.

It is puzzling why the behavior of these two sum rules is
so different, even though the contribution of the positive
parity states is very small, as shown in Fig. 4. Numerically,
this can be understood from the fact that the chiral-even
part is multiplied by an additional power of q0 in the parity-
projected sum rules [compare Eqs. (2) and (12)], which
considerably changes the behavior of the sum rules in this
case. Moreover, we have confirmed that even though the
residue for positive parity state is small, it numerically has
a large influence on Eq. (8) for the low Borel mass region.

To illustrate this point, the contribution of positive and and
negative parts, calculated from Eq. (13) in the chiral limit,
are shown in Fig. 6. The negative parity part clearly shows
an unphysical behavior as it is almost constant, while it
should be an exponentially increasing function in the case
of a narrow ground state pole dominating the sum rules.
Nevertheless, around 1.2 GeV, its contribution is compa-
rable to positive parity part and therefore has a strong
influence on the result of the chiral-even part. Thus, the
most reasonable explanation for these different results
seems to be that the positive parity KN scattering states
are contaminating the results of the chiral-even part and
therefore lead to a large dependence on M and especially
on sth. We hence conclude that we have found some real
evidence for a narrow ground state pole with IJ� ¼ 0 1

2�
even though the situation is more ambiguous than in the
other channels.

C. IJ� ¼ 112
�

Next, the isotriplet, spin 1
2 states are studied. As no

isospin partners of �þð1540Þ have so far been found
experimentally, it is currently believed to be an isosinglet

 0

 2

 4

 6

 8

 10

 12

 14

 1  1.2  1.4  1.6  1.8  2

(λ
0 1/

2,
1)

2  [
10

-9
G

eV
12

]

M [GeV]

IJ = 0,1/2

sth
1/2 = 2.4 GeV

= 2.2 GeV
= 2.0 GeV

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  1.2  1.4  1.6  1.8  2

(λ
1 1/

2,
1)

2  [
10

-9
G

eV
12

]

M [GeV]

IJ = 1,1/2

sth
1/2 = 2.7 GeV

= 2.5 GeV
= 2.3 GeV

 0

 1

 2

 3

 4

 5

 1  1.2  1.4  1.6  1.8  2

(λ
0 3/

2,
1)

2  [
10

-1
0 G

eV
12

]

M [GeV]

IJ = 0,3/2
sth

1/2 = 2.2 GeV
= 2.0 GeV
= 2.0 GeV

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1  1.2  1.4  1.6  1.8  2

(λ
1 3/

2,
1)

2  [
10

-1
0 G

eV
12

]

M [GeV]

IJ = 1,3/2 sth
1/2 = 2.4 GeV

= 2.2 GeV
= 2.0 GeV

FIG. 3. The residue ð�I
J;1Þ2 for the quantum numbers IJ ¼ 0 1

2 , 1
1
2 , 0

3
2 , 1

3
2 , obtained from Eq. (11) for the sum of the chiral-even

part. The value is given for three different threshold parameters.

POSSIBLE QUANTUM NUMBERS OF THE PENTAQUARK . . . PHYSICAL REVIEW D 80, 114030 (2009)

114030-11



state, but this assignment is not conclusive yet. Further-
more, even if �þð1540Þ is an isosinglet state, a different
isotriplet pentaquark state could exist at higher energies.
We thus consider this state in the following paragraphs.

1. Sum rule for the chiral-even part

The method is essentially parallel to the isosinglet case,
the difference being only that we employ the operators of
Eqs. (19) and (20) instead of Eqs. (16) and (17). The values
of the mixing angle �1

1=2 and the threshold parameter sth
have turned out to be �1

1=2 ¼ �0:079 and
ffiffiffiffiffiffi
sth

p ¼
2:5 GeV.

The mass calculated from Eq. (10) is shown in Fig. 2
(top right), as before with the Borel window for the middle
value of the threshold parameter, indicated by the two
arrows. The obtained value is about 1.6 GeV. Compared
to the isosinglet spin 1

2 case of Fig. 2, it is obvious that the

dependence on the Borel mass M and especially on the
threshold parameter sth is small, which is positive evidence
for a narrow ground state pole in the spectral function. The

residues for the three different threshold parameters are
given in Fig. 3, where we again get only a similarly mild
dependence on M and sth.

