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We discuss consistent power counting for integrating soft and collinear degrees of freedom over

arbitrary regions of phase space in the soft-collinear effective theory, and illustrate our results at one-loop

with several jet algorithms: JADE, Sterman-Weinberg and k?. Consistently applying soft-collinear

effective theory power counting in phase space, along with nontrivial zero-bin subtractions, prevents

double counting of final states. The resulting phase space integrals over soft and collinear regions are

individually ultraviolet divergent, but the phase space ultraviolet divergences cancel in the sum. Whether

the soft and collinear contributions are individually infrared safe depends on the jet definition. We show

that while this is true at one-loop for JADE and Sterman-Weinberg, the k? algorithm does not factorize

into individually infrared safe soft and collinear pieces in dimensional regularization. We point out that

this statement depends on the ultraviolet regulator, and that in a cutoff scheme the soft functions are

infrared safe.
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I. INTRODUCTION

The study of jets provides an important tool to inves-
tigate strong interactions and tests QCD over a wide range
of scales, from partonic hard scattering to the evolution of
hadronic final states that make up the jets. Hadronic jets
also play an integral role in searches for physics beyond the
standard model. Soft-collinear effective theory (SCET) [1–
5] provides a useful framework to study jets, reproducing
results from QCD obtained from traditional factorization
techniques (see, for example, [6,7]) while systematically
including power corrections and organizing perturbative
resummation.

The effective theory separates the scales of the
underlying hard interaction from the scales associated
with the collinear particles in the jets and the long-distance
soft physics. Unlike QCD, particles in SCET whose mo-
menta have parametrically different scaling are described
by separate fields—in this case, either (ultra-)soft or col-
linear.1 Their light-cone components, p ¼ ðn � p; �n �
p; p?Þ ¼ ðpþ; p�; p?Þ scale as

ps �Qð�2; �2; �2Þ; pc �Qð1; �2; �Þ (1)

where n and �n are light-cone vectors in the � ~n direction
and � is a small dimensionless parameter which is deter-
mined by the dynamics. At leading order in � the soft and
collinear modes decouple in the SCET Lagrangian. These
properties of the effective theory have been utilized to

prove factorization, resum large logarithms, and parame-
trize nonperturbative corrections for event shapes in the
two-jet limit [8–11] and for massive top quark jets [12], for
example. The factorization of generic fully differential jet
cross sections has also been shown independent of jet
observables for eþe� and pp collisions [13]. For an n-jet
cross section with a given jet definition to fully factorize,
however, the phase space constraints should also factorize
appropriately in the effective field theory (EFT). Such
factorization of phase space constraints has not yet been
shown in any scheme other than the hemisphere scheme
[13] (in which all events are dijet).
In this paper we study the two-jet cross section for eþe�

collisions in SCET, using three jet algorithms: a cone
algorithm, Sterman-Weinberg (SW) [14], which defines a
jet based on an angular cut and was considered in the
context of SCET in [8,9,15], as well as two clustering
algorithms, JADE [16] and k? [17], which iteratively
combine partons into jets based on kinematic conditions.
This is a first step towards the broader goal of determining
the appropriate factorization theorem and resumming log-
arithms using SCET. While we do not consider here the
more general problem of factorization theorems for jets,
we point out some implications of our results for factori-
zation theorems, in particular, showing that the form of the
factorization in SCET depends on the ultraviolet regulator.
The main point of this paper is instead to demonstrate the
relationship between the cutoffs in the effective field the-
ory and phase space limits, and to consider their implica-
tions for dijet rates in SCET. Since SCET has no hard
cutoff separating soft from collinear regions of phase
space, some care is required to perform phase space inte-
grals consistently. The next-to-leading-order (NLO) dijet
rate in SCET also demonstrates the interplay of divergen-
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ces between the soft and collinear sectors, and provides
nontrivial examples of the zero-bin subtraction [18].

II. PHASE SPACE IN QCD AND SCET

At each order in perturbation theory, a jet algorithm
corresponds to a scheme to partition the available phase
space into regions with different numbers of jets. AtOð�sÞ,
the phase space for eþe� ! hadrons or hadronic Z decay

was discussed in SCET in [18] using the variables xi ¼
2pi�q
q2

, where q ¼ p1 þ p2 þ p3 is the total momentum of

the process and p1;2;3 are the momenta of the quark,

antiquark, and gluon, respectively. In our discussion we
will find it more convenient to choose the independent
variables to be the light-cone components of the gluon
momentum, pþ

3 � n � p3 and p�
3 � �n � p3, and fix the

coordinates by choosing the antiquark to be moving purely
in the �n direction (i.e. p�

2 ¼ p?
2 ¼ 0). The resulting phase

space is illustrated schematically in Fig. 1. Note that
because our choice of coordinates is not symmetric in the
n and �n directions, the phase space is not symmetric under
exchange of the pþ

3 and p�
3 axes. (For example, in the

upper left the antiquark is constrained to be soft, while in
the lower right the quark and antiquark recoil against the
gluon, and so either the quark or the antiquark may be soft,
or both may be �n-collinear.)

In the shaded regions, two of the partons recoil approxi-
mately back-to-back and the third is either soft or recoils
roughly parallel with one of the other two, while in the
central unshaded region all three partons recoil in different
directions. Thus, the shaded region roughly corresponds to

two-jet events, while the central region corresponds to
three-jet events. The precise details of this correspondence
are determined by the particular jet algorithm being used.
Within the effective field theory there are natural degrees

of freedom associated with each region of the two-jet phase
space, as indicated in Fig. 1. The complete dijet rate,
however, requires integrating over all these regions, and
since SCET has no hard cutoff separating soft and collinear
degrees of freedom, it would seem that each mode should
be integrated over the full QCD phase space (this is the
approach followed in [18]). However, this is inconsistent
with the effective theory, since, for example, integrating a
soft gluon in the collinear region would require it to have
momentum well above the cutoff for soft modes in SCET.
Instead, a phase space integral which extends above the

cutoff for the relevant mode should be replaced by an
ultraviolet divergence, which would then be regulated
and renormalized in the usual way. This occurs naturally
in SCET because of the multipole expansion for momenta
at the vertices. The kinematics for soft and collinear gluon
emission is shown in Fig. 2, where p� scale asQ, p? scale
as �Q, and the k’s scale as �2Q. Because of the multipole
expansion, a given component of momentum is not con-
served at vertices involving particles whose typical mo-
menta scale differently with �. As a consequence, the
phase space for each mode in SCET differs from that in
full QCD, and it is misleading to use the kinematics in
Fig. 1 in the effective theory. For example, in the soft
emission graph in Fig. 2, conservation of momentum re-
quires p�

1 ¼ Q, pþ
2 ¼ Q, while the k’s are unconstrained.

