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We present a comprehensive phenomenological study of heavy flavor distributions and correlations in

longitudinally polarized proton-proton collisions at BNL-RHIC. All results are obtained with a flexible

parton-level Monte Carlo program at next-to-leading order accuracy and include the fragmentation into

heavy mesons, their subsequent semileptonic decays, and experimental cuts. Next-to-leading order QCD

corrections are found to be significant for both cross sections and double-spin asymmetries. The

sensitivity of heavy flavor measurements at BNL-RHIC to the gluon polarization of the nucleon is

assessed. Electron-muon and muon-muon correlations turn out to be the most promising observables.

Theoretical uncertainties are estimated by varying renormalization and factorization scales, heavy quark

masses, and fragmentation parameters.
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I. MOTIVATION AND INTRODUCTION

Recent results from longitudinally polarized lepton-
nucleon scattering experiments [1–4] and, in particular,
for single-inclusive pion and jet production in helicity-
dependent proton-proton (pp) collisions at the
Relativistic Heavy Ion Collider (RHIC) [5,6] have started
to put significant limits on the amount of gluon polarization
in the nucleon [7,8].

This is best quantified in a ‘‘global QCD analysis,’’
which treats all available experimental probes simulta-
neously and consistently at a given order in the strong
coupling �s in perturbative QCD (pQCD). It allows one
to extract the set of universal, spin-dependent parton dis-
tribution functions, defined as

�fðx;�Þ � fþðx;�Þ � f�ðx;�Þ; (1)

which yields the optimum theoretical description of the
combined data. In (1), fþ (f�) denotes the probability of
finding a parton of flavor f ¼ q, �q, g at a resolution scale�
with light-cone momentum fraction x and helicity þ (� )
in a proton with helicity þ.

Our current understanding of the spin structure of the
nucleon is derived from Eq. (1) by taking the first moments
of the densities �fðx;�Þ. These quantities enter the helic-
ity sum rule of the nucleon along with the contributions
from the orbital angular momenta of quarks and gluons [7].
Specifically, the total gluon polarization is given by

�gð�Þ �
Z 1

0
�gðx;�Þdx; (2)

and the challenge is to precisely map the gluon helicity
density �gðx;�Þ in a wide range of x in order to minimize
extrapolation uncertainties in the first moment �gð�Þ.
A first global QCD analysis of polarized parton densities

�fðx;�Þ at next-to-leading order (NLO) accuracy was
completed recently [8]. It was based on the world data on
polarized inclusive and semi-inclusive deep-inelastic scat-
tering, which are pivotal in constraining the quark and
antiquark densities [7], as well as on the latest RHIC pp
measurements [5,6] mentioned above. The conclusion is
that available results from all lepton-nucleon scattering
experiments and the RHIC spin program are in nice agree-
ment. This underpins the notion of factorization also for
spin-dependent hard scattering processes, which is the
foundation for most pQCD calculations and their predic-
tive power. The polarized gluon density �gðx;�Þ turns out
to be compatible with zero in the range of momentum
fractions, 0:05 & x & 0:2, accessible to experiments so
far. However, it is still impossible to give a reliable esti-
mate for the total gluon polarization �gð�Þ [8]. A signifi-
cant contribution to the integral in Eq. (2) can still come
from the unexplored small x region. Hence, the fundamen-
tal question of what constitutes the proton spin still remains
largely unanswered, despite the fact that impressive
progress, both theoretically and experimentally, was
made in the past two decades. Back then, it was discovered
that only an unexpectedly small fraction, about a quarter,
of the proton’s spin can be attributed to the intrinsic spin of
quarks and antiquarks [7].
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Narrowing down the uncertainties on �gðx;�Þ and, at
the same time, extending the range in x continues to be the
main objective of experimental efforts in the years to come,
utilizing both longitudinally polarized lepton-nucleon and
proton-proton scattering. With higher luminosities becom-
ing available at RHIC, less inclusive final states like jet-jet
correlations will be instrumental in achieving this goal as
they give a much better handle on the x range probed in
experiment [9]. Also, rare probes like prompt photons and
heavy quarks come into focus. Both will not be able to
compete with single-inclusive pion or jet measurements
with respect to statistical precision, but they follow rather
different underlying QCD hard scattering dynamics.
Therefore, such measurements are crucial for further test-
ing and establishing the universality of helicity-dependent
parton densities and hence for our understanding of the
spin structure of the nucleon and QCD in general.

In this paper, we present a comprehensive phenomeno-
logical analysis of open heavy flavor production in longi-
tudinally polarized pp collisions at RHIC. Until vertex
detector upgrades are in place, RHIC experiments will
identify heavy quarks through their semileptonic decay
electron or muon spectra, which receive contributions
from both charm and bottom hadron decays, or by direct
reconstructions of hadronic D meson decays. Since heavy
flavors are a versatile probe of high-density medium effects
in nucleus-nucleus collisions, such as modifications of the
transverse momentum spectra [10], various reference data
have been taken at RHIC in unpolarized pp collisions
[11,12]. Similar measurements are intended with longitu-
dinally polarized protons [13].

To reduce the uncertainties from deconvoluting experi-
mental results for decay lepton spectra back to the heavy
quark level, all theoretical calculations should be done as
close as possible to the observational level. This was
achieved, e.g., in a recent phenomenological study of un-
polarized charm and bottom production at RHIC [14]. For
the simplest example of a single-inclusive electron spec-
trum from semileptonic decays of a heavy meson HQ, the

corresponding invariant cross section takes schematically
the following form:

Ee

d3ð�Þ�e

dp3
e

¼ EQ

d3ð�Þ�Q

dp3
Q

�DQ!HQ � fHQ!e; (3)

where the symbol � denotes a convolution. The cross
section dð�Þ�Q for the production of a heavy quark Q
with mass mQ, energy EQ, and momentum pQ in (polar-

ized) pp collisions can be evaluated within pQCD. NLO
QCD corrections, which are essential for any meaningful,
quantitative analysis, are known, both in the unpolarized
[15,16] and polarized [17] case, for quite some time. We
note that the longitudinally polarized hadronic cross sec-
tion is defined as the combination

d��Q � 1
2½d�Q

þþ � d�Q
þ��; (4)

where the subscripts � label the helicity states of the
colliding hadrons. The result for dð�Þ�Q depends on the
choice of nonperturbative (helicity-dependent) parton den-
sities, the value of mQ, and on the unphysical factorization

(�f) and renormalization (�r) scales. The sensitivity of the

cross section to variations of �f;r can be taken as a rough

estimate of the theoretical uncertainty due to the truncation
of the perturbative series at a certain order. Likewise,
variations of mQ contribute to the theoretical ambiguities

as well. We will assess all these sources of uncertainties in
our detailed numerical studies.
The other two ingredients to Eq. (3), are the fragmenta-

tion DQ!HQ of the heavy quark Q into a heavy meson HQ

and the semileptonic decay fHQ!e of HQ into the experi-

mentally observed electrons e. SincemQ cuts off final-state

collinear singularities associated with the heavy quark, its
hadronization DQ!HQ is fundamentally different from
those for light quarks and gluons. In the latter case,
scale-dependent parton-to-hadron fragmentation functions
[18] have to be introduced by virtue of the factorization
theorem. The nonperturbative transition Q ! HQ is de-

scribed by various phenomenological models for a scale
independent function DQ!HQ , whose parameters are deter-
mined from fits to eþe� data [19]. For our phenomeno-
logical studies, we use the functional form proposed in
Ref. [20], with its single parameter taken in the range given
in [19]. In addition, a fixed order pQCD calculation of
dð�Þ�Q in Eq. (3) can be supplemented by all-order re-
summations of quasicollinear logarithms of the form

�n
s log

nðpQ
T =mQÞ [21], which can be large if the transverse

momentum pQ
T of the produced heavy quark is much larger

than its mass. For the time being, we do not pursue similar
resummations for the polarized hadroproduction of heavy

quarks since pQ
T ’ mQ for all phenomenologically relevant

applications at RHIC.We adopt the parameterization of the
semileptonic decay spectrum fHQ!e obtained in Ref. [14]
from a fit to BABAR and CLEO data [22] and used in
unpolarized analyses of heavy quark production at RHIC
[14].
The expression in Eq. (3) can be easily generalized to the

important case of heavy quark or decay lepton correlations.
As will be demonstrated in some detail below, such mea-
surements appear to be more promising for accessing the
gluon polarization at RHIC than single-inclusive decay
electron or muon spectra. To make theoretical calculations
for such observables feasible at NLO accuracy, we develop
a flexible parton-level Monte Carlo program to perform all
phase-space integrations numerically. For the subtraction
of soft and collinear divergences present at intermediate
stages, we follow closely the methods devised in Ref. [23]
for the computation of heavy flavor correlations in unpo-
larized hadron-hadron collisions.
Our Monte Carlo code is capable of computing any

infrared safe heavy flavor cross section atOð�3
sÞ, including

correlations of the Q �Q pair and control of the accompany-
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ing jet, with the same kinematic cuts as used in experiment.
The hadronization of the Q �Q pair into heavy mesons and
their subsequent semileptonic decays are modeled as out-
lined above. Our results complement and significantly
extend previous spin-dependent NLO calculations of
single-inclusive heavy (anti)quark yields and of the heavy
quark charge asymmetry based on largely analytical meth-
ods [17,24], where any information on the partonic recoil
system was lost. The required spin-dependent matrix ele-
ments squared at Oð�3

sÞ for producing a Q �Q pair plus a
light parton,

gg ! Q �Qg; q �q ! Q �Qg; gqð �qÞ ! Q �Qqð �qÞ;
(5)

as well as the virtual corrections to the Oð�2
sÞ Born cross

sections,

gg ! Q �Q; q �q ! Q �Q; (6)

can be taken from Ref. [17]. Expressions obtained in d ¼
4� 2" dimensional regularization are required only in the
singular regions of phase space, and " can be set to zero
otherwise.

After appropriate modifications, the results obtained in
this work can be used also as the ‘‘resolved’’ photon
contribution to the spin-dependent photoproduction of
heavy quarks at NLO. A similar parton-level
Monte Carlo program including both direct and resolved
photon processes will be presented in a forthcoming pub-
lication [25]. It will allow one to include existing data on
spin-dependent charm photoproduction [4] into future
global QCD analyses of polarized parton densities. NLO
expressions for the pointlike, ‘‘direct’’ photon part of the
cross section can be adapted from [26]; see also [27].