2. Parity-projected sum rules

Wewill follow the same method as in the isosinglet case
and calculate the parity-projected sum rules in the chiral
limit. As is shown in Table III, the result of the chiral-even
sum rule did depend on the strange quark mass ms quite
strongly and one thus may wonder whether the procedure
of taking the chiral limit is justified. But, as we will use this
sum rule only to determine the parity of the state, we think
that it is accurate enough to provide reliable information,
because even though the mass value of the state may
quantitatively change, it is improbable that the parity of
the state will switch when this limit is taken.
The residues of the positive and negative parity sum

rules are compared in Fig. 4. In this figure, it is seen that
both residues are similar in magnitude. (Note that, as we
have taken the difference of two correlators, the residue
ð�1

1=2;1Þ2 can become negative. States with negative resi-
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dues can thus not be ruled out as unphysical like in the
ordinary QCD sum rules with just one correlator.) On the
other hand, the residue of the positive parity state is very
unstable against the variation of the Borel mass, which
suggests that it does not correspond to a narrow ground
state pole that we are looking for. Meanwhile, the residue
with negative parity is fairly stable and thus seems to be
consistent with the chiral-even sum rule.
The masses of both parity states are also calculated. As

expected form the result of the residues, the calculated
mass of positive parity strongly depends on the Borel
mass M and no stable region is found. In contrast, the
results for negative parity are stable and consistent with
the value obtained from the chiral-even sum rule. We
therefore conclude that the parity of the state is negative.
The mass values for the negative parity case are shown in
Fig. 5.
Compared to all other cases studied in this paper, the

Borel window here seems to be unnaturally large. The

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1  1.2  1.4  1.6  1.8  2

M
as

s 
[G

eV
]

M [GeV]

IJπ = 0,1/2-

sth
1/2 = 2.4 GeV

= 2.2 GeV
= 2.0 GeV

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 2.1

 1  1.2  1.4  1.6  1.8  2  2.2  2.4

M
as

s 
[G

eV
]

M [GeV]

IJπ = 1,1/2-

sth
1/2 = 2.7 GeV

= 2.5 GeV
= 2.3 GeV

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 0.8  1  1.2  1.4  1.6  1.8  2

M
as

s 
[G

eV
]

M [GeV]

IJπ = 0,3/2+

sth
1/2 = 2.2 GeV

= 2.0 GeV
= 1.8 GeV

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 1.8

 1.9

 2

 1  1.2  1.4  1.6  1.8  2

M
as

s 
[G

eV
]

M [GeV]

IJπ = 1,3/2+

sth
1/2 = 2.4 GeV

= 2.2 GeV
= 2.0 GeV

FIG. 5. The mass of the pentaquark for IJ� ¼ 012
�, IJ� ¼ 112

�, IJ� ¼ 032
þ, IJ� ¼ 132

þ as a function of the Borel mass M. The
arrows indicate the boundary of the Borel window for the middle value of the threshold parameter sth. The curves are calculated in the
chiral limit.

 0

 0.5

 1

 1.5

 2

 2.5

 1  1.2  1.4  1.6  1.8  2

L
ef

t h
an

d 
si

de
 o

f 
E

q.
(1

3)
 [

10
-9

G
eV

12
]

M [GeV]

IJπ = 0,1/2+,-
Positive Parity

Negative Parity

FIG. 6. The contribution of positive and negative parts of
Eq. (8) for IJ ¼ 0 1

2 , obtained from Eq. (13) in the chiral limit.

The value of the threshold parameter is
ffiffiffiffiffiffi
sth

p ¼ 2:2 GeV.

POSSIBLE QUANTUM NUMBERS OF THE PENTAQUARK . . . PHYSICAL REVIEW D 80, 114030 (2009)

114030-13



reason for this is that the same phenomenon as in the upper
left part of Fig. 9 has occurred, meaning that due to some
cancellation in the integral of the spectral function above
sth, a peak has emerged in the function of the pole con-
tribution, which shifts the upper boundary of the Borel
window to a high value and therefore leads to this very
large Borel window.

D. IJ� ¼ 032
�

This quantum number has been already investigated in
detail by the present authors in a recent paper [28]. We will
not repeat the analysis given there and only restate the most
important results.