It is integrals over these unconstrained momenta which
will give rise to ultraviolet divergent phase space integrals
in the EFT. This is the approach followed in [11], where
ultraviolet divergent phase space integrals are obtained for
the soft and jet functions at NLO for angularity distribu-
tions in SCET. This is also what happens in SCET in loop

FIG. 1. Three-body phase space in pþ
3 , p�

3 variables. The
shaded area indicates regions which may be described with
two collinear directions in SCET; the white region in the center
requires three directions.

+ +

FIG. 2. Kinematics in SCET. In the top right SCET diagram
the gluon is n-collinear, in the bottom left it is �n-collinear, and in
the bottom right it is soft. Additional diagrams with soft quarks
arise at higher order in �.
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graphs, where both soft and collinear degrees of freedom
propagate, integrated over the appropriate kinematic vari-
ables. Since phase space integrals are just loop graphs with
internal propagators placed on shell, the same rules apply.

It is straightforward to illustrate this for various jet
definitions. In the SW definition, a two-jet event is defined
as one in which all but a fraction� of the total energy of the
event is deposited in two back-to-back cones with half
angle � [14]. The JADE algorithm requires that the invari-
ant mass M2

ik of every pair of final-state partons i and k be

calculated. If any are less than a fraction, j, of the total
center of mass energy squared, Q2, then the momenta of
the pair with the smallest invariant mass are combined into
a single jet according to a recombination scheme which is
part of the jet definition, the details of which are not
relevant at Oð�sÞ. This process is repeated until no pair
has an invariant mass less than jQ2. The k? algorithm is a
modified version of the JADE algorithm which clusters
partons based on their relative transverse momentum rather
than their invariant mass. The corresponding kinematic
variable is

yij ¼ 2

Q2
ð1� cos�ijÞminðE2

i ; E
2
j Þ: (2)

For massless particles this is equal to

yij ¼
M2

ij

Q2
min

�
Ei

Ej

;
Ej

Ei

�
: (3)

The final states with the smallest yij, given that it is less

than a resolution parameter yc, are combined according to
a combination prescription. This process is repeated until
all pairs have yij > yc. In Fig. 3 we illustrate the two-jet

regions in QCD as defined by the JADE, SW, and k?
algorithms. The SCET regime for the two-jet cross section
corresponds to choosing the parameters �, �, j, or yc to be
much less than one in the respective jet definition.

For the two-jet JADE cross section, for example,
integrating kþ3 in the soft sector all the way up to Q, as in

Fig. 3(a), corresponds to integrating the gluon momentum
far above the cutoff. In the EFT, the upper limit of inte-
gration should therefore be replaced by an ultraviolet cut-
off. Indeed, while the regions of integration for the various
jet definitions are quite complicated, as far as the soft gluon
is concerned they should have no structure above the soft
scale. A similar situation holds for collinear gluons, where
the effective cutoffs in the perpendicular and anticollinear
directions are parametrically smaller than Q.
At Oð�sÞ, the JADE algorithm corresponds to a cut on

the invariant masses Mij of each pair of partons: if M2
ij <

jQ2, the partons are considered to lie in the same jet, and
the event is a two-jet event. The constraints in full QCD
shown in Fig. 3(a) are

M2
qg

Q2
¼ pþ

3

Q� p�
3

< j;

M2
�qg

Q2
¼ p�

3

Q
� pþ

3 p
�
3

QðQ� p�
3 Þ

< j;

M2
q �q

Q2
¼ Q� p�

3 � pþ
3

Q
< j:

(4)

Expanding these constraints in the n-collinear sector, we
find

M2
qg

Q2
¼ kþ3

Q� p�
3

< j;

M2
�qg

Q2
¼ p�

3

Q
< j;

M2
q �q

Q2
¼ Q� p�

3

Q
< j

(5)

while in the soft sector we obtain

FIG. 3. Three-body phase space for different jet definitions in QCD. The shaded region corresponds to the two-jet region; the
unshaded region in the center is the three-jet region.
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M2
qg

Q2
¼ kþ3

Q
< j;

M2
�qg

Q2
¼ k�3

Q
< j (6)

(while the constraintM2
q �q < jQ2 is never satisfied). Finally,

in order to avoid double-counting of the soft sector, the
zero-bin of the collinear region must be subtracted [18].
Taking the soft limit of the n-collinear region in Eq. (5)
gives the same region as the soft sector, Eq. (6).
The corresponding regions of phase space are shown in
Fig. 4(a) and 4(b).

We note that, as required, the phase space contains no
explicit reference to any scales above the cutoff of the
theory and has no structure above this scale.

Similar constraints in the soft, collinear, and zero-bin
sectors are easily obtained for the SW and k? definitions,
and are summarized in Table I. Note that in both SW and
k?, the zero-bin region is not the same as the soft region,
since taking the soft limit of the n-collinear phase space is
not the same as taking the soft limit of the full QCD phase

space. The corresponding regions are illustrated in Figs. 5
and 6.
Note that we have not had to specify the SCET expan-

sion parameter � in order to expand the phase space in the
soft and collinear sectors; we have only assumed that � �
1 so that the multipole expansion is valid. Similarly, we
have not assumed any relative scaling between � and � in
the SW jet definition.

III. DIJET RATES TO Oð�sÞ
In this section we calculate the NLO dijet rate (denoted

f2) in the JADE, SW, and k? schemes in SCET, which is
straightforward to do given the phase space regions of the
previous section. We show that in each case SCET repro-
duces full QCD, as it must. We examine the scales that
appear in the soft and collinear cross sections, where the
power-counting parameter � is determined by the dynam-
ics in each algorithm. It is instructive to note the cancella-
tion of ultraviolet divergences between the soft and

FIG. 4. Phase space corresponding to two-jet events using the JADE algorithm in (a) the n-collinear gluon sector, and (b) the soft
gluon and zero-bin sectors. The thick arrows indicate integrations to infinity.