The outline of the paper is as follows: in Sec. II, we
briefly review some of the technical aspects of setting up a
parton-level Monte Carlo program for heavy flavor pro-
duction in polarized hadron-hadron collisions at NLO
accuracy. Some additional technical details can be found
in the Appendix. In Sec. III, we present a detailed phe-
nomenological study of heavy flavor production in polar-
ized pp collisions at RHIC, focussing on experimentally
relevant decay lepton, electron or muon, distributions and
correlations within the kinematic acceptance of the
PHENIX and STAR experiments at RHIC. We assess
theoretical uncertainties due to variations of �f and �r,

the heavy quark mass mQ, and parameters related to mod-

eling the fragmentation process. Finally, we give predic-
tions for double-spin asymmetries and discuss their
potential in further constraining helicity-dependent parton
densities, in particular, �gðx;�Þ. We summarize our re-
sults in Sec. IV.

II. TECHNICAL FRAMEWORK

We consider heavy quark hadroproduction in longitudi-
nally polarized pp collisions at Oð�3

sÞ in QCD. All phase-
space integrations are performed numerically with
Monte Carlo techniques. This enables us to compute any
observable involving heavy quarks within experimental
acceptance cuts, including single-inclusive distributions,
correlations among the heavy quark-antiquark pair, and,
although not pursued in this work, with the associated hard
jet present for the first time at Oð�3

sÞ. This significantly
extends available calculations [17,24] based on largely
analytical integrations over the variables characterizing
the partons recoiling from the observed single-inclusive
heavy quark or antiquark.
In the integration of the fully exclusive partonic cross

sections for the processes in Eqs. (5) and (6) at Oð�3
sÞ, one

has to deal with ultraviolet, infrared, and collinear diver-
gences, which have to be eliminated before any numerical
approach can be used. To this end, we follow closely the
subtraction method devised and used in Ref. [23] to com-
pute the unpolarized production of a Q �Q pair. The sub-
traction method is based on adding and subtracting counter
terms which approximate the real emission processes in (5)
in the singular regions of phase space and are integrable
with respect to the momentum of an unresolved parton. In
this section, we briefly review the technical aspects rele-
vant to extend and apply the subtraction method of [23] to
heavy quark hadroproduction in longitudinally polarized
pp collisions and discuss the numerical implementation.
For further details, we refer the reader to Ref. [23]. We note
that a general formulation of the dipole subtraction method
for NLO calculations with massive partons in QCD and
supersymmetric QCD has been developed in [28].
Assuming, as usual, factorization, the cross section (4)

for producing a heavy Q �Q pair in longitudinally polarized
pp collisions at a center-of-mass system (c.m.s.) energyffiffiffi
S

p
can be written as a convolution,

d��Q ¼ X
a;b

Z
dx1dx2�faðx1; �fÞ�fbðx2; �fÞS

� d��̂abðx1; x2; S; mQ; k1; k2; �f;�rÞ; (7)

where the �fa;bðxa;b; �fÞ denote the spin-dependent par-

ton distribution functions of flavor a, b at momentum
fraction xa;b and scale�f, as defined in Eq. (1). The sum in

(7) is over all contributing partonic processes ab ! Q �Qc
to Oð�3

sÞ with d��̂ab the associated polarized hard scat-
tering cross sections. They are defined in complete analogy
to Eq. (4) and can be computed perturbatively as a series in
the strong coupling �s. Parton c is either a gluon or a light
(anti)quark producing the associated jet possible at Oð�3

sÞ.
k1;2 denote the momenta of the heavy quark Q and anti-

quark �Q with mass mQ, i.e., k
2
1;2 ¼ m2

Q.

The required spin-dependent matrix elements squared at
Oð�3

sÞ in d ¼ 4� 2" dimensional regularization for the
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processes in (5) and (6) can be taken from Ref. [17].
Starting from the NLO level, the subprocess cross sections
d��̂ab in (7) depend explicitly on the renormalization and
factorization scale �r and �f, arising from the subtraction

of ultraviolet and collinear singularities, respectively.
Infrared (soft gluon) divergences cancel among real emis-
sion and virtual loop corrections.

In Eq. (7), S is the ‘‘measurement function’’ used to
define the observable one is interested in. One can think of
S as being a set of step functions implementing the experi-
mental cuts imposed on the final-state particles and select-
ing a certain bin in a histogram. As mentioned in the
Introduction, charm and bottom quarks are currently de-
tected only indirectly at RHIC, mainly through the semi-
leptonic decays of the produced heavy D and B mesons.
Thus, the cross section (7) at the heavy quark level is not
yet sufficient for comparing theory with experimental re-
sults. As indicated in Eq. (3), one needs to convolute the
parton-level results for d��Q with additional phenomeno-
logical functions DQ!HQ and fHQ!e describing the hadro-
nization into a heavy meson HQ and the semileptonic

decay of HQ into the observed lepton, respectively. Our

flexible parton-level Monte Carlo program not only per-
forms the phase-space integrations for arbitrary S for any
infrared safe observable but can also account for the semi-
leptonic decays of the heavy quark pair into electrons and
muons. We specify our choice for DQ!HQ and fHQ!e in
Sec. III A.

For the implementation of Eq. (7) in a numerically
efficient integration it is convenient to express the three-
body phase space and the matrix elements squared for the
2 ! 3 processes listed in (5) in terms of variables in which
soft and collinear singularities can be identified easily.
Instead of choosing the usual set of five independent scalar
products (or Mandelstam variables) of the parton momenta
in ab ! Q �Qc, this is achieved by introducing x, y, �1, �2,
and s¼x1x2S [23]. They are defined as follows: x ¼ ðk1 þ
k2Þ2=s, the invariant mass of the Q �Q pair scaled by the
available partonic c.m.s. energy squared, i.e., ��4m2

Q=

s�x�1, and y is the cosine of the angle between the z
direction, aligned with the spatial direction of parton a, and
~k3, the momentum of parton c, in the c.m.s. of the incom-
ing partons, i.e., �1�y�1. Soft and collinear regions of
phase space are associated with x¼1 and y ¼ �1, respec-
tively. Both �1 and �2 do not matter for this discussion.
They range between 0 and � and are used to parameterize
the spatial orientation of k1;2 with respect to the plane span
by the other three momenta in the c.m.s. of theQ �Q pair, see
[23] for an explicit parameterization of the momenta.

The d-dimensional three-body phase space expressed in
terms of the variables x, y, �1, �2, and s reads

dPS3 ¼ 1

�ð1�2"Þ2
�9þ6"��4þ2"s1�2"�1�2"

x x�"ð1�xÞ1�2"

�dx ð1�y2Þ�"dy sin1�2"�1d�1sin
�2"�2d�2; (8)

which agrees with the result in [23] and where we have

introduced �x ¼ ½1� 4m2
Q=ðsxÞ�1=2. �ðzÞ represents the

Gamma function.
The contribution of the 2 ! 3 real emission processes in

(5) is then given by

d��̂ab ¼ �jMabj2dPS3; (9)

where the spin-dependent amplitude squared, �jMabj2,
includes the partonic flux factor 1=ð2sÞ and is summed
over final-state color and spin degrees of freedom and
averaged over the color of the interacting partons a, b
[17]. Soft (x ¼ 1) and collinear (y ¼ �1) singularities in
�jMabj2 appear as

�jMabj2 ¼
�fabðs; mQ; x; y; �1�2Þ
s2ð1� xÞ2ð1� y2Þ ; (10)

where �fab is regular for x ¼ 1 and y ¼ �1. The qg
process in (5) can have only collinear singularities at
NLO. Because of the finite mass mQ, there can be no

collinear gluon radiation from a heavy quark (‘‘dead
cone’’).
Upon inserting (8) and (10) into (9), one can proceed by

expanding the resulting ð1� xÞ�1�2" and ð1� y2Þ�1�" for
small " as shown in Ref. [23],

ð1� xÞ�1�2" ¼ �
~��4"

2"
�ð1� xÞ þ

�
1

1� x

�
~�

� 2"

�
logð1� xÞ
1� x

�
~�
þOð"2Þ;

ð1� y2Þ�1�" ¼ �½�ð1þ yÞ þ �ð1� yÞ� ð2!Þ�"

2"

þ 1

2

��
1

1� y

�
!
þ

�
1

1þ y

�
!

�
þOð"Þ;

(11)

where ~� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~�

p
. Explicit expressions for the distribu-

tions ½1=ð1� xÞ�~�; . . . in (11) are collected in Eq. (A10) of
the Appendix. The choice of the parameters ~� and ! is to
some extent arbitrary and will be discussed at the end of
this section. Using Eq. (11), the subprocess cross sections
for ab ! Q �Qc at Oð�3

sÞ can be decomposed as

d��̂ab ¼ d��̂ðbÞ
ab þ d��̂ðcþÞ

ab þ d��̂ðc�Þ
ab þ d��̂ðsÞ

ab

þ d��̂ðvÞ
ab þ d��̂ðfÞ

ab : (12)

Here, d��̂ðbÞ
ab and d��̂ðvÞ

ab denote the Oð�2
sÞ Born contri-

bution and theOð�3
sÞ one-loop corrections to the gg and q �q

scattering processes in (6), respectively. Analytic expres-
sions for the virtual contributions in d dimensions, with
ultraviolet divergences being subtracted at a renormaliza-
tion scale �r, have been obtained in Ref. [17].

In Eq. (12), d��̂ðsÞ
ab is the soft component of the gg or q �q

scattering cross section, which can be either evaluated by
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explicitly taking the soft gluon limit of the full
d-dimensional matrix elements squared computed in
Ref. [17] or constructed using general properties of soft
gluon emission in QCD, see, e.g., [23]. In the limit x ! 1,
the kinematics simplifies, and phase-space integrations can
be performed analytically. The relevant integrals are the
same as for unpolarized heavy flavor hadroproduction and
can be found, e.g., in Appendix A of Ref. [23]. One obtains

d��̂ðsÞ
ab ¼ � �ð1� "Þ

�ð1� 2"Þ
� ð4�Þ"�3s�1�" ~��4" 1

"
�fðsÞabðs;mQ; �1ÞdPS2:

(13)

Explicit expressions for d��̂ðsÞ
ab and, for completeness, the

standard two-body phase-space factor dPS2 in d dimen-
sions are given in the Appendix.

All 2 ! 3 processes in (5) exhibit singularities related to
collinear splittings off the incoming partons. Again, for
such configurations the kinematics collapses to the simpler
case of 2 ! 2 scattering, and these contributions, summa-

rized by d��̂ðc�Þ
ab in Eq. (12), can be evaluated analytically.

As for the soft contribution, one can either start by taking
the collinear (y ! �1) limit of the full, d-dimensional 2 !
3 matrix elements taken from Ref. [17] or by deriving the
expressions from scratch. After combining the relevant
matrix elements with dPS3 in Eq. (8), taking the limit y !
�1, and integrating over �2 one obtains

d��̂ðc�Þ
ab ¼ �ð4�Þ"�2�½1þ "�

�
2

!