The same strategy as in this paper was followed, mean-
ing that the difference of two correlators was taken, and the
values of the mixing angle and threshold parameter were
determined from the conditions of pole dominance. The
obtained values are �0

3=2 ¼ 0:063 and
ffiffiffiffiffiffi
sth

p ¼ 2:0 GeV.

This then leads to the mass values shown in Fig. 2 (bottom
left), calculated from the chiral-even sum rule. The ob-
tained value lies at about 1.4 GeV. The result shows both a
small dependence on M and sth, which suggests that a
narrow ground state pole exists in the spectral function of
this quantum number.

The parity of the state is determined with the parity-
projected sum rules, leading to Figs. 4 and 5. Figure 4
shows that the pole strength is dominated by the residue of
the positive parity state. Figure 5 then confirms that the
positive parity sum rules give stable results, which are
consistent with the ones obtained from the chiral-even
sum rule.

E. IJ� ¼ 132
�

The existence of states with quantum numbers IJP ¼
132

� have been suggested for instance by studies using the

quark model [44] and the chiral unitary approach [45]. We

further investigate them here using the QCD sum rule
method.

1. Sum rule for the chiral-even part

The operators used are given in Eqs. (26) and (27) and
the following values have been obtained for the mixing
angle and the threshold parameter: �1

3=2 ¼ 0:024 andffiffiffiffiffiffi
sth

p ¼ 2:2 GeV.
The results for the mass are shown in Fig. 2 (bottom

right) together with the Borel window for
ffiffiffiffiffiffi
sth

p ¼ 2:2 GeV.

As can be read off from the figure, a value around 1.6 GeV
is obtained for the mass of the state. The dependence of the
result on both M and sth is weak, which suggests that a
narrow pole is present in the spectrum.
The value of the residue ð�1

3=2;1Þ2 is given in Fig. 3,

where again only a small dependence on M and sth is
observed.

2. Parity-projected sum rules

We have obtained a consistent result for the positive
parity channel, while no state below 2.0 GeV was found
with negative parity. The two residues are shown in Fig. 4,
where one can see that the magnitude of the positive parity
residue is larger that the one of negative parity and that it is
an almost completely stable against the variation ofM. The
calculated mass of the positive parity sum rule, shown in
Fig. 5, moreover gives similar values as obtained the
chiral-even case, which do not strongly depend on M and
sth. We therefore conclude that positive parity has to be
assigned to the investigated state.

F. Estimation of the theoretical ambiguity

As the last point, we have to investigate the dependen-
cies of the results on the various parameters of Table II, in
order to obtain a quantitative estimate of the error inherent

TABLE III. Contributions of the uncertainties of all parameters appearing in the calculation to the final error. Only values larger than
�0:05 GeV are explicitly given. These values have been obtained using the sum rule of the chiral-even part.

IJP ¼ 012
� 112

� 032
� 132

�

M �0:10 GeV �0:05 GeV �0 �0
sth �0:10 GeV �0 �0:05 GeV �0:05 GeV
h �qqi �0:15 GeV �0:20 GeV �0 �0:10 GeV
h�ssi
h �qqi �0 �0:05 GeV �0 �0
h �qg�
Gqi

h �qqi �0:05 GeV �0 �0:10 GeV �0:05 GeV
h �sg�
Gsi

h �ssi �0 �0 �0 �0

h�s

� G2i �0:05 GeV �0:20 GeV �0 �0
ms �0:05 GeV �0:20 GeV �0 �0:05 GeV

 þ0:15 GeV þ0:20 GeV þ0:05 GeV þ0:10 GeV
Combined error �0:3 GeV �0:4 GeV �0:2 GeV �0:3 GeV
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in our results. We will here use only the results of the
chiral-even part for this estimation.

The contributions to the errors for the different quantum
numbers are given in Table III. For instance, considering
the IJP ¼ 012

� case, we have already seen from Fig. 2, that

the dependence of the mass value on M or sth leads to an
uncertainty of about�0:1 GeV. Among the other parame-
ters, the result depends most strongly on h �qqi, which gives
an uncertainty of about �0:15 GeV. Similarly, raising the
breaking parameter of the vacuum saturation approxima-
tion to 
 ¼ 2 leads to an increase of the mass of about
0.15 GeV. Similar considerations lead to all the error con-
tributions for the other quantum numbers given in
Table III.