TABLE I. Two-jet regions of three-body phase space for JADE, Sterman-Weinberg , and k?
jet algorithms.

Jet Definition n-collinear Regions Soft Regions Zero-bin Regions

JADE kþ3 < jðQ� p�
3 Þ kþ3 < jQ kþ3 < jQ

p�
3 < jQ k�3 < jQ k�3 < jQ

p�
3 >Qð1� jÞ

SW kþ3 < p�
3

ðQ�p�
3
Þ2

Q2 �2 kþ
3

kþ
3
þk�

3
< �2 kþ3 < �2p�

3

p�
3 < 2�Q

k�
3

kþ
3
þk�

3
< �2 p�

3 < 2�Q

p�
3 > ð1� 2�ÞQ kþ3 þ k�3 < 2�Q

k? minðkþ3p�
3
;

kþ
3
p�
3

ðQ�p�
3
Þ2Þ< yc ðkþ3 þ k�3 Þkþ3 < ycQ

2 kþ3 p�
3 < ycQ

2

ðp�
3 Þ2 < ycQ

2 ðkþ3 þ k�3 Þk�3 < ycQ
2 ðp�

3 Þ2 < ycQ
2

ðQ� p�
3 Þ2 < ycQ

2
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collinear real emission contributions. We also consider the
infrared safety of the soft and collinear rates separately.

At Oð�sÞ the only contribution to the dijet rate comes

from the two-jet SCEToperator O2 ¼ ��nWn�
�Wy

�n � �n. The
matching calculation from the full QCD current �c��c
onto O2 has been performed many times in the literature
[15,19,20], with the Wilson coefficient

C2 ¼ 1þ �sCF

2	

�
� 1

2
ln2

�2

�Q2
� 3

2
ln

�2

�Q2
� 4þ 	2

12

�

(7)

and the MS counterterm

Z2 ¼ 1þ �sCF

2	

�
1


2
þ 3

2

þ 1



ln

�2

�Q2

�
(8)

where we are working in d ¼ 4� 2
 dimensions. The

SCET differential cross section for soft gluon emission is
given by

1

�0

d�s ¼ �sCF

2	

�2
e
�E

�ð1� 
Þdk
þ
3 dk

�
3

2�ðkþ3 k�3 Þ
ðkþ3 Þ1þ
ðk�3 Þ1þ


(9)

while for n-collinear gluon emission it is

1

�0

d�n ¼ �sCF

2	

�2
e
�E

�ð1� 
Þdk
þ
3 dp

�
3

ðp�
3 k

þ
3 Þ�


Qkþ3

�
�
p�
3

Q
ð1� 
Þ þ 2

Q� p�
3

p�
3

�
(10)

where �0 ¼ ð4	�2=Q2ÞPfe
2
f is the leading order Born

cross section with a sum over the (anti-)quark charges ef.

The dependence on ~k?3 and ~p?
3 has been eliminated via the

gluon on-shell condition, and the integral over the 2� 2


FIG. 6. As in Fig. 5, but using the k? algorithm.

FIG. 5. Phase space corresponding to two-jet events using the SW algorithm in (a) the n-collinear gluon sector, (b) the soft gluon
sector, and (c) the zero-bin sector. As before, the thick arrows indicate integrations to infinity.
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perpendicular components of the gluon momentum has
been performed in each case.

Finally, the differential rate in the gluon zero-bin region,
d�n0, is obtained by taking the soft limit of Eq. (10), which
is the same as the soft rate,

d�n0 ¼ d�s: (11)

(There are also zero-bin regions corresponding to the quark
and antiquarks becoming soft, but they are higher order in
� and we will not consider them here.) For the n-collinear
region there are two zero-bins: p�

3 ! 0 and p�
1 ! 0, but

the contribution to the cross section from the latter is of
higher order in � and so we will not consider them here.

A. JADE

Integrating the soft rate over the soft dijet region (6) in
the JADE definition gives

1

�0

�s
JADE ¼ �sCF

2	

�
� 2


2
� 2



ln

�2

j2Q2
� ln2

�2

j2Q2
þ 	2

6

�

(12)

where we have taken j � 1 and kept only the leading
terms in j. Integrating the n-collinear rate over the region
(5), we find

1

�0

~�n
JADE ¼ �sCF

2	

�
3

2

þ 2



lnjþ 3

2
ln
�2

jQ2

þ 2 ln
�2

Q2
lnj� 3ln2j� 	2

3
þ 7

2

�
(13)

where the tilde denotes that the zero-bin has not been
subtracted. The rate in the zero-bin region is identical to
that in the soft region, and so the zero-bin subtracted result
for the emission of an n-collinear gluon is

1

�0

�n
JADE ¼ 1

�0

ð~�n
JADE � �n0

JADEÞ ¼
1

�0

ð~�n
JADE � �s

JADEÞ

¼ �sCF

2	

�
2


2
þ 3

2

þ 2



ln
�2

jQ2
þ 3

2
ln
�2

jQ2

þ ln2
�2

jQ2
� 	2

2
þ 7

2

�
: (14)

The emission of a collinear gluon in the �n direction, i.e.
from the antiquark, can be calculated in a similar way, and
it gives the same contribution.

