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We calculate the energies of the B ¼ 1 and B ¼ 2 Skyrmions with a generalized mass term proposed in

[V. B. Kopeliovich, B. Piette, and W. J. Zakrzewski, Phys. Rev. D 73, 014006 (2006).], allowing for (iso-)

rotational deformations within the axially-symmetric ansatz. We show that this modification of the chiral

symmetry breaking term is not sufficient to accommodate for the experimental value of the binding energy

of the deuteron. Also, a computation of the different vibrational modes and energies reveals how the

deuteron rigidity is affected as a function of the mass parameter D.
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I. INTRODUCTION

Since its proposal by T. H. R. Skyrme nearly 50 years
ago, the Skyrme model [1–4] has acquired the status of one
of the most attractive candidate for an effective theory of
QCD in the low-energy limit as well as a prototype for a
solitonic approach to particle physics. The reasons for such
a longevity is probably that the model involves solitonic
solutions, or Skyrmions, which have a number of attractive
features, such as spatial extension and a conserved topo-
logical charge that can be associated to quantum numbers.
With the help of semiclassical quantization, the ‘‘QCD
Skyrmions’’ considered here are identified to baryons,
and their topological charge to the baryon number. The
success of the model is also built on the fact that this model
possesses the same symmetries as QCD in the large Nc

limit, relies on very few parameters and that the nucleon
properties can be calculated within a 30% accuracy with
respect to experimental data [5,6]. Yet, the Skyrme model
remains an effective theory with its limitations and caveats.

Recently the model has been used to describe nuclei in
the semiclassical approach. It was noted [7,8] that the
rotational term would lead to instabilities unless one takes
for the pion mass m� a value several times larger than the
physical one. Furthermore, the energy densities of the
classical solutions turn out to have shell-like configurations
even for relatively large baryon number. These problems
may be avoided by modifying the pion mass term. One
approach is to consider the pion mass as a free parameter
that must be adjusted to fit experimental data [7,8]. A
second more general approach [9] is based on the recog-
nition that the standard mass term in the Skyrme model is
only one in a family of such terms that have the correct
asymptotic behavior to describe pion fields. Such modifi-
cation of the original Skyrme model leads to the proposal
that with a proper set of parameters, one may solve yet
another inconsistency with experimental observations, the
difference between the computed binding energy of the
deuteron (� 80 MeV) and the experimental value

(2.224 MeV). To resolve this issue, extension to the
Skyrme model can be studied and we concentrate in this
work on a mass term generalizing the one first proposed by
[6] to break chiral symmetry of the Skyrme Model.
The initial work of Kopeliovich, Piette, and Zakrzewski

[10] proposed a new mass term regulated by a dimension-
less parameter labeled D. Some of these authors [9] also
analyzed the binding energy of the deuteron using the
rational map ansatz and their results suggested that the it
could be significantly lowered and fitted to agree with the
experimental value. Indeed the B ¼ 2 solution even be-
comes unstable for larger values of the parameter D.
Recently however, a full numerical calculations [11] in-
cluding some rotational deformations (for the nucleon)
revealed that the binding energy was not as sensitive to
the parameter D as suggested by the rational map approxi-
mation and that the binding energy could not be arbitrarily
reduce to zero, which would lead to unstable the B ¼ 2
solution. Some questions remain open however: (a) The
calculations in [11] relied on fixed values for the parame-
ters of the Skyrme model (except for D) mostly for com-
parison purposes with previous works. These parameters
are usually chosen to reproduce the experimental values of
the mass of the nucleon and delta or other physical quan-
tities. So, some the conclusions in [11] may no longer hold
for a more physical choice of Skyrme parameters despite
the fact that they were mostly based on the ratio of the
nucleon and deuteron masses. (b) The second problem
involves (iso-)rotational deformations which were ne-
glected for the B ¼ 2 deuteron solution, so that one could
not reliably conclude in [11] whether or not the binding
energy decreases withD. The aim of this work is to address
these two problems by adjusting the Skyrme model pa-
rameters consistently and allows for (iso-)rotational defor-
mations in both the nucleon and deuteron solutions.
In the next section, we begin by a brief review of the