Assuming that the various errors are uncorrelated, the
final error estimations are then obtained by taking the root
of the sum of all squared errors �mi and rounding up:

combined error �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

ð�miÞ2
s

: (43)

Note that this is merely a rough estimation, as there are
additional errors coming from the truncation of the OPE
and possible radiative corrections, that have been neglected
in the current calculation.

V. DISCUSSION

The details of the results for the various quantum num-
bers have been presented in the last section. Putting every-
thing together, these results can be summarized as in
Table IV.

A number of comments have to be made here. First of
all, the statement ‘‘no state found below 2.0 GeV’’ in
Table IV means that either no valid Borel window could
be found or that the results of the sum rules did strongly
depend on M and sth and that therefore no evidence for a

narrow ground state pole could be found. Concerning this
point, in the case of IJ� ¼ 012

�, the results of the chiral-

even sum rule and the parity-projected sum rule are to a
certain extent contradictory and we therefore have to put a
question mark behind this conclusion. Furthermore, having
found no narrow state in our sum rule calculation does not
necessarily mean that such a state does not exist. It could
happen that the spectral function is dominated by the KN
scattering states and that the narrow states that we are
looking for only couple weakly to the interpolating field
that we have used. Nevertheless, we have constructed
general operators from linear combinations of two inde-
pendent local operators, and have investigated all possible
mixing angles and therefore the nonobservation of states
shown in Table IV has been confirmed for quite a wide
range of independent operators.
Next, we discuss the physical implications of the ob-

tained results. A question that comes to one’s mind when
looking at Table IV is, why we can not observe J� ¼ 1

2
þ

states while we are seeing the ones with J� ¼ 3
2
þ. These

states are in some models considered to be spin-orbit
partners [10], so if these models are realistic and consistent
with QCD, we should be able to observe both of these
states. There are at least two possible explanations for our
obtained results. One explanation could be that the states
with J� ¼ 1

2
þ in fact exist, but their coupling to the used

operators are too small and/or the KN scattering contribu-
tion is too large, so that a narrow peak structure cannot be
extracted. Another possible interpretation of the missing
J� ¼ 1

2
þ states could be that, the spin-orbit partners of the

spin 3
2 states are not the ones with spin 1

2 but with spin 5
2 .

This would mean that �þð1540Þ is indeed a very exotic
state, as in this case the uudd quarks have to form a spin 2
state, which would then couple to the remaining �s. This is
of course only a very speculative picture, but it would be
interesting to test it by calculating pentaquark states with
spin 5

2 .

TABLE IV. Summarized results for all quantum numbers that have been investigated. The allowed KN decay channels of the
respective quantum numbers are indicated in brackets. The mass values quoted here are obtained for the sum rule of the chiral-even
part.

Parity

þ �
J ¼ 1

2 I ¼ 0 No state found below 2.0 GeV 1:5� 0:3 GeV (?)

(KN P-wave) (KN S-wave)

I ¼ 1 No state found below 2.0 GeV 1:6� 0:4 GeV
(KN P-wave) (KN S-wave)

J ¼ 3
2 I ¼ 0 1:4� 0:2 GeV No state found below 2.0 GeV

(KN P-wave) (KN D-wave)

I ¼ 1 1:6� 0:3 GeV No state found below 2.0 GeV

(KN P-wave) (KN D-wave)
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Another important point, that needs to be discussed, is
the interpretation of our results on the J� ¼ 1

2
� states. Such

a state was also found in a lattice study (conducted only for
the isosinglet state), where a resonance state was isolated
from the KN scattering states [31]. Our results (especially
in the isosinglet case) are somewhat ambiguous, and the
errors are large, so it is difficult to draw any definite
conclusions. In any case, whether such states turn out to
be real pentaquark resonances or not, they most possibly do
not correspond to the observed �þð1540Þ state, because
J� ¼ 1

2
� states can decay into KN by an S-wave, for which

the width is expected to be much larger than the observed
value for �þ, which is less than 1 MeV [8]. Of course, in
principle there may exist some so far unknown mechanism,
which suppresses the width strongly and which would
allow to assign the J� ¼ 1

2
� quantum numbers to the �þ,

but with our present knowledge and experience, this seems
to be unlikely.