In pure dimensional regularization, all the virtual vertex
corrections and the wave function renormalizations involve
scaleless integrals and thus vanish. Hence we only need to
add up the real emission contributions:

1

�0

�R
JADE ¼ 1

�0

ðð~�n
JADE � �n0

JADEÞ þ ð~� �n
JADE � � �n0

JADEÞ
þ �s

JADEÞ
¼ 1

�0

ð~�n
JADE þ ~� �n

JADE � �s
JADEÞ

¼ �sCF

2	

�
2


2
þ 3



þ 2



ln
�2

Q2
� 2ln2jþ ln2

�2

Q2

þ 3 ln
�2

jQ2
� 5	2

6
þ 7

�
: (15)

Note that the soft contribution enters into the final expres-
sion with a minus sign. This is a consequence of zero-bin
subtraction and the fact that zero-bins are identical to the
soft contribution. Similar observations have been pointed
out in [21–23]. The divergent terms in Eq. (15) are can-
celled by the counterterm jZ2j2, and including the Wilson
coefficient, jC2j2, gives the two-jet fraction

fJADE2 ¼ jC2j2
jZ2j2

�
1þ 1

�0

ð�n
JADE þ � �n

JADE þ �s
JADEÞ

�

¼ 1þ �sCF

2	

�
�2ln2j� 3 lnjþ 	2

3
� 1

�
: (16)

This result agrees with the full QCD calculation given in
[24,25].
It is instructive to comment on a few details of the SCET

result. First of all, since dimensional regularization regu-
lates both the infrared and ultraviolet divergences, the
cancellation of ultraviolet divergences between the soft
and collinear emissions is not explicit. To show how this
works, we can repeat the calculation with the quark and
antiquark offshell, p2

1, p
2
2 � �2 � 0, so that all 1=
 diver-

gences in the calculation are ultraviolet. The calculation is
given in the Appendix. The resulting rate for soft gluon
emission over the JADE phase space is

1

�0

�s
JADE ¼ �sCF

2	

�
� 2




�
ln

p2
1

jQ2
þ ln

p2
2

jQ2

�

þ
�
ln
p2
1

Q2
þ ln

p2
2

Q2

�
2 � 2

�
ln
p2
1

Q2
þ ln

p2
2

Q2

�
ln
�2

Q2

�

þ � � � (17)

where the ellipses denote finite constant terms which are
not relevant for the discussion. The unsubtracted
n-collinear cross section is

1

�0

~�n
JADE ¼ �sCF

2	

�
� 2


2
þ 2




�
ln

p2
1

jQ2
� ln

�2

j2Q2

�
� ln2

p2
1

Q2

þ 2 ln
�2

Q2
ln
p2
1

Q2
þ 3

2
ln
p2
1

Q2

�
þ . . . (18)

while the zero-bin region gives
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1

�0

�n0
JADE ¼ �sCF

2	

�
� 2


2
� 2



ln

�2

j2Q2

�
þ . . . : (19)

Thus, the zero-bin subtracted n-collinear cross section is

1

�0

�n
JADE ¼ �sCF

2	

�
2



ln

p2
1

jQ2
� ln2

p2
1

Q2
þ 2 ln

�2

Q2
ln
p2
1

Q2

þ 3

2
ln
p2
1

Q2

�
þ . . . : (20)

The result for �n-collinear gluon emission will be the same
as that for n-collinear gluon emission with the replacement
p2
1 ! p2

2. Note that the 1=
2 divergence from collinear
emission is removed by the zero-bin. Combining the real
emission contributions to the JADE cross section, Eq. (21),
we see that while the phase space integrals for soft and
collinear gluon emission are individually ultraviolet diver-
gent, with mixed ultraviolet infrared divergent terms, the
ultraviolet divergences cancel in the sum:

1

�0

�R
JADE ¼ �sCF

2	

�
2 ln

p2
1

Q2
ln
p2
2

Q2
þ 3

2
ln
p2
1

Q2
þ 3

2
ln
p2
2

Q2

�

þ . . . : (21)

This is the same cancellation which occurs at the one-loop
level in SCET [1], in which separately ultraviolet and
infrared divergent terms cancel in the sum of the soft and
collinear graphs.

The soft and collinear sectors are also individually in-
frared finite for the JADE algorithm. The soft virtual vertex
correction is given by [20], and contributes equally to the
two-jet rate in all definitions

1

�0

�s
V ¼ �sCF

2	

�
� 2


2
� 2



ln

�
��2Q2

p2
1p

2
2

�

� ln2
�
��2Q2

p2
1p

2
2

��
þ . . . : (22)

The soft wave function renormalization graphs are zero
and so the cross section in the soft sector is given by

1

�0

ð�s
JADE þ �s

VÞ ¼
�sCF

2	

�
� 2


2
� 4



ln
�

jQ

�
þ . . . : (23)

The result is purely ultraviolet divergent and agrees with
the pure dimensional regularization calculation in Eq. (12).
The collinear contribution is similarly free of infrared
divergences.

Second, we note that the scale at which the logarithms in
the NLO n-collinear rate are minimized, � ¼ ffiffiffi

j
p

Q, deter-
mines the collinear or jet scale in SCET, �Q, and that
without the zero-bin subtraction there is no value of � at
which the logarithms in Eq. (13) are minimized. The
logarithms in the soft rate (12) are minimized at � ¼
jQ, the expected soft scale in SCET, �2Q. From Fig. 4
we see that jQ is the relevant soft scale that emerges from
the multipole expansion of the JADE phase space con-

straints. However, as we shall see from the SW two-jet
soft rate, this is not universally the case. The true soft scale
depends on the details of the soft theory, which is not
addressed here. Furthermore the calculation of the leading
logarithmic contribution in full QCD [25,26] shows that
the resummed result is not simply given by the exponen-
tiation of the NLO term. It has been demonstrated that the
emission of two soft gluons with large angular separation
can be combined to constitute a third jet in the JADE
clustering algorithm. These types of configurations change
the leading-logarithmic two-jet fraction and spoil naı̈ve
exponentiation, as the emission of subsequent soft gluons
qualitatively changes the phase space constraints. These
configurations also involve the parametrically lower scale
j2Q [26], which complicates the summing of logarithms of
j. However, this effect does not arise until Oð�2

sÞ, which is
beyond the order to which we are working.
Finally, it is instructive to look more closely at the zero-

bin subtractions in different regions of phase space. In
particular, while the n-collinear region of integration natu-
rally describes the region where the n-collinear quark and
gluon form a jet (see Fig. 4(a)), it also includes regions
where the antiquark and the gluon, as well as the quark and
the antiquark, form jets. In order for an n-collinear gluon to
form a jet with an �n-collinear antiquark, the gluon must be
soft, and as a result one would expect the entire contribu-
tion from this region of phase space to be cancelled by the
zero-bin subtraction. Similarly, the region where the
n-collinear quark and �n-collinear antiquark form a jet
should be cancelled by the corresponding quark and anti-
quark zero-bins; however, these are subleading in j. We
show below that this is indeed the case at Oð�sÞ.2
The region where the n-collinear gluon and �n-collinear

