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We formulate a new algorithm for obtaining the effective continuum threshold in vacuum-to-bound-

state correlators—the basic objects for the calculation of hadron form factors in the method of light-cone

sum rules in QCD. The effective continuum threshold is one of the key ingredients of the method which to

a large extent determines the value of the form factor extracted from the relevant correlator. In a quantum-

mechanical potential model, where the exact form factor is known, the application of our algorithm is

shown to lead to a dramatic increase of the accuracy of the extracted form factor compared to the standard

procedures adopted in the method of sum rules in QCD. Moreover, the application of our algorithm

considerably enlarges the range of the momentum transfer where the form factor may be extracted from

the correlator.
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I. INTRODUCTION

The extraction of the ground-state parameters from a
correlator of quark currents is a cumbersome procedure:
even if several terms of the expansion for the correlator
(i.e., the OPE in the case of vacuum-to-vacuum correlators
and the twist expansion in the case of vacuum-to-hadron
correlators) are known precisely, the numerical procedures
of the method of sum rules [1,2] cannot determine the true
exact value of the bound-state parameter. Instead, the
method should provide the band of values such that the
true hadron parameter has a flat probability distribution
within this band [1]. This band is a measure of the system-
atic, or intrinsic, sum-rule uncertainty.

The method of sum rules in QCD contains a set of
prescriptions (see e.g. [3]) which are believed to provide
such a systematic error. In QCD this, however, always
remains a conjecture—it is impossible to prove that and
even to check unambiguously whether the range provided
by the standard sum-rule procedures indeed contains the
actual value of the bound-state parameter.

The only possibility to check the reliability of the cor-
responding procedures is to apply the method to a problem
where the parameters of the ground state may be calculated
independently and exactly. Presently, only quantum-
mechanical potential models provide such a possibility.
(For a discussion of many aspects of sum rules in quantum
mechanics we refer to [4–10]).

A simple harmonic-oscillator (HO) potential model is a
perfect tool to achieve this goal: it possesses two essential
features of QCD—confinement and asymptotic freedom
[4]—and has the following advantages: (i) the bound-state
parameters (masses, wave functions, form factors) are
known precisely; (ii) direct analogues of the QCD corre-
lators may be calculated exactly.

Making use of this model, we have already studied the
extraction of ground-state parameters from different types
of correlators: namely, the ground-state decay constant
from a two-point vacuum-to-vacuum correlator [11], the
form factor from a three-point vacuum-to-vacuum correla-
tor [12], and the form factor from a vacuum-to-hadron
correlator [13]. We have demonstrated that the standard
procedures adopted in the literature for obtaining the sys-
tematic errors do not work properly: for all types of corre-
lators the true known value of the bound-state parameter
was shown to lie outside the band obtained according to the
standard criteria applied.
One of our most important results was the demonstration

of the fact that the ‘‘Borel stability criterion’’ (based on a
self-evident statement that the physical observables should
not depend on the Borel parameter—an auxiliary parame-
ter of the method) is a necessary but by far not sufficient
criterion to guarantee a good extraction of the hadron
parameters. Moreover, combined with the assumption of
a Borel-parameter independent effective continuum
threshold it leads to the extraction of very inaccurate values
of the bound-state parameters.
The results reported in [11–14] gave us a solid ground to

claim that also in QCD the actual accuracy of the method
turns out to be much worse than the accuracy expected on
the basis of the standard criteria.
Notice, however, that these results contained not only

the cautious messages concerning the application of the
method of sum rules to hadron properties, but also the
identification of the main origin of the difficulties of the
method: these difficulties arise from an oversimplified
Ansatz for the hadron continuum which is modeled as a
perturbative contribution above a Borel-parameter inde-
pendent effective continuum threshold. We introduced
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the notion of the exact effective continuum threshold,
which corresponds to the true bound-state parameters: in
a HO model the true hadron parameters—decay constant
and form factor—are known and thus the exact effective
continuum thresholds for different correlators may be cal-
culated. We have demonstrated that the exact effective
continuum threshold (i) is not a universal quantity and
depends on the correlator considered (i.e., it is in general
different for two-point and three-point vacuum-to-vacuum
correlators, and for vacuum-to-hadron correlators), and
(ii) depends on the Borel parameter and, in the case of
the form factor, also on the momentum transfer.