VI. CONCLUSION

We conclude from our results summarized in Table IV
that the most probable quantum number candidate for
�þð1540Þ is IJ� ¼ 032

þ. We have also found evidence

for an isotriplet state 132
þ and two states with spin 1

2 (0
1
2
�

and 112
�) at slightly higher energy.

To obtain these results, we have employed the QCD sum
rule method, whose reliability is improved by analyzing
the difference of two independent correlators, by which the
contribution of the high-energy continuum states is sup-
pressed. Furthermore, by calculating the OPE up to dimen-
sion 14 it is made sure that the expansion is converging
well, and a valid Borel window can be established.

Considering the spin 1
2 states, although we could observe

some evidence for resonance states with IJ� ¼ 012
� and

112
� in the region of 1.5 GeV, we have pointed out that the

situation concerning the KN scattering states does not
seem to be very clear and our predictive power is quanti-
tatively very limited. Furthermore, as discussed in the
previous section, we do not believe that these states corre-
spond to �þð1540Þ, because their width is expected to be
too large to be consistent with the experimental value.

Looking at the states with IJ� ¼ 032
þ and 132

þ, in both

cases the values of the masses and residues show only a
weak dependence on the Borel mass M and the threshold
parameter sth. For the isosinglet case this was already
pointed out in [28]. This suggests that we are really ob-
serving narrow resonance states in the spectral functions of
these quantum numbers. As no isospin partners of the
�þð1540Þ have so far been found, it is believed to be an

isosinglet, which leads to our conclusion that the
�þð1540Þ is likely to be a state with quantum numbers
IJ� ¼ 032

þ. The isotriplet state 132
þ is predicted to exist

somewhere above the isosinglet, so it may be interesting
for future experiments to look for this state. One never-
theless has to be cautious when interpreting the current
results, as we cannot make any real quantitative prediction
about the width of the state with the present method.
Therefore it is difficult to say whether the predicted iso-
triplet state is narrow enough to be unambiguously de-
tected in an experiment.
The width of a state can be obtained from the QCD sum

rule technique by calculating three-point functions of ap-
propriate currents, and it would be interesting to see
whether it is possible to obtain a value consistent with
experiment for the 032

þ state and whether the IJ� ¼ 132
þ

state is really narrow enough to be experimentally ob-
served. Furthermore, it is important to check whether our
conjecture of the large widths of the J� ¼ 1

2
� states is

really true or not. These issues are left for further studies.
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APPENDIX A: RESULTS OF THE OPERATOR
PRODUCT EXPANSION

We obtain the following result for the OPE in terms of
the parameters Ci defined in Eq. (6). Note, that we here
give the values of Ci after the difference of the two corre-

lators is taken, and that we have used �IJ � �I
0
J ¼ �

2 and

�I
J ¼ �IJ þ �I

0
J . After showing the results of the chiral-even

part (up to terms proportional to ms), the chiral-odd part is
given in the chiral limit.
The used abbreviations areG2 � Ga

��G
a�� and� 
G �

��� �a

2 G
a
��, the �

a being the Gell-Mann matrices. g is the

coupling constant of QCD, giving �s ¼ g2

4� . The values of

the condensates and the strange quark mass are shown in
Table II.
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1. IJP ¼ 012
�

a. Chiral-even part

C0 ¼ 0; C4 ¼ � h�s

� G2i
2143 
 5�6

cos�0
1=2; C6 ¼ � h �qqi2

2732�4
sin�0

1=2 �
msh �sg� 
Gsi

213�6
cos�0

1=2;

C8 ¼ h �qqih �qg� 
Gqi
2932�4

ð7 cos�0
1=2 þ 34 sin�0

1=2Þ;

C10 ¼ �h �qg� 
Gqi2
21332�4

ð22 cos�0
1=2 þ 299 sin�0

1=2Þ �
h �qqi2h�s

� G2i
2933�2

ð6 cos�0
1=2 þ 61 sin�0

1=2Þ

� 13msh�s

� G2ih�sg� 
Gsi
2143�4

cos�0
1=2 �

msh �qqi2h�ssi
2332�2

sin�0
1=2;