quark form a jet in the JADE algorithm is defined by the
region

kþ3 >p�
3

ðQ� p�
3 Þ

Q
; 0<p�

3 < jQ (24)

and integrating the differential rate (10) over this region
gives

�sCF

2	

�
� 1


2
� 2



ln
�

jQ
þ 	2

12
� 2ln2

�

jQ

�
(25)

where, as usual, we have dropped terms subleading in j.
The zero-bin constraints for the same jet are

kþ3 > k�3 ; 0< k�3 < jQ (26)

and integrating the differential rate (11) over this region
and expanding in j gives the same result as (25). Hence this
region is entirely zero-bin and is absent from the
n-collinear rate, thereby reducing the combinations of
partons that need to be considered. Similarly, the region
where the quark and antiquark form a jet is

2We thank S. Freedman for this observation.
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kþ3 >
ðQ� p�

3 Þ2
Q

; Qð1� jÞ< p�
3 <Q (27)

and integrating Eq. (11) over this region gives a result of
order j, and so the rate vanishes to the order we are work-
ing. We expect that such cancellations will continue be-
yond leading order, simplifying the combinatorics of
clustering multigluon states.

B. Sterman-Weinberg and k? jet definitions

It is straightforward to repeat the calculations of the
previous section for the SW and k? jet definitions.
However, each of these algorithms introduces additional
features not present in the JADE calculation: the relevant
scales are different and in both cases the zero-bin contri-
bution is distinct from the soft contribution. Furthermore,
in the k? definition the soft and collinear rates are not
individually infrared safe using dimensional regularization
to regulate the ultraviolet, indicating that the rate does not
factorize into well-defined soft and collinear contributions
in this scheme in SCET.

1. SW

Jets in the SW definition were studied in SCET in
[8,9,15]. In these papers it was argued that because the
kinematic cuts on the soft phase space were much larger
than the typical soft scale, the soft phase space integral
should be unrestricted. In [8,9] this is because the scaling
�� � is chosen, while in [15] � is taken to be of order �2,
but the soft scale is taken to be �QCD. Our results differ, as

we have not assumed any relative scaling between �Q,
�Q, and �QCD, and we argue that SCET power counting

uniquely requires the restricted soft phase space in
Fig. 5(b). (We expect, however, that if �� �, SCET
should be matched at a lower scale onto a new effective
theory with unrestricted soft phase space.)

Integrating the differential cross section in Eq. (9) over
the phase-space generated by the corresponding con-
straints, we find

1

�0

�s
SW ¼ �sCF

2	

�
4



ln�� 4ln2�þ 8 ln� ln

�

2�Q
� 	2

3

�
:

(28)

By introducing quark and antiquark off shellnesses as we
did for the JADE algorithm, it can be shown that the total
soft contribution, ð�s

SW þ �s
VÞ=�0, is infrared finite, and

the 1=
 terms are ultraviolet divergences. The logarithms
in Eq. (28) cannot be minimized for any choice of � since
there is a large ln� in the 1=
 term. (See, however, [27] in
which factorization and resummation in the SW two-jet
rate were studied in perturbative QCD.)

Integrating Eq. (10) over the phase space given by the
collinear SW constraints, we find the naı̈ve n-collinear
contribution to be

1

�0

~�n
SW ¼ �sCF

2	

�
1




�
3

2
þ 2 ln2�

�
þ 3 ln

�

�Q

þ 2 ln2� ln
�2

2��2Q2
þ 13

2
� 2	2

3

�
: (29)

Note that there is no reasonable scale � at which all the
logarithms are minimized. We now need to subtract the
p�
3 ! 0 zero-bin of the SW n-collinear contribution.

Integrating over the relevant phase space gives us

1

�0

�n0
SW ¼ �sCF

2	

�
� 1


2
� 2



ln

�

2��Q
� 2ln2

�

2��Q
þ 	2

12

�
:

(30)

The zero-bin gives a nontrivial contribution that is not
equal to the soft contribution, because the region of inte-
gration generated by taking the collinear and then soft limit
is not the same as taking the soft limit of the QCD SW
phase space. It is interesting to note that the scale in the
n-collinear zero-bin, ��Q, corresponds to the p? of a
parton at the edge of the cone with the maximum energy
allowed outside the cone, �Q. This corresponds to the
intersection point of Fig. 5(c), generated by a consistent
expansion of phase space constraints in the effective
theory.
The zero-bin subtracted result for the n-collinear sector

is

1

�0

ð~�n
SW � �n0

SWÞ ¼
�sCF

2	

�
1


2
þ 3

2

þ 2



ln

�

�Q
þ 3 ln

�

�Q

þ 2ln2
�

�Q
� 3	2

4
þ 13

2

�
(31)

where the logarithms are now minimized at � ¼ �Q,
unlike in Eq. (29). The collinear scale, �Q, corresponds
to the p? of a parton at the edge of the cone with typical
collinear energyOðQÞ. The emission of a collinear gluon in
the �n direction, i.e. from the antiquark, gives the same
result.
The n-collinear rate is independent of the jet parameter

�, because the phase space region in Fig. 5(b) with a
collinear gluon outside the cone with energy less than
�Q, where � � 1, corresponds to the zero-bin. This con-
tribution is entirely removed by the zero-bin subtraction
and Eq. (31) is given only by the region where the
n-collinear quark and gluon lie in the cone. This under-
scores the consistency of the phase space expansion in
Sec. II and the zero-bin prescription. The soft sector re-
solves the cone in addition to the scale�Q and gives rise to
the double logarithm cross term in the SW result below.
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Combining these results gives

fSW2 ¼ jC2j2
jZ2j2

�
1þ 2

�0

ð~�n
SW � �n0

SWÞ þ
1

�0

�s
SW

�

¼ 1þ �sCF

	

�
�4 ln2� ln�� 3 ln�� 	2

3
þ 5

2

�

(32)

in agreement with the full QCD calculation [14].