�
"

� s�1�"

4"
dPSx2

��
1

1� x

�
~�

� 2"

�
logð1� xÞ
1� x

�
~�

�
�fðc�Þ

ab ðs; mQ; x; �1Þ;
(14)

where dPSx2 ¼ dPS2js!xsdx. The superscript� in d��̂ðc�Þ
ab

distinguishes the two configurations with y ¼ þ1 and y ¼
�1, where parton c is emitted collinearly to the momentum

of parton a and b, respectively. The relevant �fðc�Þ
ab are

again collected in the Appendix.

The last term in Eq. (12), d��̂ðfÞ
ab , contains all the finite

contributions after using the expansions (11) for ð1�
xÞ�1�2" and ð1� y2Þ�1�", and the phase-space integration
can be performed numerically in four dimensions, i.e., with
" ! 0. One obtains

d��̂ðfÞ
ab ¼ 1

210�4s

�
1

1� x

�
~�

��
1

1� y

�
!
þ

�
1

1þ y

�
!

�

� �x sin�1d�1d�2dxdy�fabðs;mQ; x; y; �1; �2Þ:
(15)

As can be seen, all soft and collinear singularities are
regulated by the ~� and ! prescriptions defined in (A10).
The resulting 1=" divergence in (14) assumes the form

dictated by the factorization theorem, i.e., a convolution of
d-dimensional helicity-dependent LO splitting functions
�PijðxÞ and Born matrix elements �jMabj2. Because of

the collinear splitting, the latter have to be evaluated at a
‘‘shifted kinematics’’ where parton a (or b) carries only a
fraction x of its original momentum, i.e., s ! xs and
dPS2 ! dPSx2; see Eqs. (A18)–(A23) in the Appendix,
where, for convenience, also the Born cross sections and
the LO �PijðxÞ are listed. Collinear singularities are fac-

torized into the bare parton distribution functions at a scale
�f by adding an appropriate ‘‘counter cross section’’ to

(14) which to Oð�3
sÞ schematically reads

d��̂~c
abð�fÞ ¼ � �s

2�

X
i

Z dx

x
½�P iaðx;�fÞd��̂ðbÞ

ib ðxsÞ

þ�P ibðx; �fÞd��̂ðbÞ
ai ðxsÞ�; (16)

where

P ijðx;�fÞ ¼ �PijðxÞ
�
� 1

"
þ 	E � ln4�þ ln

�2
f

�2

�

þ�gijðxÞ: (17)

The sum in (16) is over all possible collinear configurations
involving one of the initial-state partons a, b. The argu-

ment xs of the Born cross sections d��̂ðbÞ
ai in (16) indicates

that they have to be evaluated at the shifted kinematics as
discussed above. In Eqs. (16) and (17), the Euler constant
	E and ln4�, both, like the scale �, artifacts of dimen-
sional regularization, are subtracted along with the 1="
singularity. The factorization scheme is fully determined
by the choice of �gij, for which we take �gqq ¼
�4CFð1� xÞ with CF ¼ 4=3 and �gij ¼ 0 otherwise.

This guarantees helicity conservation when the ’t Hooft-
Veltman-Breitenlohner-Maison prescription for 	5 in d
dimensions is adopted to project onto definite helicity

states [29] and defines the MS scheme in the polarized
case [30], which we use throughout our calculations. As a
consequence of factorization, both the hard scattering cross
sections and the parton distribution functions in Eq. (7)
depend on the scale �f which is arbitrary. �f can be

chosen differently than the renormalization scale �r at
which ultraviolet singularities are absorbed into the bare
coupling and heavy quark mass.

Note that d��̂ðsÞ
ab given in Eq. (13) receives an additional

singular contribution from the soft gluon parts of the
diagonal splitting functions �PqqðxÞ and �PggðxÞ in the

factorization procedure, which is proportional to �ð1� xÞ.
Only then, all remaining singularities cancel in the sum of

d��̂ðsÞ
ab and d��̂ðvÞ

ab , and the full expression for the sub-
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process cross section d��̂ab in Eq. (12) is finite in the limit
" ! 0.

The numerical evaluation of (7) for different measure-
ment functions S can now be done in parallel with standard
Monte Carlo techniques by randomly generating a large
sample of final-state configurations characterized by x1, x2,
x, y, �1, and �2. The ~� and ! distributions regulating the

singularities in d��̂ðfÞ and the sum of d��̂ðc�Þ and d��̂~c

in Eqs. (15), (14), and (16), respectively, need special
attention. To this end, one inserts the definitions of distri-
butions, given in Eq. (A10) of the Appendix, into Eqs. (14)
–(16) and computes for each phase-space point a set of six
correlated weights to account for all possible configura-
tions with x ¼ 1 and y ¼ �1. The values of the measure-
ment functions S one is interested in are then multiplied by
the appropriate weights and accumulated in different histo-
grams. In principle, the choice for the parameters ~� 2
½�; 1½ and w 2�0; 2½ in (A10) does not matter as it only
leads to different values for each of the individual, unphys-
ical contributions at Oð�3

sÞ on the right-hand side of
Eq. (12) but not for their sum. Large cancellations among
the different terms in (12) can take place, however, if ~� is
chosen too close to 1 or ! too close to 0 [23].

To validate the numerical implementation of (7), we
compare the results obtained with the Monte Carlo tech-
niques outlined above to those of the largely analytical
code developed and used in Refs. [17,24]. Since the ana-
lytical calculation is only applicable for single-inclusive
heavy quark (or antiquark) hadroproduction, the compari-
son is done for charm production in longitudinally polar-

ized pp collisions at a c.m.s. energy of
ffiffiffi
S

p ¼ 200 GeV,
without any experimental acceptance cuts. Figure 1 shows
the difference of the numerical results obtained with both

codes, labeled as d��MC and d��an, as a function of the
transverse momentum pc

T of the charm quark, normalized
to the analytical calculation d��an. As can be seen, devia-
tions are at a level of a few percent at most, well within the
precision of the Monte Carlo integration for the relatively
small sample of phase-space points used in Fig. 1.
Needless to say that all discussions in this section also

apply in the unpolarized case, and the corresponding ex-
pressions are obtained by appropriately replacing all
helicity-dependent terms by their spin-averaged counter-
parts. We fully agree with the results given in [23].

III. PHENOMENOLOGICAL STUDIES

A. Preliminaries

Having laid out the technical framework in the previous
section, we now turn to a detailed phenomenological study
of heavy flavor hadroproduction in longitudinally polar-
ized pp collisions and their semileptonic decays at RHIC.
For comparison and to compute experimentally relevant
double-spin asymmetries, defined as

ALL � d��

d�
; (18)

we also present results for the corresponding unpolarized
quantities. We study the impact of the NLO QCD correc-
tions on the polarized and unpolarized cross sections and
quantify the theoretical uncertainties from different
choices for unphysical factorization and renormalization
scales, heavy quark masses, and parameters describing the
hadronization of the heavy quarks.
We concentrate on observables of immediate relevance

for the RHIC spin program with collisions of longitudi-

nally polarized protons at a c.m.s. energy of
ffiffiffi
S

p ¼
200 GeV. These are single-inclusive transverse momen-
tum distributions of electrons and muons from semilep-
tonic decays of charm and bottom quarks, and, in
particular, invariant mass spectra for two leptons observed
in coincidence. Such measurements have been already
carried out in spin-averaged pp collisions at RHIC
[11,12] and are intended with longitudinally polarized
beams once sufficient statistics has been accumulated [13].
We note that the leptons can stem from both charm and

bottom quark decays which cannot be separated experi-
mentally until displaced vertex detector upgrades have
been installed. Therefore, our results always refer to the
sum of charm and bottom production, their hadronization
into D and B mesons, including c ! D, b ! B, and ‘‘cas-
cade’’ b ! B ! D contributions, and the subsequent
semileptonic decays of the heavy mesons into the observed
leptons. We assume that electrons and muons are detected
at central and forward rapidities, j
ej � 0:35 and 1:2 �
j
�j � 2:2, respectively, which corresponds to the accep-

tance of the PHENIX experiment [11,13].

[d∆σan - d∆σMC] / d∆σan

pT [GeV]c

-0.05

0

0.05

0 1 2 3 4 5 6

FIG. 1. Comparison of the results of our Monte Carlo code,
d��MC, with the analytical calculation d��an of Refs. [17,24]
for single-inclusive charm production as a function of transverse
momentum pc

T and integrated over all rapidities.
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The fragmentation of the heavy quarks into D and B
mesons, i.e., Dc!D and Db!B, is modeled by phenomeno-
logical functions extracted from fits to eþe� data [19]. D
and B indicate a generic admixture of charm and bottom
mesons. Contrary to fragmentation functions for light
quarks and gluons into light mesons [18], the nonperturba-
tive functions describing the hadronization of heavy quarks
are very hard, i.e., charm and bottom quarks only lose very
little momentum when hadronizing. The main effect of the
fragmentation functions is to introduce a shift in the nor-
malization of the heavy meson spectra. It depends mainly
on the average momentum fraction z taken by the meson,
while the details of the shape of DQ!HQðzÞ have a negli-
gible effect [19]. One can expect that ratios of cross
sections, like in the experimentally most relevant double-
spin asymmetry (18), are much less affected by the actual
choice of DQ!HQðzÞ. We use the functional form of
Kartvelishvili-Likhoded-Petrov [20] with a single parame-
ter �Q controlling the hardness of

DQ!HQðzÞ ¼ NQz
�Qð1� zÞ; (19)

where NQ ¼ ð�Q þ 1Þð�Q þ 2Þ to normalize the integral

of DQ!HQðzÞ to one. We take �c ¼ 5 and �b ¼ 15 from
Table 4 in Ref. [19] as the default values in Eq. (19) and
vary them in the range 3 � �c � 7 and 10 � �b � 20,
respectively, to estimate the uncertainties associated with
the choice of �Q. As in Ref. [14], the fragmentation is

numerically performed by rescaling the heavy quark’s
three-momentum by z at a constant angle in the laboratory
frame, i.e., ~pHQ

¼ z ~pQ. The uncertainty introduced by this

particular choice for the ‘‘scaling variable’’ z, which is not
uniquely defined for DQ!HQ , was shown to be not larger
than scale and mass uncertainties [31] and will be not
considered further.

The subsequent semileptonic decay of the D and B
mesons into leptons is controlled by another set of phe-
nomenological functions fHQ!e;�, which need to be ex-
tracted from data as well. Here, we use the spectra obtained
in Refs. [14,32] based on BABAR and CLEO data [22]. We
note that we do not normalize our cross sections with the
appropriate branching ratios forD ! e, B ! e, etc., which
are all close to 10% [33]. Of course, branching ratios drop
out of experimentally relevant double-spin asymmetries
(18).

The main motivation to study heavy flavor production
with polarized beams at RHIC is the expected sensitivity to
the helicity-dependent gluon density through the tree-level
gluon-gluon fusion process, gg ! Q �Q, which is known to
be dominant for unpolarized collisions up to the largest
values of the heavy quark’s transverse momentum cur-
rently accessible at RHIC [15,16].