Skyrme model with rotational deformations and a descrip-
tion of the mass term proposed in [10], introducing the
parameter D that sets the relative weight of the mass term.
In Sec. III, we present the computation of the energies of
the nucleon and the deuteron which are performed using a*lmarleau@phy.ulaval.ca
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simulated-annealing (SA) algorithm assuming axial-
symmetric symmetry. In each case, rotational energy will
be included in the minimization to allow deformation.
Although the axial symmetry turns out to be a property
of the nucleon solution, one may question the use of this
ansatz for the deuteron as nonaxial deformations could
arise in the case. It turns out that the energy difference
between the axial-symmetric deuteron solution and the
exact solution were found to be at most of the order of
1% [12]. Nonetheless, we shall see that, whether or not
nonaxial deformations are taken into account, it will not
affect our main conclusion, i.e. the deuteron binding en-
ergy increases with the parameter D contrary to what was
conjectured in [9]. Next, from the B ¼ 2 solutions at hand,
we analyze the vibrational modes of the deuteron with
respect to variations of the parameter D.

From then on, we shall refer as rotational effects, any
effects coming from rotational and/or isorotational contri-
butions unless mentioned otherwise.

II. THE SKYRME MODEL AND ITS MASS TERM

Let us first review briefly the Skyrme model with a
modified mass term (for a more elaborate description, the
reader should refer to [10,11]). The standard Skyrme
Lagrangian is given by:

LSky ¼
Z

d3x

�
�F2

�

16
TrðL�L

�Þ þ 1

32e2
Trð½L�; L��2Þ

�

(1)

where L� ¼ Uy@�U, U is an SUð2Þ matrix related to the

pion fields by:

U ¼ �þ i� � �: (2)

with �, the three Pauli matrices. The scalar field � must
respect:

�2 þ � � � ¼ 1 (3)

to avoid additional unphysical degrees of freedom and
allow the possibility of solitonic solutions. The first term in
(1) is the so-called nonlinear-� model. Alone, it would
lead to solutions which are unstable under scale trans-
formations so Skyrme proposed a second term to stabilize
the solitons solutions and prevent them from shrinking to
zero size. Finally, one can add the term

Lm ¼ m2
�F

2
�

8
Trð1�UÞ (4)

first introduced by Adkins and Nappi [6] to break chiral
symmetry. Configurations with boundary conditions:

Uðr; tÞ ! 1 as jrj ! 1 (5)

fall in topological sectors which are identified by their
topological charge corresponding to the baryon number
in the Skyrme model. Three parameters appear in the full

Lagrangian, F�, e and m�, which are, respectively, the
pion decay constant, a dimensionless parameter fixing the
strength of Skyrme interaction term, which is set to e ¼
4:84 here, and the pion mass m� ¼ 138 MeV.
The mass term in (4) is certainly not unique. Any such

term should have the correct asymptotic behavior to de-
scribe pion fields and provide typically non shell-like
configurations of the Skyrme field, a desired feature since
it is certainly more compatible with observations on nucle-
ons where a roughly even matter density is observed. On
the other hand, it was argued in recent works [7,8] that the
rotational term is to large and leads to disruption of the
soliton unless the mass term can provide a more restraining
effect. This requires values of the pion mass m� in (4)
which are several times larger than the physical one. It was
also found that the energy densities of the classical solu-
tions exhibit shell-like features even for relatively large
baryon number. These problems brought to light the pros-
pects of modifying the pion mass term and perhaps use
such a modification to close in on the difference between
the computed binding energy of the deuteron (� 80 MeV)
and its experimental value (2.224 MeV).
A first and simple approach is to consider the pion mass

m� as a free parameter, along with the other two parame-
ters of the model F� and e, that must be chosen to fit
experimental data [7,8,12]. A most common fit consist in
getting B ¼ 1 Skyrmions in the I ¼ J ¼ 1

2 and I ¼ J ¼ 3
2

states with the exact nucleon and delta masses, respec-
tively. This led Battye et al. [7] to conclude that the pion
mass must be set at more than twice its experimental value.
Marleau and Fortier [12] repeated the calculations by
targeting the nucleon and the more stable deuteron instead
and found again that it is not possible to get a common set
of parameters F� and e which would fit both nucleon and
deuteron masses simultaneously unless m� > 500 MeV.
Such large value of the pion mass compared to the nucleon
mass challenge somehow our perception of chiral symme-
try and how it is broken so it may be instructive to consider
other approaches.
One such approach is to modify the form of the mass

term. Let us recall here some of the features of a chiral
symmetry breaking term. Since pions are usually inter-
preted as small fluctuations around the chirally invariant
vacuum U0ðxÞ � 1, one can approximate U as