2. k?
The k? two-jet rate in SCET reveals a more subtle

cancellation of divergences than the previous two algo-
rithms and highlights again the importance of zero-bin
subtractions. Integrating the differential cross section for
the emission of a soft gluon over the soft phase space in
Fig. 6(b), we find that �s

k? is not regulated in dimensional

regularization. Performing the kþ3 integral first over the �qg
jet region of phase space, we obtain a term proportional to

d�s
k?

dk�3
/ ðQ2yc � ðk�3 Þ2Þ�



k�3
þ � � � ; (33)

where the ellipses denote terms which are finite in d ¼
4� 2
 dimensions. This term causes the k�3 integration to

diverge at zero. A similar problem arises when integrating
over the soft region generated by the qg jet constraint.
Despite this divergence, the total two-jet cross section is
finite in QCD and so must be finite in SCET. The region
that gives rise to this divergence is also integrated over in
the zero-bin calculations and since the soft and zero-bin
integrands are the same the divergence cancels in the
difference. Integrating the soft differential rate over the
combined soft and zero-bin regions gives a finite result in d
dimensions:

1

�0

ð�s
k? � �n0

k? � � �n0
k?Þ ¼

�sCF

2	

�
2


2
þ 2



ln

�2

ycQ
2

þ ln2
�2

ycQ
2
� 	2

3

�
(34)

where we see the soft scale
ffiffiffiffiffi
yc

p
Q appear as in Fig. 6. We

combine this with the rate to produce an n-collinear gluon,

1

�0

~�n
k? ¼ �sCF

2	

�
1




�
3

2
þ lnyc

�
þ ln

�2

ycQ
2

�
3

2
þ lnyc

�

� 3 ln2� 	2

3
þ 7

2

�
(35)

to obtain the total two-jet rate for emission of a real gluon

1

�0

ð~�n
k? þ ~� �n

k? þ �s
k? � �n0

k? � � �n0
k?Þ

¼ �sCF

2	

�
2


2
þ 1




�
2 ln

�2

Q2
þ 3

�
þ ln2

�2

Q2
þ 3 ln

�2

Q2

� ln2yc � 3 lnyc � 6 ln2� 	2 þ 7

�
(36)

where again n and �n collinear gluon emission give the
same contribution and the virtual piece vanishes.
Including the counterterm Z2 and the Wilson coefficient
C2, we reproduce the known NLO k? result [25]

fk?2 ¼ 1þ �sCF

2	

�
�ln2yc � 3 lnyc � 6 ln2þ 	2

6
� 1

�
:

(37)

This calculation reemphasizes the importance of zero-bin

subtraction: without it, the evaluation of a finite fk?2 would

not be possible. Since the soft and collinear cross sections
are not regulated in dimensional regularization, it is useful
to regulate the infrared and ultraviolet divergences sepa-
rately by taking the outgoing quark and antiquark off shell.
The resulting rate for soft gluon emission then becomes

1

�0

�s
k? ¼ �sCF

2	
ln2

p2
1p

2
2

Q4yc
þ . . . : (38)

Note that unlike the previous algorithms, the soft real
emission result is not ultraviolet divergent. Combining
this with the contribution from the soft virtual vertex
correction (22) gives

1

�0

ð�s
k? þ �s

VÞ ¼
�sCF

2	

�
� 2


2
� 2



ln
�2Q2

p2
1p

2
2

þ 2 ln
p2
1p

2
2

Q4
ln

�2

ycQ
2

�
þ . . . : (39)

This shows explicitly that the rate in the soft sector is not
infrared safe.
The rate for n-collinear gluon emission and the zero-bin

are, respectively,

1

�0

~�n
k? ¼ �sCF

2	

�
� 2


2
� 2



ln

�2

p2
1

ffiffiffiffiffi
yc

p � ln2
�2

p2
1

þ 3

2
ln

p2
1

Q2yc

�

þ . . .

1

�0

�n0
k? ¼ �sCF

2	

�
� 2


2
� 2



ln

�2

p2
1

ffiffiffiffiffi
yc

p þ ln2
p2
1

ycQ
2
� ln2

�2

p2
1

�

þ . . . : (40)

and their difference gives us the zero-bin subtracted result

1

�0

�n
k? ¼ �sCF

2	

�
�ln2

p2
1

ycQ
2
þ 3

2
ln

p2
1

ycQ
2

�
þ . . . : (41)

As with the soft sector, the phase space integration for the
n-collinear real emission is ultraviolet finite but infrared
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divergent. Combining the real emission contributions to
the k? two-jet cross section, we find

1

�0

�R
k? ¼ 1

�0

ð�n
k? þ � �n

k? þ �s
k?Þ

¼ �sCF

2	

�
3

2

�
ln
p2
1

Q2
þ ln

p2
2

Q2

�
þ 2 ln

p2
1

Q2
ln
p2
2

Q2

�
þ . . . :

(42)

The infrared divergences in Eq. (42) are completely can-
celled by the total virtual contribution �V given in
Eq. (A10). As expected, the virtual graphs convert the
infrared divergences in the real emission diagrams into
ultraviolet ones. While SCET reproduces the known
NLO k? result, the soft and collinear rates are not inde-
pendently infrared safe, indicating for the k? phase space
the soft and collinear modes do not factorize in SCETusing
dimensional regularization to regulate the ultraviolet.