C12 ¼ 2h �qqi4
33

sin�0
1=2 þ

h �qqih �qg� 
 Gqih�s

� G2i
21233�2

ð65 cos�0
1=2 þ 418 sin�0

1=2Þ

�msh �qqi2h�sg� 
Gsi
2633�2

ð3 cos�0
1=2 þ 13 sin�0

1=2Þ þ
7msh �qqih�ssih �qg� 
Gqi

2532�2
sin�0

1=2;

C14 ¼ þ 31h �qqi3h �qg� 
Gqi
2433

sin�0
1=2 �

msh �qqih �qg� 
 Gqih�sg� 
Gsi
2933�2

ð17 cos�0
1=2 þ 8 sin�0

1=2Þ

þ 19msh �ssih �qg� 
Gqi2
2932�2

sin�0
1=2 þ

19msh �qqi2h�ssih�s

� G2i
2734

sin�0
1=2: (A1)

b. Chiral-odd part

C1 ¼ 0; C3 ¼ h�ssi
211325�6

sin�0
1=2; C5 ¼ � 7h �sg� 
 Gsi

21432�6
sin�0

1=2; C7 ¼ � 5h�ssih�s

� G2i
21133�4

sin�0
1=2;

C9 ¼
161h�s

� G2ih�sg� 
Gsi
21532�4

sin�0
1=2 �

h �qqi2h �ssi
2232�2

sin�0
1=2;

C11 ¼ 7h �qqi2h �sg� 
 Gsi
2632�2

ðcos�0
1=2 þ 2 sin�0

1=2Þ þ
7h �qqih�ssih �qg� 
Gqi

2432�2
sin�0

1=2;

C13 ¼ � 25h �qqi2h�ssih�s

� G2i
2633

sin�0
1=2 �

h �qqih �qg� 
 Gqih�sg� 
 Gsi
21233�2

ð424 cos�0
1=2 þ 1979 sin�0

1=2Þ

� 19h �ssih �qg� 
Gqi2
2832�2

sin�0
1=2: (A2)
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2. IJP ¼ 112
�

a. Chiral-even part

C0 ¼ 0; C4 ¼ � h�s

� G2i
2143 
 5�6

cos�1
1=2; C6 ¼ � h �qqi2

2632�4
sin�1

1=2 �
msh �sg� 
Gsi

213�6
cos�1

1=2;

C8 ¼ h �qqih �qg� 
 Gqi
2932�4

ð3 cos�1
1=2 þ 44 sin�1

1=2Þ;

C10 ¼ �h �qg� 
Gqi2
21332�4

ð15 cos�1
1=2 þ 361 sin�1

1=2Þ þ
h �qqi2h�s

� G2i
2933�2

ð18 cos�1
1=2 � 29 sin�1

1=2Þ �
13msh�s

� G2ih�sg� 
Gsi
2143�4

� cos�1
1=2 �

msh �qqi2h�ssi
2232�2

sin�1
1=2;

C12 ¼ � 2h �qqi4
33

sin�1
1=2 �

h �qqih �qg� 
Gqih�s

� G2i
21233�2

ð135 cos�1
1=2 � 158 sin�1

1=2Þ þ
msh �qqi2h �sg� 
Gsi

2633�2
ð9 cos�1

1=2

þ 13 sin�1
1=2Þ þ

19msh �qqih�ssih �qg� 
Gqi
2632�2

sin�1
1=2;

C14 ¼ � 31h �qqi3h �qg� 
Gqi
2433

sin�1
1=2 þ

msh �qqih �qg� 
Gqih�sg� 
Gsi
21033�2

ð69 cos�1
1=2 þ 122 sin�1

1=2Þ

þ 11msh �ssih �qg� 
Gqi2
2832�2

sin�1
1=2 þ

23msh �qqi2h �ssih�s

� G2i
2734

sin�1
1=2:

(A3)

b. Chiral-odd part

C1 ¼ 0; C3 ¼ � h �ssi
211325�6

sin�1
1=2; C5 ¼ þ 7h �sg� 
Gsi

21432�6
sin�1

1=2; C7 ¼ þ 5h�ssih�s

� G2i
21133�4

sin�1
1=2;

C9 ¼ � 161h�s

� G2ih�sg� 
Gsi
21532�4

sin�1
1=2 �

h �qqi2h �ssi
2 
 32�2

sin�1
1=2;