The understanding of this fact allowed us to make a step
forward and to propose a new algorithm for extracting
ground-state parameters from correlators in those cases
where the ground-state energy is known1: a simple idea
of [15] is to relax the standard assumption of a Borel-
parameter independent effective continuum threshold,
and allow for a Borel-parameter dependent quantity. The
parameters of the T-dependent effective continuum thresh-
old then may be found by fitting the average energy of the
dual correlator (i.e. the correlator containing only the con-
tribution of the low-energy region below the effective
continuum threshold) to the known energy of the bound
state. In [15,16] we have shown that the application of this
idea for vacuum-to-vacuum correlators leads to a consid-
erable increase of the actual accuracy of the method.

In the present paper we extend this idea to the extraction
of hadron form factors from vacuum-to-hadron correlators
[17]. These correlators are the basic objects for the method
of light-cone sum rules, which has been extensively ap-
plied in the recent years to the analysis of B-decay form
factors [18,19]. The issue of the accuracy of light-cone sum
rules in QCD is extremely important, since the results from
this method are extensively used in precision electroweak
physics [20].

We demonstrate that the application of our algorithm
yields two crucial improvements: first, it increases signifi-
cantly the accuracy of the extracted form factors; second, it
enlarges considerably the range of the momentum transfers
where the form factor may be extracted from vacuum-to-
hadron correlators.

II. THE MODEL

Let us recall the essential formulas: We consider a non-
relativistic HO model defined by the Hamiltonian (r � j~rj)
H ¼H0 þVðrÞ; H0 ¼ ~p2=2m; VðrÞ ¼m!2r2=2;

(1)

where all characteristics of the bound states are calculable.
For instance, for the ground (g) state one finds

Eg ¼ 3

2
!; c gðrÞ ¼

�
m!

�

�
3=4

expð�m!2r2=2Þ;

FgðqÞ ¼ expð�q2=4m!Þ;
(2)

where the elastic form factor of the ground state is defined
according to (q � j ~qj)

FgðqÞ ¼ hc gjJð ~qÞjc gi ¼
Z

d3kc y
g ð ~kÞc gð ~k� ~qÞ; (3)

with the current operator Jð ~qÞ given by the kernel

h ~r0jJð ~qÞj~ri ¼ expði ~q � ~rÞ�ð3Þð~r� ~r0Þ: (4)

Notice that the nonrelativistic elastic current is conserved,
which leads to the relation Fgðq ¼ 0Þ ¼ 1.

III. THE VACUUM-TO-HADRON CORRELATOR

In order to apply the method of sum rules to hadron form
factors at intermediate and large momentum transfers a
Borelized vacuum-to-hadron amplitude of the T-product of
two quark currents is used. The analogue of this quantity in
quantum mechanics has the form [13]

AðT; qÞ ¼ h ~r ¼ 0jGðTÞJð ~qÞjc gi: (5)

where GðTÞ � expð�HTÞ is the evolution operator in
imaginary time T (i.e., the Borel transform E ! T of the
full Green function of the model, ðH � EÞ�1) and J is the
current operator defined by (4).
An obvious disadvantage of this correlator compared

with vacuum-to-vacuum correlators is the necessity to
know for its calculation the ground-state wave function.
As a bonus, this correlator receives an enhanced contribu-
tion of the ground state, which makes it potentially more
attractive for the extraction of the ground-state form factor.
The spectral representation for AðT; qÞmay be written in

the form

AðT; qÞ ¼
Z

d3kGð ~k2; TÞc gð ~k� ~qÞ ¼
Z 1

0
dzaðz; T; qÞ;

z � ~k2=2m; (6)

where [4]

Gð ~k2; TÞ � h~r¼ 0jGðTÞj ~ki

¼ 1

ð2�Þ3=2
1

½coshð!TÞ�3=2 exp
�
�

~k2

2m!
tanhð!TÞ

�
:

(7)

Explicit expressions for aðz; T; qÞ and AðT; qÞ may then be
easily obtained using c g of Eq. (2). For AðT; qÞ one finds

1In our opinion the knowledge of the ground-state mass is
mandatory for a successful application of the method of sum
rules to bound states. Therefore any attempt to study the exis-
tence of the ground state with the method of sum rules does not
yield trustable results.
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AðT; qÞ ¼
�
m!