We will show, however, that the fractional contribution
of gluon-gluon fusion to the spin-dependent cross section
depends crucially on the assumed set of polarized parton
densities. Our default choice is the de Florian-Sassot-

Stratmann-Vogelsang (DSSV) set [8], obtained in a global
QCD analysis of the latest spin-dependent data, including
those from RHIC on single-inclusive pion and jet produc-
tion [5,6]. Because of the smallness of �gðxÞ in the DSSV
set and a node in the x shape near x ’ 0:1 [8], the q �q
annihilation subprocess, q �q ! Q �Q, turns out to be the
dominant mechanism for charm and bottom production
in polarized pp collisions at RHIC. This is in sharp con-
trast to naive expectations based on unpolarized results.
For comparison and to study the sensitivity to �gðxÞ, we
adopt also two alternative sets of spin-dependent parton
densities, Glück-Reya-Stratmann-Vogelsang (GRSV)[std]
[34] and de Florian-Navarro-Sassot (DNS)[KRE] [35],
both characterized by a positive gluon polarization of
moderate size. In general, for gluon polarizations from
current QCD fits [8,34,35], the double-spin asymmetries
for leptons from heavy flavor decays all turn out to be
small, often well below the 1% level, making their mea-
surement very challenging. This is, in particular, true for
single-inclusive lepton observables; see below.
Heavy flavor production at RHIC cannot compete with

the statistical precision achievable for more abundant
probes of the nucleon’s spin structure, like pions and jets
[5,6], which are already used in global fits [8].
Nevertheless, measurements of double-spin asymmetries
related to heavy flavor production will be crucial for fur-
ther testing and establishing the all important concept of
factorization and universality for helicity-dependent scat-
tering processes and parton densities, respectively. The
underlying dynamics of the partonic scattering processes,
i.e., gg ! Q �Q and q �q ! Q �Q, is very much different as
compared to the multitude of QCD processes driving the
production of light hadrons [36] or jets [37].
In the computation of the NLO unpolarized cross sec-

tions in (18), which proceeds along similar lines as out-
lined in Sec. II, for details, see Ref. [23], we use the NLO
CTEQ6M parton densities [38] and values for the strong
coupling �s. Since the DSSVanalysis [8] does not provide
a LO set of spin-dependent parton distributions, our LO
results always refer to the Born part of the full NLO
calculation, i.e., they are computed with NLO parton den-
sities and values for �s. Strictly speaking this is, of course,
inconsistent as it introduces some unwanted scheme de-
pendence into a tree-level quantity. Nevertheless, the LO
results should give a faithful estimate of the relevance of
NLO corrections. As will be demonstrated below, they turn
out to be sizable and rather different for unpolarized and
polarized cross sections such that they do not cancel in
experimentally relevant double-spin asymmetries.
We take mc ¼ 1:35 GeV and mb ¼ 4:75 GeV as refer-

ence values for the charm and bottom quark mass and vary
them in the range 1:2 � mc � 1:5 GeV and 4:5 � mb �
5:0 GeV, respectively, to estimate the resulting mass un-
certainties. For the factorization and renormalization scale

we take �f ¼ �r ¼ �ðm2
Q þ ½ðpQ

T Þ2 þ ðp �Q
T Þ2�=2Þ1=2 with
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� ¼ 1 as the central value. As usual, the sensitivity of the
cross section to missing higher order corrections is esti-
mated by varying �f and �r simultaneously in the range

1=2 � � � 2. Following the procedure used for unpolar-
ized charm and bottom production at RHIC in Ref. [14],
we also vary�f and�r independently in the same range of

� and combine the ensuing uncertainty with the one stem-
ming from variations of mc;b in quadrature. Unless stated

otherwise, we use the central values for �f, �r, mc;b, and

�c;b given above.

B. Heavy flavor cross sections and correlations

We begin our detailed numerical studies with a discus-
sion of unpolarized and polarized cross sections for various
decay lepton distributions accessible at RHIC.

Figure 2 shows the single-inclusive transverse momen-
tum spectrum of electrons from charm and bottom decays
in LO and NLO accuracy, integrated over the angular
acceptance of the PHENIX detector, i.e., j
ej � 0:35
[11]. Similar results are obtained for the STAR experiment
[12] with its larger acceptance for electrons at central
rapidities, j
ej< 1, and hence not shown. The transverse
momentum pe

T is limited to a region which should be
accessible with luminosities envisaged in longitudinally
polarized pp collisions at RHIC. Photon conversion, 	 !
eþe�, and �0 ! 	eþe� Dalitz decays are the dominant
source of electron background for such measurements and
may require an additional cut pe

T > 1GeV [11,12]. Recall
that the branching ratios of about 10% are not included in
the cross sections shown in Fig. 2.

The solid lines are obtained with the default values of
the heavy quark masses, scales, parameters, and parton
densities stated in the previous subsection. The shaded
bands indicate the theoretical uncertainty from varying
the factorization and renormalization scale simultaneously
in the range 1=2 � � � 2 specified above. Note that the
LO results are rescaled by a factor of 0.1, and all polarized
cross sections are multiplied by �1 to display them on a
logarithmic scale. The bottom panel of Fig. 2 gives the
resulting unpolarized and polarized ‘‘K factors,’’ defined as
usual by the ratio

K � dð�Þ�NLO

dð�Þ�LO
: (20)

One notices that the NLO corrections are sizable in the
unpolarized case, K ’ 3, but moderate for polarized pp
collisions, except for the region pe

T * 5 GeV. Here, the
polarized cross section approaches a node, and perturbative
corrections are artificially enhanced.

Less pronounced NLO corrections for polarized cross
sections are a rather generic feature and have been ob-
served already for other hadronic processes such as single-
inclusive pion [36] and jet [37] production. To some extent
this behavior can be traced back to the less singular scale
evolution of polarized parton densities at small momentum

fractions x [30]. This has the effect that the partonic
threshold region, which is the source of large logarithmic
corrections associated with the emission of soft gluons, is
less emphasized in the convolution (7) than in the unpo-
larized case. Specifically, for heavy flavor production, it
was noticed in [17] that large NLO corrections to the
gluon-gluon fusion process related to amplitudes with a
gluon exchange in the t channel are independent of the
helicities of the interacting gluons and hence do not con-
tribute to the polarized cross section. Substantially differ-
ent K factors for unpolarized and polarized cross sections
immediately imply that Born level estimates for double-
spin asymmetries (18) can serve only as very rough esti-
mates. In general, they are insufficient for any quantitative
analysis such as a global QCD extraction of spin-
dependent parton densities.
As can be inferred from Fig. 2, theoretical ambiguities

due to the choice of �r and �f in (7) are reduced in the

polarized but not in the unpolarized case. Along with the
observation of large QCD corrections, this indicates the
need for next-to-next-to-leading order corrections for the
unpolarized cross section to better control the dependence
on�f and�r. We note that substantial progress toward this

direction has already been made recently [39], mainly to
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|ηe| < 0.35

dσ/dpTdσ/dpe [µb/GeV]

- d∆σ/dpT- d∆σ/dpe [µb/GeV]

|ηe| < 0.35

LO × 0.1 NLO

d∆σ (NLO) / d∆σ (LO)

dσ (NLO) / dσ (LO)
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0

2

4

0 2 4 6

FIG. 2 (color online). Scale dependence of the single-inclusive
transverse momentum spectrum of electrons from heavy quark
decays at central rapidities j
ej � 0:35 in unpolarized (upper
panel) and polarized (middle panel) pp collisions at RHIC. All

scales are varied simultaneously, i.e., �f ¼ �r ¼ �ðm2
Q þ

½ðpQ
T Þ2 þ ðp �Q

T Þ2�=2Þ1=2, in the range 1=2 � � � 2 (shaded

bands). The solid lines correspond to the default choice � ¼ 1.
Note that the LO results are rescaled by a factor of 0.1, and all
polarized cross sections are multiplied by �1. The lower panel
shows the ratio of NLO to LO polarized and unpolarized cross
sections (K factor).
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allow for precision studies with the large amount of top
quarks expected to be produced at the CERN-LHC. In
addition, fixed order calculations need to be amended by

all-order resummations if lnpQ
T =mQ becomes large. This

was achieved in [21] but is not really relevant for our
discussions here since we are mainly interested in the

region where pQ
T �mQ. We postpone a discussion of theo-

retical uncertainties due to the choice of mQ and �Q in

Eq. (19), as well as the effect of varying �r and �f

independently, until the end of this subsection.
The single-inclusive transverse momentum spectrum of

muons from heavy quark decays is shown in Fig. 3 in LO
and NLO accuracy. The pseudorapidity 
� of the muon is

integrated in the range 1:2 � j
�j � 2:2 corresponding to

the angular acceptance of the PHENIX experiment. All
observations made in Fig. 2 regarding the relevance of
NLO corrections, the behavior of the K factor, and the
dependence on�f;r apply also here. The polarizedK factor

stays even closer to one than in Fig. 2 as d��=dp�
T

develops no node in the p�
T range shown.

By glancing at the relative sizes of the unpolarized and
polarized single-inclusive transverse momentum spectra
for electrons and muons shown in Figs. 2 and 3, respec-
tively, it becomes immediately obvious that the corre-
sponding double-spin asymmetries Ae

LL and A
�
LL, to

which we turn to in Sec. III D, are very small if the most
up-to-date DSSV parton densities [8] are used. Expected
asymmetries of the order of a few tenths of a percent are
extremely challenging experimentally as systematic uncer-
tainties, like from the determination of the relative beam

luminosities at RHIC, are of similar size [9]. At higher
p
e;�
T , where double-spin asymmetries are largest, the

single-inclusive cross sections in Figs. 2 and 3 have
dropped already several orders of magnitude from their
peak values, and measurements require substantial inte-
grated luminosities.
More promising appear to be observables where both the

heavy quark and the heavy antiquark decay semileptoni-
cally, and both leptons are observed in coincidence. This is
also where our numerical phase-space integration and the
flexible Monte Carlo code for polarized heavy flavor ha-
droproduction introduced in Sec. II become truly essential.
Particle correlations are hard, and often impossible, to
compute at NLO with largely analytical methods, see,
e.g., [40].
Figure 4 shows our results for the invariant mass spec-

trum of electron-muon correlations from semileptonic de-
cays of D and B mesons within the angular acceptance of
the PHENIX detector, i.e., j
ej � 0:35 and 1:2 � j
�j �
2:2. In addition, we require a minimum transverse momen-
tum for both leptons of 1 GeV as required by experiment.
As in Figs. 2 and 3, results shown as solid lines are
obtained with the default choice of parameters. Again,
shaded bands indicate the theoretical uncertainty from
varying the factorization and renormalization scales simul-
taneously in the range 1=2 � � � 2.
The K factor, shown in the lower panel of Fig. 4, is

smaller than what was found for the single-inclusive ob-
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FIG. 3 (color online). Same as in Fig. 2 but for the single-
inclusive transverse momentum spectrum of muons from heavy
quark decays at forward rapidities 1:2 � j
�j � 2:2.
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FIG. 4 (color online). Same as in Fig. 2 but for the invariant
mass spectrum of electron-muon correlations from heavy quark
decays. Electrons are detected at central rapidities, j
ej � 0:35,
and muons are detected at forward rapidities, 1:2 � j
�j � 2:2.