IV. FACTORIZATION AND SCHEME
DEPENDENCE

It is useful to examine the failure of SCET to factorize
the k? rate into separately infrared safe soft and collinear
pieces, particularly given the fact that the regions of inte-
gration for the soft gluons are quite similar in the infrared
between k? and JADE. Instead, the bad behavior in
Eq. (33) comes from the region of large kþ and small k�
and vice-versa—a region which is infrared divergent, but
sensitive to the ultraviolet regulator. Since, as we have
shown, the ultraviolet divergences in the phase space in-
tegrals cancel between the soft and collinear degrees of
freedom, this is an unphysical region, and so cancels from
the total rate. The same cancellation occurs at the one-loop
level, in which terms of order 1=
UV lnp2

i cancel between
soft and collinear graphs [1]. However, this unphysical
region can also be eliminated by defining the soft function
with a cutoff �f. In particular, we show in this section that

while the k? algorithm in dimensional regularization does
not factorize in SCET into separate infrared safe contribu-
tions, regulating the ultraviolet with a cutoff on the light-
cone components of the gluon momentum,

jkþj<�f; jk�j<�f (43)

results in an infrared safe soft function.
Integrating the soft rate over the relevant region for k?,

including the cutoff (43), and continuing to work in d
dimensions to regulate the infrared, we find for real soft
gluon emission

1

�0

�s
k? ¼ �sCF

2	

�
2


2
þ 2



ln
�2

�2
f

� ln2
ycQ

2

�2
f

þ ln2
�2

�2
f

�	2

3

�
:

(44)

Similarly, the same regulator for soft real gluon emission
in the JADE algorithm gives

1

�0

�s
JADE ¼ �sCF

2	

�
2


2
þ 2



ln
�2

�2
f

� 1

2
ln2

j2Q2

�2
f

þ ln2
�2

�2
f

� 	2

6

�
: (45)

Note that with a cutoff, the 1=
2 and Sudakov double
logs ln2j and ln2yc are entirely contained within the soft
function, as opposed to pure dimensional regularization, in
which the collinear graphs also contain double logs. This is
in agreement with [25,26], where the Sudakov logs are
calculated entirely from the soft graphs.
The soft virtual vertex correction with a cutoff of �f in

jkþj and jk�j gives a modified vertex correction

�s
V ¼ �sCF

2	

�
� 2


2
� 2



ln
�2

�2
f

� ln2
�2

�2
f

þ 	2

6

�
(46)

giving the finite results

1

�0

ð�s
k? þ �s

VÞ ¼ ��sCF

2	

�
ln2

ycQ
2

�2
f

þ 	2

6

�
:

1

�0

ð�s
JADE þ �s

VÞ ¼ ��sCF

4	
ln2

j2Q2

�2
f

:

(47)

Note that the infrared divergences cancel between the
real and virtual graphs, and that there are no large logs in
the soft function for �f of order the relevant soft scale, jQ

or
ffiffiffiffiffi
yc

p
Q.

These results demonstrate the fact that factorization of
rates in SCET into soft and collinear components is
scheme-dependent. Such dependence on infrared regula-
tors was also noted in a different context in [11,28]. Using
the method introduced in [11] to test infrared safety at one-
loop, one would conclude that the soft contribution to the
k? rate is infrared divergent. This differs from our results,
because, as we have shown, the infrared safety of the soft
function is ultraviolet regulator dependent. Introducing a
cutoff removes the unphysical region of k� ! 0 and k� !
1 and results in an infrared safe soft contribution to the
two-jet k? rate.3 The bad behavior of k? in dimensional
regularization in SCET is therefore a feature of dimen-
sional regularization, not of SCET. The factorization for jet
rates depends on the ultraviolet regulator of the theory as
well as the infrared.

V. CONCLUSION

We have presented a consistent treatment of phase space
integrals over soft and collinear degrees of freedom in
SCET, illustrating this with the explicit example of the
NLO dijet rate for three different jet algorithms. In this

3Similarly, the NLO soft function for angularities, �a, for 1<
a< 2 integrated over �a between 0 and 1 can be shown to be
infrared finite if defined with an ultraviolet cutoff.

WILLIAM MAN-YIN CHEUNG, MICHAEL LUKE, AND SABA ZUBERI PHYSICAL REVIEW D 80, 114021 (2009)

114021-10



approach the phase space for different modes in the effec-
tive theory are insensitive to details above their cutoff,
giving real emission contributions with ultraviolet diver-
gences which cancel between the collinear and soft sectors.
Although the leading order SCET Lagrangian separates
soft and collinear modes and the differential cross section
has been shown to factorize, we demonstrated that using
dimensional regularization the k? algorithm does not fac-
torize into infrared safe soft and collinear rates. We showed
that this is related to a divergence in an unphysical region
which cancels between the soft and collinear sectors, and is
sensitive to the ultraviolet regulator.

Zero-bin subtraction is necessary to consistently inte-
grate over the phase space configurations that need to be
considered in a given jet algorithm. The zero-bin subtrac-
tion was shown to entirely remove regions of the naı̈ve
collinear rate where n and �n collinear degrees of freedom
form a jet at NLO in the JADE algorithm and for collinear
partons outside the cone in SW. The k? and SW dijet rates
provide nontrivial examples of zero-bin subtraction, which
are different from the soft contribution.

We have not attempted to sum logarithms of the small jet
parameters at this stage. While the running of C2 makes
summing some of the logarithms straightforward, the soft
physics in these theories is more complicated. For ex-
ample, the JADE algorithm is known not to exponentiate:
there are three-jet configurations which contribute at
Oð�2

s ln
4jÞ in which two gluons, which would naı̈vely be

unresolved from the quarks, are combined to form a third
jet [26]. Such configurations have no simple relation to the
one-gluon phase space and are not obtained by exponenti-
ating the one-loop result. From an effective field theory
viewpoint, these configurations also involve the scale j2Q,
which is parametrically smaller than the soft scale jQ. The
soft function for the SWalgorithm, in contrast, naı̈vely has
an anomalous dimension of order ln�, and so large loga-
rithms of � cannot be resummed in this formulation of the
low-energy theory.
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APPENDIX A: OFF SHELL CALCULATIONS

The SCET differential cross section for soft gluon emis-
sion and off shell quarks, p2

1, p
2
2 � 0, is

1

�0

d�s ¼ �sCF

2	

�2
e
�E

�ð1� 
Þ�ðk
þ
3 k

�
3 Þdkþ3 dk�3

� 2Q2ðkþ3 k�3 Þ�


ðQkþ3 þ p2
1ÞðQk�3 þ p2

2Þ
; (A1)

where p2
1 ¼ Qkþ1 , p

2
2 ¼ Qk�2 , and p

2
3 ¼ 0. The JADE two-

jet constraints become

M2
13

Q2
¼ Qkþ3 þ p2

1

Q2
< j;

M2
23

Q2
¼ Qk�3 þ p2

2

Q2
< j;