�

�
3=4

exp

�
� 3

2
!T

�

� exp

�
� q2

4m!
ð1� e�2!TÞ

�
: (8)

The function AðT; qÞ depends on two dimensionless vari-
ables q̂2 � q2=m! and !T.

Expanding in Eq. (6) the Green function Gð ~k2; TÞ in
powers of ! generates the analogue of the QCD twist
expansion for the amplitude AðT; qÞ (see [13] for details).

The ground-state contribution to the correlator has the
form

AgðT; qÞ ¼ c gðr ¼ 0Þ expð�EgTÞFgðqÞ; (9)

so one finds

AgðT; qÞ
AðT; qÞ ¼ exp

�
� q2

4m!
e�2!T

�
: (10)

Notice the following features of the correlator AðT; qÞ:
(i) At large T, the ground state provides the dominant

contribution to A, similar to the case of vacuum-to-
vacuum correlators:

AðT; qÞ ! AgðT; qÞ; for T ! 1: (11)

(ii) At small q, because of current conservation, the
ground state dominates the correlator for all T.
This is a specific feature of A which arises due to
the choice of the initial state. Thus, compared with
vacuum-to-vacuum correlators, the correlator A
‘‘maximizes’’ the ground-state contribution.

IV. EXTRACTIONOF THEGROUND-STATE FORM
FACTOR

Employing the quark–hadron duality hypothesis, which
assumes that the excited-state contribution is dual to the
high-energy region of quark diagrams, one constructs the
correlator dual to the ground state and gets the following
sum rule for the form-factor FgðqÞ2:

AdualðT; q; zeffÞ �
Z zeff ðT;qÞ

0
aðz; T; qÞdz

¼ c gðr ¼ 0Þ expð�EgTÞFgðqÞ: (12)

Relation (12) constitutes the definition of the exact effec-
tive continuum thresholds zeffðT; qÞ.

Let us emphasize the following point: As is clear from
Eq. (6), the T-dependence of the spectral density aðz; T; qÞ
is due to the T-dependence of the evolution operator

Gðz; TÞ of Eq. (7); the latter may be expanded in a series
of exponential functions with increasing powers. So, the
integration over z of aðz; T; qÞ in Eq. (12) can produce a
single exponential corresponding to the ground state only if
the effective continuum threshold zeff has a nontrivial
T-dependence.
More generally and independently of the specific form

of the interaction potential, the effective continuum thresh-
old for the vacuum-to-hadron correlator should depend
both on T and q as a consequence of the structure of the
correlator. This may be seen in two ways: first, the domi-
nance of the ground state in the correlator at small q
implies zeffðT; q ! 0Þ ! 1 for all T. Second, for large
T, the analytic properties of the dual correlator (which is
a handmade nonperturbative object whose properties are
rather different from properties of correlators in perturba-
tion theory [16]) require that zeffðT ! 1; qÞ ! 1 for all q.
The explicit T- and q-dependences of zeffðT; qÞ can be

obtained by solving Eq. (12) making use of the exact
bound-state parameters c gðr ¼ 0Þ and FgðqÞ. In the HO
model, this can be easily done numerically. The corre-
sponding results are shown in Fig. 1(a). Obviously, the
effective continuum threshold zeffðT; qÞ does depend
strongly on both T and q.
Let us consider now a restricted problem where the

energy Eg of the ground state and its wave function at

the origin, c gðr ¼ 0Þ, are known, and try to determine its

elastic form factor from the sum rule (12).
First, according to [1] we should determine the working

interval of T—the Borel ‘‘window’’ where the method may
be applied to the extraction of the ground-state parameter:
(i) The upper boundary of the T-window is obtained

from the condition that the truncated expansion gives
a good approximation to the exact correlator. Since
in the HO model the correlator is known exactly, the
upper boundary is T ¼ 1. However, to be close to
realistic situations, where only a limited number of
higher-twist corrections is available, following our
results reported in [13] we define the upper boundary
of the window as !T & 0:8.