The transverse momenta of both electrons and muons are re-
quired to be larger than 1 GeV.
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servables in Figs. 2 and 3 in the unpolarized case. Still,
NLO corrections differ considerably for the unpolarized
and polarized invariant mass spectra. Again, the correc-
tions are such that the corresponding double-spin asym-
metry is reduced at NLO accuracy. The scale uncertainty is
significantly smaller for the spin-dependent cross section
with NLO corrections included. The improvement in the
helicity-averaged case is much less pronounced.

Compared to the single-inclusive results in Figs. 2 and 3,
the cross sections obtained for the electron-muon invariant
mass spectrum are smaller, but dð�Þ�=dme� drops much

less with increasing me� than dð�Þ�=dpe;�
T with increas-

ing pe
T or p�

T . This makes measurements of Ae�
LL at com-

paratively large values ofme� feasible. We do not consider

here correlations with back-to-back electrons at central
rapidities. Electron-muon correlations are phenomenolog-
ically more interesting due to their asymmetric kinematics
with respect to rapidity, probing the interacting partons at
different momentum fractions x as will be demonstrated
below.

The corresponding invariant mass spectrum for two
muons from D and B meson decays observed in coinci-
dence is shown in Fig. 5. Both muons are required to have
1:2 � j
�j � 2:2 and p

�
T > 1 GeV, with one muon de-

tected at forward (positive) and one muon detected at
backward (negative) pseudorapidities. Again, the cross
sections dð�Þ� decrease rather slowly with increasing
invariant mass m��. This observable is very demanding

in terms of required Monte Carlo statistics as can be seen

by the still fairly pronounced fluctuations, most noticeable
in the unpolarized K factor. The general trend and features
of the cross sections are, however, reliable. As before, NLO
corrections are more significant in the unpolarized case,
where K ’ 2. Unfortunately, the reduction of the theoreti-
cal ambiguities related to the choice of �f;r is only mar-

ginal at NLO.
We now turn to a more detailed discussion of theoretical

uncertainties for the observables discussed in this section,
taking the phenomenologically interesting invariant mass
spectrum for electron-muon correlations, presented in
Fig. 4, as an example. Qualitatively very similar results
are obtained for the other cross sections given in Figs. 2, 3,
and 5 and hence not shown here.
The impact of varying �f and �r independently is

shown in Fig. 6 for the electron-muon invariant mass
spectrum in polarized pp collisions at NLO accuracy.
Since we are also interested in variations of mc;b, the

contribution from c �c and b �b decays are shown in separate
panels and add up to �d��=dme� discussed in Fig. 4.

Following Ref. [14], we compute our results for seven

different settings of scales �f;r ¼ �f;rðm2
Q þ ½ðpQ

T Þ2 þ
ðp �Q

T Þ2�=2Þ1=2, using ð�f; �rÞ ¼ fð1; 1Þ; ð2; 2Þ; ð1=2; 1=2Þ;
ð1; 1=2Þ; ð2; 1Þ; ð1=2; 1Þ; ð1; 2Þg and keeping mQ fixed to
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FIG. 5 (color online). Same as in Fig. 2 but for the invariant
mass spectrum of muon-muon correlations from heavy quark
decays. Both muons are detected at forward rapidities, 1:2 �
j
�j � 2:2, but in different hemispheres. The transverse mo-

mentum of each muons is required to be larger than 1 GeV.
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FIG. 6 (color online). Scale and mass uncertainties for the
polarized invariant mass spectrum of electron-muon correlations
at NLO accuracy, using the same cuts as in Fig. 4. The upper and
lower panel shows the contribution from c �c and b �b decays,
respectively, multiplied by �1. The dashed lines indicate the
range of uncertainties for �f ¼ �r, 1=2 � � � 2, and central

values of mc;b as in Fig. 4. The solid curves are for � ¼ 1. The
effect of varying �f and �r independently in the same range of

� for fixed mc ¼ 1:35 GeV, mb ¼ 4:75 GeV and for 1:35 �
mc � 1:5 GeV, 4:5 � mb � 5:0 GeV is illustrated by hatched
and solid bands, respectively. In the latter case, scale and mass
uncertainties are combined in quadrature (see text).
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their central values mc ¼ 1:35 GeV and mb ¼ 4:75 GeV.
The envelope of all resulting curves defines the scale
uncertainty and is show as hatched bands in Fig. 6. For
comparison, the dashed lines indicate the range of uncer-
tainties for standard choice�f ¼ �r used in Fig. 4. As can

be seen, taking �f � �r does not significantly enlarge the

scale ambiguities for the polarized cross section, in par-
ticular, for the contribution from bottom quarks shown in
the lower panel.

The solid bands in Fig. 6 take also variations of mc and
mb into account. The recipe we follow here is again similar
to the one used to estimate theoretical uncertainties for
unpolarized heavy flavor production [14,31]. In practice,
we add scale and mass uncertainties in quadrature, and the

envelope of all results is defined by Cþ ½ðMþ
� � CÞ2 þ

ðMþ
mQ

� CÞ2�1=2 and C� ½ðC�M�
� Þ2 þ ðC�M�

mQ
Þ2�1=2.

Here, C denotes the results obtained for central values of
scales and masses.Mþ

� (M�
� ) are the maximum (minimum)

cross sections computed for �f � �r, mc ¼ 1:35 GeV,

and mb ¼ 4:75 GeV, as depicted by the hatched bands.
Correspondingly, Mþ

mQ
(M�

mQ
) denote the maximum (mini-

mum) cross sections for �f;r ¼ 1 and varyingmc andmb in

the range 1:35 � mc � 1:5 GeV and 4:5 � mb �
5:0 GeV, respectively. In general, the combined uncertain-
ties are much smaller for b �b than for c �c production and
decays, which is not too surprising. In both cases, varia-
tions of mQ add noticeably to the theoretical uncertainties.

The dependence of the cross sections on the choice of
�Q in the nonperturbative function DQ!HQðzÞ describing
the hadronization of the heavy quarks into D and B me-
sons, see Eq. (19), is illustrated in Fig. 7. Again, we take the
invariant mass spectrum for electron-muon correlations as
an representative example. We vary �c and �b in the range
[19] 3 � �c � 7 and 10 � �b � 20, respectively, and
show the impact on the invariant mass spectrum as relative
uncertainty with respect to the results obtained for the
central values �c ¼ 5 and �b ¼ 15 used in Fig. 4.

It turns out that polarized and unpolarized invariant mass
spectra are affected very much in the same way by varia-
tions of �c;b. For charm production and taking 3 � �c �
7, it roughly amounts to a shift in the normalization of the
cross sections by �20	 30%. The impact of varying �b

on the contribution to dð�Þ�=dme� from bottom decays is

significantly smaller, up to about�10% deviation from the
results for �b ¼ 15, but is less uniform with me�. These

observations have the important implication that theoreti-
cal uncertainties associated with the actual choice of �c;b

drop out to a large extent for experimentally relevant
double-spin asymmetries ALL discussed in Sec. III D
below.

C. Subprocess, charm, and bottom fractions

We now take a detailed look at the fractional contribu-
tions of the different partonic hard scattering processes to

the cross sections shown in Figs. 2–5. This will help to
understand the dependence of the double-spin asymmetries
on different sets of polarized parton densities, to be dis-
cussed in the next subsection. Since charm and bottom
decays both contribute to the lepton spectra, we also
present their fractional contributions. This includes also
the cascade decay b ! c ! e, �, which is modeled fol-
lowing the procedure discussed in [14]. It is found to be
negligible for all observables we are interested in.
The left-hand side of Fig. 8 shows the contributions of

the three different subprocesses at NLO accuracy, with gg,
q �q, and qg initial states, to the single-inclusive decay
electron spectra shown in Fig. 2. In the unpolarized case
(upper panel), gluon-gluon fusion is the by far dominant
subprocess for heavy flavor production at RHIC energies,
with q �q annihilation becoming somewhat more relevant at
larger values of transverse momentum pe

T . Interestingly
enough, the genuine NLO, i.e., �s suppressed, qg scatter-
ing process also contributes very significantly at larger pe

T ,
even exceeding the q �q annihilation cross section. This
observation can be linked to the abundance of gluons at
all momentum fractions x [38]. This implies that the par-
tonic flux relevant for qg scattering, i.e.,
qðx1; �fÞgðx2; �fÞ, is much larger than the corresponding

flux for q �q annihilation, in particular, at the medium-to-
large momentum fractions x1;2 relevant for RHIC. This

compensates for the Oð�sÞ suppression in the qg hard
scattering channel. In p �p scattering, e.g., at the TeVatron,
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FIG. 7 (color online). Dependence of the polarized (solid
lines) and unpolarized (dashed lines) invariant mass spectra for
electron-muon correlations at NLO accuracy on the choice of
fragmentation parameters �c (upper panel) and �b (lower panel)
defined in Eq. (19). Displayed are the relative deviations for c �c
and b �b decays using �c ¼ 3; 7 and �b ¼ 10, 20 with respect to
the cross sections obtained for our default values �c ¼ 5 and
�b ¼ 15 [19], respectively. �f, �r, and heavy quark masses are

taken at their central values, and the same experimental cuts as in
Fig. 4 are adopted.
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where antiquarks are ‘‘valence’’ quarks in the antiproton
beam, this is different, and the q �q flux is much enhanced. A
similar observation concerning the relevance of the q �q
annihilation channel was made also for fixed-target experi-
ments in Ref. [24], where it is expected to contribute very
significantly to charm hadroproduction in proposed p �p
collisions at the GSI-FAIR facility, but not in pp scattering
of similar c.m.s. energy planned at J-PARC.

In general, the situation is much more involved in the
polarized case, where both hard scattering cross sections
and parton densities are not positive definite and can
contribute with either sign, depending on the kinematics
relevant for a particular process. In the vicinity of sign
changes, large cancellations are to be expected. As we shall
demonstrate below, depending on the chosen set of polar-
ized parton densities, the subprocess fractions can differ
considerably from each other and often gluon-gluon fusion
does not dominate, in contrast to the unpolarized case.

The middle panel of Fig. 8 shows our results for the
polarized subprocess fractions obtained with the DSSV set
[8], our default choice of parton densities used in Figs. 2–5.