M2
12

Q2
¼ 1

(A2)

and integrating over the soft phase space gives

1

�0

�s
JADE ¼ �sCF

2	

�
1




�
4 lnj� 2 ln

p2
1

Q2
� 2 ln

p2
2

Q2

�

þ
�
ln
p2
1

Q2
þ ln

p2
2

Q2

�
2 � 2

�
ln
p2
1

Q2
þ ln

p2
2

Q2

�
ln
�2

Q2

�

þ � � � (A3)

where the ellipses denote finite constant terms.
Similarly, the SCET differential cross section for

n-collinear gluon emission with off shellness is

1

�0

d�n ¼ �sCF

2	

�2
e
�E

�ð1� 
Þdk
þ
3 dp

�
3 ðp�

3 k
þ
3 Þ�


�
�ð1� 
Þp�

3 k
þ
3

ðp2
1 þQkþ3 Þ2

þ 2ðQ� p�
3 Þ

p�
3 ðp2

1 þQkþ3 Þ
�

(A4)

and the corresponding JADE two-jet constraints are

M2
13

Q2
¼ Qkþ3 þ p2

1

QðQ� p�
3 Þ

< j;

M2
23

Q2
¼ Qp�

3 þ p2
2

Q2
< j;

M2
12

Q2
¼ QðQ� p�

3 Þ þ p2
1 þ p2

2

Q2
< j:

(A5)

Note that the off shellnesses inM2
23 andM

2
12 are suppressed

with respect to the label momenta and thus can be dropped.
Integrating Eq. (A4) over the phase space given by these
constraints, we find

1

�0

~�n
JADE ¼ �sCF

2	

�
� 2


2
þ 1




�
2 lnjþ 2 ln

p2
1

Q2
� 2 ln

�2

Q2

�

� ln2
p2
1

Q2
þ 2 ln

�2

Q2
ln
p2
1

Q2
þ 3

2
ln
p2
1

Q2

�
þ . . . :

(A6)

The p�
3 ! 0 zero-bin for the n-collinear differential

cross section is obtained from Eq. (A4) by taking the soft
limit:
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1

�0

d�n0 ¼ �sCF

2	

�2
e
�E

�ð1� 
Þdk
þ
3 dp

�
3 ðp�

3 k
þ
3 Þ�


� 2Q

p�
3 ðp2

1 þQkþ3 Þ
: (A7)

The JADE constraints for this zero-bin are the same as the
soft ones in Eq. (A2). Performing the phase space integra-
tion gives

1

�0

�n0
JADE ¼ �sCF

2	

�
� 2


2
� 2



ln

�2

j2Q2

�
þ . . . : (A8)

The zero-bin subtracted result, which is the difference
between Eq. (A6) and (A8), is not particularly illuminat-
ing. It should be noted, however, that this zero-bin sub-
traction gets rid of the 1=
2 term, which is also absent in
the contribution from soft gluon emission in Eq. (A3).
Thus the total contribution from real gluon emission is
free of such terms. The result for �n-collinear gluon emis-
sion will be the same as that for n-collinear gluon emission
with p2

1 ! p2
2. Combining the real emission contributions

to the JADE cross section gives

1

�0

�R
JADE ¼ 1

�0

ðð~�n
JADE � �n0

JADEÞ þ ð~� �n
JADE � � �n0

JADEÞ
þ �s

JADEÞ

¼ �sCF

2	

�
2 ln

p2
1

Q2
ln
p2
2

Q2
þ 3

2
ln
p2
1

Q2
þ 3

2
ln
p2
2

Q2

�

þ . . . : (A9)

Notice that this result is free of ultraviolet divergences, and
off shellness is regulating all of its infrared divergences.
The collinear and the soft sectors are individually ultravio-
let divergent, but these ultraviolet divergences arising from
the phase space cancel completely with one another in the
sum.

With off shellness, the virtual diagrams are no longer
zero, and they have been previously calculated with off
shellness, for example, in [19] for deep inelastic scattering
and in [20] for eþe� annihilation. The zero-bin subtrac-
tions of the collinear virtual graphs also vanish with this
regulator [18,23]. At the amplitude level, we sum up all the
virtual vertex corrections and subtract half the wave func-
tion renormalization for each external (anti-)quark

IV ¼ �sCF

4	

�
2


2
þ 3



� 2



ln
�Q2

�2
� 2 ln

p2
1

Q2
ln
p2
2

Q2

� 3

2
ln
p2
1

Q2
� 3

2
ln
p2
2

Q2

�
þ . . . : (A10)

The virtual graphs’ contribution to the two-jet rate is �V ¼
2ReðIVÞ. We can then see that the IR divergences from real
gluon emission in Eq. (A9) will be completely cancelled by
the virtual contributions, and the UV divergent terms in �V

will be cancelled by the counterterm jZ2j2.
We can also focus on the soft sector to investigate its IR

safety. The soft virtual vertex correction is given by [20]

IsV ¼ �sCF

4	

�
� 2


2
� 2



ln

�
��2Q2

p2
1p

2
2

�
� ln2

�
��2Q2

p2
1p

2
2

��

þ . . . : (A11)

The soft wave function renormalization graphs are zero, so
in the soft sector, the soft virtual vertex correction and the
soft gluon bremsstrahlung are the only two diagrams we
need to add

1

�0

ð�s
JADE þ �s

VÞ ¼
�sCF

2	

�
� 2


2
� 4



ln
�

jQ

�
þ . . . :

(A12)

This agrees with our pure dimensional regularization cal-
culation in Eq. (12). This also shows that the rate in the soft
sector is infrared finite. The collinear contribution is also
IR safe because the sum of all sectors is free of infrared
divergences.
k?: The k? phase space regions shown in Table I are not

affected by the introduction of the off shellnesses, with the
only exception that the constraint

min

�
kþ3
p�
3

;
kþ3 p�

3

ðQ� p�
3 Þ2

�
< yc (A13)

is slightly modified to

min

�
Q� p�

3

p�
3

;
p�
3

Q� p�
3

�
Q2kþ3 þ p�

3 p
2
1

Q2ðQ� p�
3 Þ

< yc: (A14)

The calculation is otherwise straightforward.
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