(ii) The lower boundary of this T-window is determined
by the condition that the ground state gives a ‘‘siz-
able’’ contribution to the correlator.3 As can be seen
from Fig. 1(b), if we require the ground-state con-
tribution to exceed, say, 50%, the window disappears
already for q̂ ¼ q=

ffiffiffiffiffiffiffiffi
m!

p
> 4. We shall see, however,

that our algorithm allows one to extract the form
factor, although with a worse accuracy, also in the
region where the ground-state contribution to the
correlator is below 30%. Thus, our algorithm opens
the possibility to study also the region of large
momentum transfers.

2This is the standard but not the unique way to define the dual
correlator: another possibility—to apply the cut only to the
leading-twist contribution and thus to attribute the contributions
of all higher twists exclusively to the ground state—has been
discussed in [13].

3Notice, however, that in applications of light-cone sum rules
in QCD the magnitude of the ground-state contribution is usually
not considered.
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For practical purposes we need to set a lower boundary
of the working region, so we choose the window to be
0:2 & !T & 0:8.

Second, we must choose a criterion to fix the effective
continuum threshold zeffðT; qÞ. We proceed in the follow-
ing way: We consider a set of T-dependent Ansätze for the
effective continuum threshold:

zðnÞeff ðT; qÞ ¼
Xn
j¼0

zðnÞj ðqÞð!TÞj: (13)

(The standard procedure adopted in all sum-rule applica-
tions in QCD is to assume a T-independent quantity.) Now,
at each value of q we fix the parameters on the right-hand
side (rhs) of (13) as follows: we calculate the dual energy

EdualðT; qÞ ¼ � d

dT
logAdualðT; q; zeffðT; qÞÞ; (14)

for the T-dependent zeff of Eq. (13). Then we evaluate
EdualðT; qÞ at several values of T ¼ Ti (i ¼ 1; . . . ; N, where
N can be taken arbitrarily large) chosen uniformly in the
window. Finally, we minimize the squared difference be-
tween Edual and the exact value Eg:

�2 � 1

N

XN
i¼1

½EdualðTi; qÞ � Eg�2: (15)

The results for the dual form factor obtained after optimiz-
ing in this way the parameters of zeff are shown in Fig. 2.

A. T-independent effective continuum threshold

Let us consider first the case of the standard
T-independent approximation. One obtains the form factor
in the region q̂ � 1:5 with better than 10% accuracy,
whereas the accuracy falls down rather fast with increasing
q [see Fig. 2(a)]. The real problem is, however, that the
magnitude of the error cannot be guessed on the basis of
the standard criteria adopted in the method: e.g., at q̂ ¼ 2,
the variation of the extracted form factor in the window is
only about 2%, which mimics an accurate extraction of the
form factor, whereas the actual error comprises 15%. Thus
we conclude that, similar to the case of vacuum-to-vacuum
correlators, the error of the form factor extracted from the
vacuum-to-hadron correlator cannot be determined from
the variation of the dual form factor in the window.

B. T-dependent effective continuum threshold

We are going to discuss now the quadratic and quartic

Ansätze, zð2ÞeffðT; qÞ and zð4ÞeffðT; qÞ (the results obtained for

n ¼ 1 are close to the results for n ¼ 0, and the results for
n ¼ 3 are close to those for n ¼ 2). As can be seen from
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FIG. 2 (color online). (a) Ratio FdualðqÞ=FgðqÞ, extracted from the sum rule (12) using different approximations zðnÞeff ðT; qÞ in Eq. (13),
vs q̂. Different lines correspond to different Ansätze for the effective continuum threshold: red—constant (n ¼ 0), blue—quadratic

(n ¼ 2), black—quartic (n ¼ 4). (b) Ratio FdualðqÞ=FgðqÞ, extracted from the sum rule (12) using different approximations zðnÞeff ðT; qÞ in
Eq. (13) depending on n, the power of the polynomial used in the fit. The results for two values of the momentum transfer are
presented: q̂ ¼ 3—green triangles, q̂ ¼ 5—violet boxes.
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FIG. 1 (color online). (a) Exact effective continuum threshold zeffðT; qÞ obtained by solving numerically Eq. (12) using the exact
bound-state parameters c gðr ¼ 0Þ and FgðqÞ vs Euclidean time T for several values of q̂ � q=

ffiffiffiffiffiffiffiffi
m!

p
. (b) Relative contribution of the

ground-state to the correlator AgðT; qÞ=AðT; qÞ vs T for several values of q. The vertical lines indicate the window 0:2 � !T � 0:8.