At small pe
T , the cross section is entirely dominated by q �q

annihilation, contrary to the unpolarized case. Toward
larger pe

T , both gg and qg processes contribute signifi-
cantly but with opposite sign, leading to strong cancella-
tions. This happens, however, in a kinematic region close
to a sign change of the cross section at pe

T ’ 7 GeV.
A rather different pattern of fractional subprocess con-

tributions can be found in the bottom panel of Fig. 8, where
the GRSV(std) [34] parton densities were used. Note that
the cross section has a sign change near pe

T ¼ 2 GeV. This
explains the complicated behavior of the ratios in this
region and makes it very awkward to display them prop-
erly. Like in the unpolarized case, gluon-gluon fusion is the
most important contribution to the cross section. At larger
pe
T , q �q and qg subprocesses become more relevant, both

contributing with the opposite sign than gg scattering,
leading again to fairly significant cancellations.
The gross features of the results in Fig. 8 obtained with

DSSV and GRSV parton densities can be readily under-
stood by comparing the size and sign of the individual
quark, antiquark, and gluon densities in both sets, see, e.g.,
Fig. 2 in Ref. [8]. Since the decay electrons stem from
heavy (anti)quarks produced at central rapidities, the inter-
acting partons have very similar momentum fractions, i.e.,
x1 ’ x2. Therefore, �gðx1Þ�gðx2Þ> 0, irrespective of the
node in the DSSV gluon distribution, and the sign of the gg
contribution follows the sign of the hard scattering cross
section, which changes from positive at small pT to nega-
tive at larger pT values.
Because of helicity conservation, d��̂q �q ¼ �d�̂q �q < 0

[17], and the sign of the q �q contribution depends on the
individual parton densities for each quark and antiquark
flavor. All sets of polarized parton densities have �uðxÞ>
0 and �dðxÞ< 0, resembling the features of the naive
quark model. The GRSV(std) set [34] assumes an SUð3Þ
symmetric sea, with all antiquark polarizations being nega-
tive, such that for the dominant u quarks one has
�uðx1Þ��uðx2Þ< 0, resulting in a net positive contribution
to the cross section. This is exactly opposite in the DSSV
set [8], where�uðx1Þ��uðx2Þ> 0, unless x2 gets very large.
The genuine NLO qg subprocess cross section, as well as
the sum of all quark and antiquark polarizations, �� ¼P

q½�qþ��q�, are both positive. This implies that the sign

of the qg contribution depends on the sign of �gðxÞ in the
relevant region of x, which turns out to be positive for both
GRSV(std) and DSSV. Overall, the fractional contributions
of the individual subprocesses to the single-inclusive decay
electron spectrum are essentially controlled by the modu-
lus of the polarized gluon density, j�gðxÞj, which is much
larger for the GRSV(std) set, i.e., j�gðxÞjGRSV 

j�gðxÞjDSSV. The bigger the gluon density, the closer the
result is to what we have found in the unpolarized case. It
turns out that even for the moderate gluon polarization of
the GRSV(std) set, the gluon-gluon channel prevails for all
pe
T values shown in Fig. 8.
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FIG. 8 (color online). Fractional amount of different partonic
subprocesses at NLO accuracy (left column) and of charm,
bottom, and cascade (b ! c) decays (right column) contributing
to the single-inclusive transverse momentum spectrum of elec-
trons shown in Fig. 2. Results are shown for unpolarized (upper
row) and polarized (middle and lower rows) pp collisions at
RHIC using the CTEQ6 [38], DSSV [8], and GRSV [34] set of
parton densities, respectively.
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The right-hand side of Fig. 8 shows the fractional con-
tributions of the charm, bottom, and ‘‘cascade’’ b ! c
decays to the single-inclusive transverse momentum spec-
trum of electrons. For pe

T & 2 GeV, almost all electrons
originate from charm decays, but above the bottom con-
tribution catches up, yielding about 25% at pe

T ¼ 6 GeV in
the unpolarized case shown in the upper panel of Fig. 8.
Eventually, at somewhat larger values of pe

T , it becomes
dominant, as was shown in [14].

As for the subprocess fractions, the corresponding re-
sults in the polarized case depend on the choice of parton
densities, and cancellations and possible sign changes of
the individual hard scattering subprocesses d��̂ab further
complicate their interpretation. The only feature common
to both the unpolarized and the polarized inclusive electron
spectra is the smallness of the b ! c ! e cascade decay
contribution. The results obtained with the DSSV set
(middle panel) show a very sizable bottom contribution,
exceeding the c ! e decay above pe

T ’ 4 GeV. However,
this is due to a sign change of the c ! e cross section at
pe
T ’ 7 GeV, and above, c ! e and b ! e contribute on

equal footing. Choosing the GRSV(std) distributions in-
stead (lower panel), both the c ! e and the b ! e cross
sections change from positive to negative at 2 and 4 GeV,
respectively, with b ! e starting to be the dominant con-
tribution above pe

T � 6 GeV.

The fractional contributions of the different partonic
hard scattering processes (left-hand side) and heavy flavor
decays (right-hand side) to the single-inclusive muon cross
section shown in Fig. 3 are given in Fig. 9. The results are
qualitatively very similar to the ones depicted in Fig. 8 and
discussed above. Again, the polarized subprocess fractions
very much depend on the choice of parton densities, and
the interpretation is obscured by sign changes and large
cancellations among the different contributions. Compared
to the single-inclusive electron spectrum at central rapid-
ities, bottom decays contribute less to the muon transverse
momentum spectrum at 1:2 � j
�j � 2:2, even up to

p�
T ¼ 10 GeV. Its contribution is rather flat with respect

to p
�
T and amounts to about 40% (20%) in the (un)polar-

ized case.
Corresponding results for the electron-muon and muon-

muon invariant mass distributions, shown in Figs. 4 and 5,
can be found in Figs. 10 and 11, respectively. As before,
subprocess fractions can be found on the left-hand side and
contributions from different heavy flavor decays on the
right-hand side of the plots. Note that in all panels of
Figs. 10 and 11, the bin corresponding to the smallest
invariant mass only has a small number of entries due to
the cuts pe;�

T > 1 GeV, and the numerical results for that

bin should be taken with caution. In general, cancellations
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FIG. 9 (color online). Same as in Fig. 8 but now for the single-
inclusive transverse momentum spectrum of muons shown in
Fig. 3.
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FIG. 10 (color online). Same as in Fig. 8 but now for the
invariant mass spectrum of electron-muon correlations shown
in Fig. 4.
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among different subprocesses are found to be less pro-
nounced in Figs. 10 and 11, except for small invariant
masses, say, below 4 GeV, where a sign change in the
polarized cross section occurs.

Gluon-gluon fusion is even more dominant for electron-
muon and muon-muon correlations than for single-
inclusive decay lepton observables, with both q �q and qg
subprocesses being negligible in the unpolarized case
(upper row). This is also the case for the polarized cross
section if the GRSV (std) parton distributions are chosen.
For the DSSV set, q �q annihilation remains dominant for
electron-muon correlations, but gluon-gluon fusion con-
tributes significantly to muon-muon correlations for
m�� * 10 GeV. As will be shown in the next subsection,

back-to-back muon-muon correlations with 1:2 � j
�j �
2:2 probe on average fairly large momentum fractions,
hxi * 0:1, where the DSSV �gðxÞ is positive and larger
than the sea quark polarizations, such that d��̂gg >

d��̂q �q. Since the DSSV ��uðxÞ turns negative at large x,

there are additional cancellations among the different
quark flavors in the q �q annihilation channel, as
�uðx1Þ��uðx2Þ< 0 and �dðx1Þ� �dðx2Þ> 0.

As in Figs. 8 and 9, the contribution from the cascade
b ! c ! e, � decay is found to be negligible for lepton-
lepton correlations. In particular, the muons in back-to-
back correlations originate mainly from charm decays, as

can be seen on the right-hand side of Fig. 11. At the same
invariant lepton-lepton mass, bottom quark decays contrib-
ute more significantly to electron-muon correlations than
to muon-muon correlations for me�, m�� > 5 GeV.

D. Double-spin asymmetries

The quantities of actual interest in experiments exploit-
ing polarized beams and targets are the double-spin asym-
metries ALL defined in Eq. (18). Experimental normaliza-
tion uncertainties conveniently cancel to a large extent in
the ratio (18). In general, this does not happen for higher
order QCD corrections or the various sources of theoretical
ambiguities as we shall demonstrate below. Nevertheless, it
is often erroneously assumed that LO estimates for ALL

give reliable results which can be used in quantitative QCD
analyses.
We start by giving expectations for various double-spin

asymmetries at NLO accuracy in Figs. 12–15, based on the
polarized and unpolarized cross sections for decay lepton
transverse momentum and invariant mass distributions pre-
sented in Figs. 2–5. Apart from our default choice of DSSV
polarized parton densities [8], which leads to very small
asymmetries throughout, we adopt also two alternative
sets, GRSV(std) [34] and DNS(KRE) [35]. Unlike DSSV,
both sets are characterized by a positive gluon polarization
of moderate size and an almost SUð3Þ symmetric sea. We
refrain from using outdated models with a large, but
strongly disfavored gluon polarization in the x range al-
ready probed by RHIC pp and fixed-target data [1–6].
With the exception of the double-spin asymmetry Ae

LL

for single-inclusive electrons from charm and bottom de-
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FIG. 11 (color online). Same as in Fig. 10 but now for the
invariant mass spectrum of muon-muon correlations shown in
Fig. 5.
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FIG. 12 (color online). Double-spin asymmetry Ae
LL for single-

inclusive electrons from charm and bottom decays at RHIC,
computed at NLO accuracy for three different sets of polarized
parton densities: DSSV [8] (solid line), GRSV(std) [34] (dashed
line), and DNS(KRE) [35] (dot-dashed line). Electrons are
restricted to central rapidities j
ej � 0:35.
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cays shown in Fig. 12, differences in the results obtained
with GRSV(std) and DNS(KRE) parton distributions are
readily explained by the slightly larger �gðxÞ in the GRSV
set. For Ae

LL, the result based on the DNS(KRE) set is
strongly affected by cancellations between the gg subpro-
cess on the one hand, and the q �q, qg processes on the other
hand, leading to an essentially zero spin asymmetry in the
pe
T range shown. Cancellations among the different sub-

processes contributing with different sign are less pro-
nounced for the GRSV set, see the lower left panel of
Fig. 8, due to a significantly less negative��u density at x ’
0:1. Cancellations in conjunction with the smallness of Ae

LL

for all pe
T make this observable not really suited for studies

of the nucleon’s spin structure.
The double-spin asymmetry A

�
LL for single-inclusive

decay muons at 1:2 � j
�j � 2:2, presented in Fig. 13,

shows a much better correlation of the size of �gðxÞ and
A
�
LL. As was demonstrated in Fig. 9, cancellations among

the different subprocesses are less pronounced than for
Ae
LL. For the same value of transverse momentum, the

obtained spin asymmetries are about a factor of 2 larger
for A

�
LLðp�

T Þ than for Ae
LLðpe

TÞ. However, they are still

significantly smaller than projections based on very large
positive, but outdated gluon polarizations like GRSV(max)
[34], see, e.g., Fig. 3 in Ref. [13]. Nevertheless, with
sufficient statistics accumulated, spin asymmetries of
Oð0:5%Þ should be measurable. Based on the cross sec-
tions given in Figs. 2 and 3, we estimate that an integrated
luminosity of about 1 fb�1 is required.