U ¼ expði� � �ðxÞÞ ’ 1þ i� � �ðxÞ

in the limit � � 1. Then the sum of Lagrangians (1) and
(4) gives rise to the kinematic term for free pions

L� ¼
Z

d3x

�
1

2
@�� � @��:� 1

2
m2

�� � �þOð�4Þ
�
: (6)

As an indication, the soliton mass for the B ¼ 1 hedgehog
solution U ¼ expði� � r̂FðrÞÞ gets a contribution from the
mass term
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Lm ¼ m2
�F

2
�

2

Z
d3xsin2

F

2
: (7)

This term will drastically change the behavior of F at
infinity, from Fðr ! 1Þ ’ C1r

�2 (no mass term) to Fðr !
1Þ ’ C2r

�1 expð�m�rÞ and certainly affects the size of
the soliton. This exponential behavior is expected since a
force mediated by pion exchange is characterized by a
range of R� 1=m� but it also prevents disruption against
centrifugal effect due to rotation provided m� is large
enough. Clearly the chiral symmetry breaking term achiev-
ing the form (6) in the small fluctuations limit is not
uniquely defined. An attempt to generalize such term was
proposed in [13] with the construction

Lm ¼
Z

d3x
X1
k¼1

Ck TrðUk þUyk � 2Þ:

Here,Ck are constant parameters which obey the constraint

X1
k¼1

k2Ck ¼ m2
�f

2
�

4

in order to insure that the pion mass term coincide with (6)
in the limit of small pion field fluctuations.

More recently Kopeliovich, Piette, and Zakrzewski [10]
have shown that a more general form of the mass term
obeying (5) can be written in the form:

Lm ¼ m2
�F

2
�

8K
Tr

�
1�

Z þ1

�1
gðpÞUpdp

�
; (8)

where gðpÞ and K are given by

Z 1

1
gðpÞdp ¼ 1 and K ¼

Z 1

1
gðpÞp2dp: (9)

As in [11], we will focus our analysis on a particular mass
term characterized by a new parameter, D, and known to
disfavor shell-like configurations [10],

Lm ¼ m2
�F

2
�

8ð1� 5DÞ Trð1�U�DðU2 �U3ÞÞ: (10)

This form follows from the choice of function gðpÞ
gðpÞ ¼ �ðp� 1Þ þDð�ðp� 2Þ � �ðp� 3ÞÞ

so that K ¼ 1� 5D which constrains the parameter D to
be in the range [0, 0.2] to keep the mass term from
becoming infinite. In the limit D ! 0, we recover the
original mass term in (4). This yields the static energy

EB
s ¼ EB

Sky þ EB
m;

each piece coming, respectively, from the Skyrme
Lagrangian (1) and the chiral symmetry breaking term
(10), respectively

EB
Sky ¼

Z
d3x

�
�F2

�

16
TrðLiL

iÞ þ 1

32e2
Trð½Li; Lj�2Þ

�

(11)

EB
m ¼ m2

�F
2
�

8ð1� 5DÞ Trð1�U�DðU2 �U3ÞÞ; (12)

where i and j run over spatial components only and B is the
baryonic number.

III. BINDING ENERGIES

The lowest static energy configurations for the B ¼ 1
and B ¼ 2 Skyrmions turn out to have spherical and axial
symmetry, respectively. When rotational deformations are
taken into account, these symmetries are lost. The B ¼ 1
configurations still retains axial symmetry whereas the
B ¼ 2 solution may show possible nonaxial deformations
due to the form of the rotational energy [Eq. (18)]. Yet, it
was shown in [12] that the contribution coming from non-
axial deformation is bounded to be at the very most 1% of
the deuteron mass and axial symmetry should represent a
very good approximation for the B ¼ 2 configuration. In
that view, we use the axially-symmetric ansatz to perform
our calculations reducing considerably computation time
with respect to a full 3D computation. We write the � and
� fields accordingly in terms of the unit vector c ð�; zÞ ¼
ðc 1; c 2; c 3Þ [14]:

� ¼ c 3; �1 ¼ c 1 cosn�;

�2 ¼ c 1 sinn�; �3 ¼ c 2:
(13)

Using the mass term in (10) the expressions for the static
energy becomes

EB
Sky ¼ 2�

Z
dzd��

�
ð@�c � @�c þ @zc � @zc Þ

�
�
1þ n2

c 2
1

2�2

�
þ 1

2
j@zc � @�c j2 þ n2

c 2
1

�2

�

(14)

EB
� ¼ 2�

2	2

ð1� 5DÞ
Z

dzd��ð1� c 3Þ
� ð1þDð1� 2c 3 � 4c 2

3ÞÞ (15)

where we have used 2
ffiffiffi
2

p
=eF� and F�=ð2

ffiffiffi
2

p
eÞ as units of

length and energy, respectively. Here 	 ¼ 2
ffiffi
2

p
m�

eF�
and the

baryon number given by

B ¼ n

�

Z
dzd�c 1j@�c � @zc j: (16)

In order for the Skyrmions to represent the desired
physical states, we must add to the static energy a contri-
bution, EB

rot, coming from the rotational energy due to
nucleon and deuteron spin and isospin. The nucleon and
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the deuteron masses are respectively

EN ¼ E1
s þ E1

rot with

E1
rot ¼ 1

4

�ð1� W11

U11
Þ2

V11 � W2
11

U11

þ 1

U11

þ 1

2U33

�
(17)

ED ¼ E2
s þ E2

rot with E2
rot ¼ 1

V11

: (18)

Here Uii, Vii and Wii are moment of inertia given in the
axial-symmetric ansatz by [8,12]:

U11 ¼ 2�

e4

Z
dzd��

�
c 2

1 þ 2c 2
2 þ

1

2

��
@�c � @�c

þ @zc � @zc þ n2
c 2

1

�2

�
c 2

2 (19)

þ ð@�c 3Þ2 þ ð@zc 3Þ2 þ n2
c 4

1

�2

��
; (20)

U33 ¼ 2�

e4

Z
dzd��c 2

1ð@�c � @�c þ @zc � @zc þ 2Þ;
(21)

V11 ¼ 2�

e4

Z
dzd��

�
j�@zc � z@�c j2

�
1þ n2

c 2
1

2�2

�

þ z2n2
c 2

1

�2
þ 1

2
ð�2 þ z2Þj@�c � @zc j2

�
; (22)

W11 ¼ 2�

e4

Z
dzd��

�
½c 1ð�@zc 2 � z@�c 2Þ � c 2ð�@zc 1

� z@�c 1Þ�
�
1þ 1

2

�
ð@zc 3Þ2 þ ð@�c 3Þ2 þ c 2

1

�2

��

(23)

þ c 3

2
ðz@zc 3 þ �@�c 3Þ½@�c 2@zc 1 � @�c 1@zc 2�

þ zc 1c 2

2�
ð2þ @�c � @�c þ @zc � @zc Þ

�
: (24)

A solution for the nucleon and deuteron correspond to
the configuration of c ð�; zÞ which minimize EN and ED

respectively and obeys (16). In this work, this is achieved
using a simulated-annealing algorithm, a procedure which
allows computing the energies of the nucleon and the
deuteron directly without having to solve an integro-
differential equation. A grid of 250� 500 points is used,
corresponding to 0<�< 10 and �10< z < 10 respec-

tively in units of 2
ffiffiffi
2

p
=eF�. As opposed to previous work in

[11], both the static and rotational energy are included in
the minimization of EN and ED, thus allowing for rota-
tional deformations (within the axial approximation) for
the B ¼ 2 as well as for the B ¼ 1 Skyrmions. During

computation, configurations that lead to large deviation of
the baryonic number, larger that 0.1%, are rejected in order
to guarantee that the solution remains in the right topologi-
cal sector. The simulated annealing process comes to an
end when the configuration is cooled down to a tempera-
ture of 10�8 which corresponds to variations of the total
energy of the Skyrmion that are smaller than 0.01%.
Calculations are performed requesting a precision of less