Red: q̂ ¼ 1, green: q̂ ¼ 2, blue: q̂ ¼ 3, light-blue: q̂ ¼ 4, black: q̂ ¼ 5.
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Fig. 2(a), the form factor may be extracted with reasonable
accuracy (better than 15%) up to q̂ ¼ 5. This relatively
high accuracy is reached in spite of the facts that (i) the
relative contribution of the ground state to the correlator
falls down considerably below 50% in the T-window, and
(ii) the form factor at q̂ ¼ 5 falls down compared to its
value at q̂ ¼ 0 by almost 3 orders of magnitude.

It should be mentioned that both for n ¼ 2 and n ¼ 4 the
dual energy EdualðT; qÞ and the dual form-factor FdualðT; qÞ
are extremely stable (better than 0.1%) in the window. In
spite of this stability, the actual error of the extracted form
factor for both n ¼ 2 and n ¼ 4 is found to be at the level
of 10–15%. Again, this error could not be guessed on the
basis of the standard Borel stability criterion, which thus
does not work for vacuum-to-hadron correlators.
Previously, we made a similar observation for the case of
vacuum-to-vacuum correlators [11,12,15]. Interestingly,
the actual error may be probed if one compares the results
obtained for quadratic and quartic Ansätze for zeff; more-
over, in the case under consideration these results provide
the actual band of values which contains the true hadron
form factor.

Figure 2(b) shows the results for the form factor ob-
tained by the fit as function of the power n of the
T-polynomial in (13) for two values q̂ ¼ 3 and q̂ ¼ 5.
Let us notice that the fitting procedure becomes unstable

for n � 7: the fit leads to coefficients zðnÞj in (13) which

start to increase with j. Respectively, increasing the power
of the polynomial does not lead to an improvement of the
accuracy of the extracted from factor. This behavior might
be expected and reflects the fact that the extraction of the
form factor from the correlator known in the limited range
of T cannot be done arbitrarily accurate.

V. CONCLUSIONS

We discussed the extraction of the form factor from the
vacuum-to-bound-state correlator, making use of a
quantum-mechanical potential model. We formulated a
new algorithm for fixing the effective continuum thresh-
old—one of the basic ingredients of the method of sum
rules—which to a great extent determines the numerical
value of the form factor obtained by this method.

The main messages of our analysis are as follows:
We would like to emphasize that the exact effective

continuum threshold in vacuum-to-bound-state correlators,
(as well as the exact continuum threshold in vacuum-to-

vacuum correlators) depends on the Borel-parameter T.
This conclusion is based on both the general properties
of the vacuum-to-hadron correlator and on explicit
calculations.
Assuming a T-independent (i.e., a Borel-parameter in-

dependent) Ansatz for the effective continuum threshold,
the error of the ground-state form factor extracted from the
vacuum-to-hadron correlator turns out to be typically much
larger than (i) the error of the description of the exact
correlator by the truncated twist expansion and (ii) the
variation of the dual form factor in the Borel window.
Combining this statement with our previous results ob-
tained for vacuum-to-vacuum correlators [11,12,15,16],
we conclude that in all versions of sum rules ‘‘Borel
stability’’ cannot be used as a criterion of the reliability
of the extracted form factor.
Allowing for a T-dependent effective continuum thresh-

old and fixing it according to Eq. (15) leads to dramatic
improvements in the extracted ground-state form factor:
First, it extends considerably the range of the momen-

tum transfers where the form factor may be extracted with
an accuracy at the level of 10–15%. In particular, it extends
the applicability of the method also to the region of large
momentum transfers, where the ground state does not give
the dominant contribution to the correlator.
Second, it improves considerably the accuracy and re-

liability of the form-factor extraction compared to the
standard T-independent Ansatz for the effective continuum
threshold that has been used in all previous applications of
sum rules in QCD. Moreover, in the example under con-
sideration, we managed to obtain the band of values which
contains the true form factor, by analyzing different
Ansätze for the effective continuum threshold. If this prop-
erty holds in QCD, it would eventually provide a means to
gain a rigorous control over the accuracy of light-cone sum
rules. This important issue requires further investigation.
The application of the proposed ideas to vacuum-to-

hadron correlators in QCD seems very promising. We
believe that it will lead to a considerable improvement of
hadron form factors obtained from light-cone sum rules.
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