The best suited observables related to heavy flavor ha-
droproduction in longitudinally polarized pp collisions at
RHIC are double-spin asymmetries for invariant mass
spectra of electron-muon and muon-muon correlations
shown in Figs. 14 and 15, respectively. At small invariant
mass, the corresponding cross sections are smaller than for

single-inclusive transverse momentum distributions at
similar values of pe;�

T , but fall off much slower with
increasing invariant mass, cf. Figs. 2–5. This should allow
for measurements of Ae�

LL and A��
LL up to me�;�� ¼ 10	

15 GeV, where spin asymmetries can be up to the 1	 2%
level for the GRSV(std) and DNS(KRE) parton densities.
An integrated luminosity of a few hundred pb�1 should be
sufficient. In addition, the size of Ae�;��

LL and �gðxÞ in the
relevant range of momentum fractions x, see below, are
nicely correlated. In the absence of shifted vertex detectors
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FIG. 14 (color online). Same as in Fig. 12 but for the invariant
mass spectrum for electron-muon correlations. Electrons and
muons are restricted to j
ej � 0:35 and 1:2 � j
�j � 2:2, re-

spectively. In addition, we demand pe
T � 1 GeV.
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FIG. 15 (color online). Same as in Fig. 12 but for the invariant
mass spectrum for muon-muon correlations. The muons are
restricted to forward rapidities 1:2 � j
�j � 2:2 and have to

be in opposite hemispheres. In addition, we demand p
�
T �

1 GeV.
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FIG. 13 (color online). Same as in Fig. 12 but for the single-
inclusive muon spectrum at forward rapidities 1:2 � j
�j � 2:2.
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at the RHIC experiments, A
��
LL is the observable with the

cleanest sample of charm decays for all m�� shown in

Fig. 15 and irrespective of the set of polarized parton
densities used in the calculations, cf. Fig. 11.

Figure 16 clearly illustrates the inadequacy of comput-
ing double-spin asymmetries based on LO estimates of
heavy flavor cross sections. Depicted is the K factor, i.e.,
ALLðNLOÞ=ALLðLOÞ, for all double-spin asymmetries pre-
sented in Figs. 12–15, computed in each case using the
DSSV polarized and CTEQ6 unpolarized parton densities.
Other sets of polarized parton densities yield qualitatively
very similar results. On average, LO estimates for ALL are
about a factor of 2 larger than corresponding calculations at
NLO accuracy and depend, in case of the single-inclusive
observables Ae

LL and A
�
LL, strongly on p

e;�
T . This reflects the

difference of K factors for the polarized and unpolarized
cross sections found in Figs. 2–5 and invalidates any
approximation based on constant K factors or the idea
that higher order QCD corrections cancel in ALL.

As was already illustrated in Fig. 7, theoretical uncer-
tainties associated with the actual choice of the parameters
�c;b in the nonperturbative function DQ!HQðzÞ given in

Eq. (19) cancel to a large extent in double-spin asymme-
tries. Unfortunately, this is not the case for ambiguities
related to the choice of scales�f;r. As we have discussed in

Sec. III B, the dependence of unpolarized heavy flavor
cross sections on variations of �f;r is in general more

pronounced than in the polarized case, see, e.g., Fig. 4
for electron-muon correlations. This can cause sizable
ambiguities also for ratios of cross sections, like double-

spin asymmetries. As a representative example, we show in
Fig. 17 the dependence of the double-spin asymmetry A

e�
LL

for electron-muon correlations on variations of �f;r. The

shaded band in the upper panel of Fig. 17 illustrates the

uncertainty on A
e�
LL if �f ¼ �r ¼ �ðm2

Q þ ½ðpQ
T Þ2 þ

ðp �Q
T Þ2�=2Þ1=2 are varied simultaneously in the range 1=2 �

� � 2. The lower panel gives the relative deviation of A
e�
LL

for � ¼ 1=2, 2 with respect to the result obtained for our
default value � ¼ 1.
The scale uncertainties are quite substantial and not

uniform as a function of the invariant mass me�.

Nevertheless, the asymmetries obtained with the DSSV
parton densities are still much smaller than for sets with
larger gluon polarizations, like DNS(KRE) or GRSV(std),
as can be inferred by comparing with the results given in
Fig. 14. Qualitatively similar effects as in Fig. 17 are found
for the other double-spin asymmetries discussed in this
subsection. We refrain from varying �f and �r indepen-

dently, which increases the uncertainties only slightly for
the specific observables and kinematics we are interested
in, cf. Fig. 6. Similar observations apply to variations of the
heavy quark masses mc;b, which, in principle, need to be

considered as well, see Fig. 6.
Finally, we estimate the range of momentum fractions x

at which the (un)polarized parton densities in Eq. (7) are
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DSSV polarized and CTEQ6 unpolarized parton densities.
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FIG. 17 (color online). Impact of variations of the scales �f ¼
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T Þ2 þ ðp �Q

T Þ2�=2Þ1=2 on the double-spin asym-

metry A
e�
LL for electron-muon correlations at NLO accuracy. The

upper panel shows A
e�
LL computed with the DSSV parton den-

sities for � ¼ 1 (solid line) and in the range 1=2 � � � 2
(shaded band). The lower panel gives the relative deviation of
A
e�
LL for � ¼ 1=2, 2 with respect to the result obtained for our

default value � ¼ 1.

JOHANN RIEDL, ANDREAS SCHÄFER, AND MARCO STRATMANN PHYSICAL REVIEW D 80, 114020 (2009)

114020-16



predominantly probed for the different single-inclusive and
lepton-lepton correlation observables discussed in this pa-
per. Figure 18 shows the corresponding cross sections
differential in x. In each case, we have integrated over
the angular acceptance for detecting electrons and/or
muons with the PHENIX experiment at RHIC as well as
over all transverse momenta of the decay leptons. As
before, an additional cut p

e;�
T > 1 GeV is imposed for

lepton-lepton correlations. All x distributions are normal-
ized to the respective integrated cross section ð�Þ�int.

Since small transverse momenta probe also the smallest
possible x values, Fig. 18 gives a rough idea of the lowest
possible momentum fractions accessible in heavy quark

hadroproduction at RHIC with a c.m.s. energy of
ffiffiffi
S

p ¼
200 GeV. As can be seen, single-inclusive observables,
shown in the panels on the left, receive contributions
from x values as low as 10�3, but the majority of events
has hxi ’ 0:01. Both, electron-muon and muon-muon cor-
relations, displayed on the right-hand side of Fig. 18, probe
on average larger values of x. In particular, the latter
observable can be used to study parton densities at hxi ’
0:1 or higher. The entire suite of possible observables
related to heavy flavor hadroproduction at RHIC can cover
a wide range in x and has the potential to provide novel
information on the spin structure of the nucleon and the
applicability of perturbative QCD in polarized hard scat-
tering processes.

IV. SUMMARYAND OUTLOOK

We have presented a flexible parton-level Monte Carlo
program to compute heavy flavor distributions and corre-
lations at NLO accuracy in longitudinally polarized pp
collisions. Experimental acceptance cuts, the hadroniza-
tion of the produced heavy quark pair intoD andBmesons,
and their subsequent semileptonic decays can be included
in phenomenological applications.
Heavy flavor hadroproduction receives its importance

for the field of spin physics from its partonic hard scatter-
ing processes, which differ from their counterparts for light
hadron and jet production utilized in global QCD analyses
so far. Upcoming measurements of heavy flavor production
at RHIC will further our current understanding of factori-
zation in the presence of spin and test the notion of uni-
versality for polarized parton densities.
We have performed a comprehensive phenomenological

study of various observables where heavy quarks are iden-
tified through their semileptonic decays into electrons or
muons. Such measurements can be done once sufficient
statistics has been collected in polarized proton-proton
collisions at RHIC and do not require the completion of
vertex detector upgrades. Decay lepton correlations turned
out to be particularly suited probes for the spin structure of
the nucleon, and experimentally relevant double-spin
asymmetries of about 1% can be expected even for present-
day gluon polarizations of rather moderate size. Contrary
to naive expectations based on unpolarized results, gluon-
gluon fusion is not necessarily the dominant channel for
heavy flavor production in longitudinally proton-proton
collisions at RHIC.
Next-to-leading order QCD corrections are in general

more pronounced for unpolarized than for polarized heavy
flavor production cross sections, such that they do not
cancel in the ratio defining double-spin asymmetries.
Also, theoretical uncertainties estimated by varying facto-
rization and renormalization scales are usually smaller for
spin-dependent observables.
The technical methods and their implementation into a

parton-level Monte Carlo program can be straightfor-
wardly extended to deal also with the spin-dependent
photoproduction of heavy quarks. This will allow one to
analyze already existing data for charm production con-
sistently at NLO accuracy within future global QCD analy-
ses of polarized parton densities. In addition, one can
assess the physics impact of heavy flavor distributions
and correlations obtained at a possible future polarized
lepton-nucleon collider like the EIC.
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integrated unpolarized (upper row) and polarized (lower row)
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APPENDIX

In this Appendix we collect for completeness some
additional details of the calculation and some explicit
expressions that were omitted in [17] but might be useful
for the reader.