C11 ¼ h �qqi2h �sg� 
 Gsi
2632�2

ð3 cos�1
1=2 þ 19 sin�1

1=2Þ þ
19h �qqih�ssih �qg� 
Gqi

2532�2
sin�1

1=2;

C13 ¼ � 29h �qqi2h�ssih�s

� G2i
2633

sin�1
1=2 �

h �qqih �qg� 
 Gqih�sg� 
Gsi
21233�2

ð204 cos�1
1=2 þ 2503 sin�1

1=2Þ �
11h�ssih �qg� 
 Gqi2

2732�2

� sin�1
1=2:

(A4)

3. IJP ¼ 032
�

See [28].
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4. IJP ¼ 132
�

a. Chiral-even part

C0 ¼ 0; C4 ¼
h�s

� G2i
21633 
 5�6

cos�1
3=2; C6 ¼ h �qqi2

26325�4
sin�1

3=2 þ
msh �sg� 
Gsi
2143 
 5�6

cos�1
3=2;

C8 ¼ �h �qqih �qg� 
 Gqi
21232�4

ðcos�1
3=2 þ 54 sin�1

3=2Þ;

C10 ¼ h �qg� 
Gqi2
21434�4

ð15 cos�1
3=2 þ 677 sin�1

3=2Þ �
h �qqi2h�s

� G2i
21033�2

ð2 cos�1
3=2 þ 11 sin�1

3=2Þ

þ 13msh�s

� G2ih�sg� 
Gsi
21533�4

cos�1
3=2 þ

msh �qqi2h�ssi
2333�2

sin�1
3=2;

C12 ¼ h �qqi4
33

sin�1
3=2 þ

5h �qqih �qg� 
 Gqih�s

� G2i
21432�2

ð3 cos�1
3=2 þ 20 sin�1

3=2Þ �
msh �qqi2h�sg� 
 Gsi

2833�2
ð3 cos�1

3=2 þ 10 sin�1
3=2Þ

� 11msh �qqih�ssih �qg� 
 Gqi
2832�2

sin�1
3=2;

C14 ¼ 97h �qqi3h �qg� 
Gqi
2534

sin�1
3=2 �

msh �qqih �qg� 
 Gqih�sg� 
Gsi
21133�2

ð23 cos�1
3=2 þ 18 sin�1

3=2Þ

� 11msh �ssih �qg� 
Gqi2
2934�2

sin�1
3=2 þ

25msh �qqi2h �ssih�s

� G2i
2834

sin�1
3=2: (A5)

b. Chiral-odd part

C1 ¼ 0; C3 ¼ � h�ssi
21333�6

sin�1
3=2; C5 ¼ þ 5h�sg� 
 Gsi

21333�6
sin�1

3=2; C7 ¼ � 7h �ssih�s

� G2i
21433�4

sin�1
3=2;

C9 ¼ þ 5h�s

� G2ih�sg� 
Gsi
21534�4

sin�1
3=2 �

h �qqi2h �ssi
2332�2

sin�1
3=2; C11 ¼ �h �qqi2h �sg� 
Gsi

2832�2
ðcos�1

3=2 � 15 sin�1
3=2Þ

þ 19h �qqih�ssih �qg� 
Gqi
2732�2

sin�1
3=2; C13 ¼ � 7h �qqi2h �ssih�s

� G2i
2633

sin�1
3=2

þ h �qqih �qg� 
 Gqih�sg� 
 Gsi
21133�2

ð17 cos�1
3=2 � 216 sin�1

3=2Þ �
11h �ssih �qg� 
Gqi2

2634�2
sin�1

3=2: (A6)

APPENDIX B: ESTABLISHMENT OF AVALID
BORELWINDOW

In this Appendix, we explicitly show that a Borel win-
dow has been obtained for the sum rules of the chiral-even
part for the various quantum numbers.

First, the convergence of the OPE is checked. This is
done by calculating the left-hand side of Eq. (14). The

results are given in Fig. 7. Additionally, the right-hand side
of Eq. (8) added order by order is shown in Fig. 8 to get a
better idea of the behavior of the expansion. Subsequently,
the pole contribution of Eq. (15) is investigated. The
corresponding plots are given in Fig. 9 for the various
quantum numbers.
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