First of all, we recall the LO partonic cross sections for
open heavy flavor hadroproduction, which are needed for
the factorization of collinear singularities. They also
emerge in the soft gluon limit of the NLO 2 ! 3 real
emission contributions. The spin-dependent, color-
averaged matrix elements squared for the tree-level pro-
cesses in (6) read in d ¼ 4� 2" dimensions:

�jMggj2 ¼ 1

2s
ð4��sÞ2 1

2ðN2
C � 1Þ

�
2CF � CA

2t1u1
s2

�

� �BQED; (A1)

�jMq �qj2 ¼ 1

2s
ð4��sÞ2 CF

NC

�AQED; (A2)

where

�BQED ¼
�
t1
u1

þ u1
t1

��2m2
Qs

t1u1
� 1

�
; (A3)

�AQED ¼ � t21 þ u21
s2

� 2m2
Q

s
� ": (A4)

Here, NC denotes the number of colors, CA ¼ NC, and
CF ¼ ðN2

C � 1Þ=ð2NCÞ. Contrary to the unpolarized case

[15,16], �BQED receives no Oð"Þ contributions. The

Mandelstam variables used in Eqs. (A1)–(A4) are defined
by

s ¼ ðp1 þ p2Þ2; t1 ¼ ðp1 � k1Þ2 �m2
Q;

u1 ¼ ðp1 � k2Þ2 �m2
Q;

(A5)

where sþ t1 þ u1 ¼ 0. p1;2 are the momenta of the in-

coming partons, and k1 and k2 are the momenta of the
produced heavy quark and antiquark, respectively.
Together with the appropriate two-body phase-space factor
dPS2 in d dimensions [15],

dPS2 ¼ 2�

s
½ð4�Þ2�"�ð1� "Þ��1

�t1u1 �m2
Qs

s

��"

� �ðsþ t1 þ u1Þdt1du1; (A6)

the gg and q �q Born cross sections can be written as

d2��̂ab

dt1du1
¼ F"�jMabj2�ðsþ t1 þ u1Þ; (A7)

where

F" � �

s2
½ð4�Þ2�"�ð1� "Þ��1

�
t1u1 �m2s

�2s

��"
(A8)

collects all phase-space factors given in Eq. (A6) and the
flux factor 1=ð2sÞ included in Eqs. (A1) and (A2). The
mass parameter� is introduced to keep the strong coupling
dimensionless in d dimensions. In the limit " ! 0, F"

reduces to 1=ð16�s2Þ. In the c.m.s. frame of the incoming
partons, dPS2 and d��̂ab can be conveniently expressed in

terms of the scattering angle between ~p1 and ~k1 by using
the relation

t1 ¼ � s

2
ð1� � cos�1Þ; (A9)

where �2 ¼ 1� 4m2
Q=s ¼ 1� �. The corresponding un-

polarized Born cross sections in d dimensions can be found
in Ref. [15].
Next, we give explicit expressions for the ~� and !

prescriptions introduced in Eq. (11) to regularize soft and
collinear regions of phase space. The distributions are
defined as follows [23]:

Z 1

~�
hðxÞ

�
1

1� x

�
~�
dx ¼

Z 1

~�

hðxÞ � hð1Þ
1� x

dx;

Z 1

~�
hðxÞ

�
logð1� xÞ
1� x

�
~�
dx ¼

Z 1

~�
½hðxÞ � hð1Þ� logð1� xÞ

1� x
dx;

Z 1

1�w
hðyÞ

�
1

1� y

�
w
dy ¼

Z 1

1�w

hðyÞ � hð1Þ
1� y

dy;

Z �1þw

�1
hðyÞ

�
1

1þ y

�
w
dy ¼

Z �1þw

�1

hðyÞ � hð�1Þ
1þ y

dy:

(A10)

h denotes an arbitrary ‘‘test function,’’ which is sufficiently
regular in the limits x ! 1 and y ! �1. In a numerical
implementation, the distributions (A10) need to be used
only if x and y are sampled in the ranges ~� < x < 1 and
1�!< y < 1 or �1< y<�1þ!, respectively, in the
Monte Carlo integration.
Following Ref. [15], the soft, x ! 1 limit of the 2 ! 3

matrix elements squared is derived by applying the eikonal
approximation, i.e., by taking the limit when the momen-
tum of the emitted gluon gets soft. The obtained soft matrix
elements squared for q �q and gg scattering have the same
form as in the unpolarized case [15] but with the Born
results replaced by their polarized counterparts �AQED and

�BQED, given in Eqs. (A4) and (A3), respectively. The

expressions can be straightforwardly integrated over x

and y in (8), and we obtain for d��̂ðsÞ
q �q
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d��̂ðsÞ
q �q;F

dt1du1
¼ 2

C2
F

NC

F"G"�
3
s
~��4"�AQED

�
2

"2
þ 2

"
� 2

"
ln
sm2

Q

t1u1

� 8

"
ln
t1
u1

þ 2� 8 lnß ln
t1
u1

þ ln2
sm2

Q

t1u1

þ 2Li2

�
1� sm2

Q

t1u1

�
þ 8Li2

�
1� t1

ßu1

�

� 8Li2

�
1� u1

ßt1

�
þ 2ð2m2

Q � sÞ
s�

½lnß� SðßÞ�
�

� �ðsþ t1 þ u1Þ (A11)

d��̂ðsÞ
q �q;A

dt1du1
¼ CACF

NC

F"G"�
3
s
~��4"�AQED

�
2

"
ln
sm2

Q

t1u1
þ 6

"
ln
t1
u1

� ln2
sm2

Q

t1u1
þ 6 lnß ln

t1
u1

þ ln2
t1
u1

� ln2ß

� 2Li2

�
1� sm2

Q

t1u1

�
� 6Li2

�
1� t1

ßu1

�

þ 6Li2

�
1� u1

ßt1

�
þ 2ð2m2

Q � sÞ
s�

SðßÞ
�

� �ðsþ t1 þ u1Þ; (A12)

where we have used

SðßÞ ¼ 1

"
lnßþ 2 lnß lnð1� ß2Þ � ln2ßþ Li2ß

2 � �ð2Þ;
(A13)

G" ¼ 64�e�"½	E�lnð4�Þ�
�
1� 3

2
�ð2Þ"2

��m2
Q

�2

��"
; (A14)

and ß � ð1� �Þ=ð1þ �Þ. The dilogarithm function
Li2ðßÞ is defined as in Ref. [41], and �ð2Þ ¼ �2=6 denotes
the Riemann Zeta function. G" in (A14) parameterizes the
difference of the 2 ! 3 and 2 ! 2 phase-space factors, the
latter given by F" in Eq. (A8). As in Ref. [15], we have split

up the result for d��̂ðsÞ
q �q into contributions from different

color structures. The results for d��̂ðsÞ
q �q;F and d��̂ðsÞ

q �q;A in

Eqs. (A11) and (A12), respectively, agree with the corre-
sponding unpolarized expressions in Ref. [15] after replac-

ing�AQED by AQED. With the help of (A9), d��̂ðsÞ
q �q=dt1du1

can be easily transformed into d��̂ðsÞ
q �q=d cos�1 used in

Eq. (13).
Likewise, we obtain for the different color factors con-

tributing to d��̂ðsÞ
gg:

d��̂ðsÞ
gg;QED

dt1du1
¼ 4C2

F

N2
C � 1

F"G"�
3
s
~��4"�BQED

�
1

"
þ 1

þ 2m2
Q � s

s�
½lnß� SðßÞ�

�
�ðsþ t1 þ u1Þ;

(A15)

d��̂ðsÞ
gg;A

dt1du1
¼ C2

A

N2
C�1

F"G"�
3
s
~��4"�BQED

�
�2t1u1

s2

�
1

"
þ1

�

þ
�
1�2t1u1

s2

��
2

"2
�1

"
ln
m2

Qs

t1u1
þ1

2

�
ln2

m2
Qs

t1u1

þ ln2
t1
u1

� ln2ß

�
þLi2

�
1�m2

Qs

t1u1

��

þ t21�u21
s2

�
ln
t1
u1

�
�2

e
þ lnß

�
�Li2

�
1� t1

u1ß

�

þLi2

�
1� u1

t1ß

��
�2m2

Q�s

s�

�
2t1u1
s2

lnß�SðßÞ
��

��ðsþ t1þu1Þ; (A16)

d��̂ðsÞ
gg;1

dt1du1
¼ 1

N2
C � 1

F"G"�
3
s
~��4"�BQED

�
� 2

"2
þ 2t1u1

s2

�
�
1

"
þ 1

�
� ln2

t1
u1

þ ln2ß� 2ð2m2
Q � sÞ
s�

�
�
� t1u1

s2
lnßþ

�
1þ t1u1

s2

�
SðßÞ

��

� �ðsþ t1 þ u1Þ: (A17)

Note that we have chosen a slightly different way of
organizing the above results according to their color struc-
ture than in Ref. [15], but the sum of Eqs. (A15)–(A17)
agrees with their expression after replacing �BQED by its

unpolarized counterpart BQED [15]. The expressions for the

virtual corrections d��̂ðvÞ
ab and the finite contributions

d��̂ðfÞ
ab in (15) are too long to be presented here. They

are available upon request.
Turning to the collinear, y ! �1 limit of the 2 ! 3

processes in (5), we give explicit expressions for the func-

tions �fðc�Þ
ab appearing in Eq. (14). They read

�fðcþÞ
gg ðx; �1Þ ¼ 32��ssð1� xÞ�jMggj2jp1!xp1

�PggðxÞ;
(A18)

�fðc�Þ
gg ðx; �1Þ ¼ 32��ssð1� xÞ�jMggj2jp2!xp2

�PggðxÞ;
(A19)
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�fðcþÞ
qg ðx; �1Þ ¼ 32��ssð1� xÞ�jMggj2jp1!xp1

�PgqðxÞ;
(A20)

�fðc�Þ
qg ðx; �1Þ ¼ 32��ssð1� xÞ�jMq �qj2jp2!xp2

�PqgðxÞ;
(A21)

�fðcþÞ
q �q ðx; �1Þ ¼ 32��ssð1� xÞ�jMq �qj2jp1!xp1

�PqqðxÞ;
(A22)

�fðc�Þ
q �q ðx; �1Þ ¼ 32��ssð1� xÞ�jMq �qj2jp2!xp2

�PqqðxÞ;
(A23)

where the Born matrix elements squared in Eqs. (A1) and
(A2) are to be evaluated with ‘‘shifted’’ kinematics. This is
due to the collinear emission off one of the incoming
partons such that only a fraction x of their original mo-
menta p1;2 is available in the subsequent hard scattering.

The d ¼ 4� 2" dimensional LO polarized splitting func-
tions �Pij in Eqs. (A18)–(A23) can be found in [30] and

read

�PqqðxÞ ¼ CF

�
2

ð1� xÞ~� � 1� xþ 3"ð1� xÞ

þ �ð1� xÞ
�
3þ "

2
þ 2 log ~�

��
;

�PqgðxÞ ¼ 1

2
½2x� 1� 2"ð1� xÞ�;

�PgqðxÞ ¼ CF½2� xþ 2"ð1� xÞ�;
�PggðxÞ ¼ 2CA

�
1

ð1� xÞ~� � 2xþ 1þ 2"ð1� xÞ

þ �ð1� xÞ
�
�0

2
þ "

CA

6
þ 2 log ~�

��
; (A24)

with �0 ¼ 11CA=3� 2nf=3, nf as the number of active

flavors, and where we have expressed the standard 1=ð1�
xÞþ distributions in �Pqq and �Pgg by the corresponding

~� prescriptions defined in (A10). This amounts to introduc-

ing an additional log ~� term in the soft �ð1� xÞ parts of
�Pqq and �Pgg in (A24). Note that in Eqs. (A18)–(A23),

contributions proportional to �ð1� xÞ do not show up as
they are already included as 1="2 poles in the soft cross
sections listed in Eqs. (A11)–(A17). In the factorization
counter term d��~c

ab in (16), only four-dimensional split-

ting functions are needed, i.e., " ! 0 in (A24).
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