than 1000th on the baryonic number to insure that we stay
in the right topological sector and the simulations come to
an end until the variations on the value of the total energy
of the Skyrmion are also less than 1000th of its value.
The solutions are found for a finite set of values of D

within the interval [0, 0.2[. Our procedure requires first that
the lowest energy configuration for the nucleon possesses a
mass of EN ¼ 939 MeV. So, for each value ofD, we find a
solution for a given value of the parameter F� and iterate
by adjusting F� until it replicates the nucleon mass at
939MeV. The value of e ¼ 4:84 remains constant through-
out all our calculations.1 The second step consists in eval-
uating the mass of the deuteron for this set of parameters.

The results are presented in the form of the ratio R ¼ ED

2EN
as

in [11]. We recall that in this latter work, fixed values of the
model parameters (F� ¼ 129 MeV and e ¼ 5:44) were
used so the information regarding the relative importance
of the binding energy was the most meaningful contrary to
here where the value of ED would suffice. The main
purpose of this work is to look at that ratio as the value
of D increases and most importantly, to verify if the mass
term in (10) can accommodate for both the nucleon and
deuteron mass i.e. to obtain the experimental value R ¼
0:9989.
The results for the nucleon and deuteron masses are

presented in Table I. These are dissected into contributions
coming from the static energy EB

s , which contains the mass

term EB
m, and the rotational energy EB

rot. The ratio R ¼ ED

2EN

is also shown in order to verify if the generalized mass term
proposed in [10] can match the experimental value of
0.9989 for an appropriate value of the parameter D. The
second of column of data shows the precision of the fit of
F� in favor of the target value of EN ¼ 939:0 MeV. So the
uncertainties on absolute value of the nucleon and deuteron
masses are close to 0.05%. On the other hand, the uncer-

tainty of the ratio R ¼ ED

2EN
is less dependent on the scale F�

and should be closer to the precision attainable with the
simulated annealing minimization i.e. 0.01% or better. We
see that the relative weight of the mass term in both the
nucleon and the deuteron masses increases with the pa-
rameter D. At first sight, Eq. (12) suggest such a depen-
dence on D however one must keep in mind that the
dependence is much more complex since the choice of

1We recall that F� ¼ 108 MeV, e ¼ 4:84, m� ¼ 138 MeV
and D ¼ 0 leads to correct values for the nucleon and delta
masses [6].
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F� (and hence 	) relies on the fit of the nucleon mass for
each value of D and this affect non trivially the field
configuration. On the contrary, the total static energies
EB
s ¼ EB

Sky þ EB
� diminish with D which means that the

contribution of the dynamical part of the Lagrangian LSky

is significantly decreasing. As for the rotational energy for
the nucleon and the deuteron, we observe a distinct behav-
ior. Whereas E1

rot increases regularly as a function ofD, the
deuteron rotational energy E2

rot shrinks considerably. So it
would seem that a larger mass term reduces the moments
of inertia for the nucleon. This is intuitively what one
expects since a large mass term compels the nucleon to a
smaller size. But the effect is quite the opposite for the
deuteron where the rotational energy is suppressed by more
than a factor of 2 in the interval fromD ¼ 0 toD ¼ 0:1975
despite the fact that the toroidal configuration shrinks in
size as D increases.

Finally, the results for the ratio R ¼ ED

2EN
(R ¼ E2

s

2E1
s
) as a

function of the mass parameter D are illustrated as black
squares (black triangles) in Fig. 1 which come from the
same family of solutions that were computed by minimiz-
ing (17) and (18). Also presented for comparison are data

for ratios R ¼ ED

2EN
as empty circles (R ¼ E2

s

2E1
s
as empty

diamonds) obtained in [11] from the minimization of the
solution static energy alone with fixed values of F� ¼
129 MeV and e ¼ 5:44. The solid line at R ¼ 1 corre-
sponds to the limit of instability of the bound state whereas

the experimental value for ED

2EN
¼ 0:99979, i.e. very close to

1. The set of points R ¼ ED

2EN
(black squares) clearly show

that instead of having a ratio increasing with the value ofD
to match the experimental value, it is decreasing, meaning
that the deuteron is bounded even more strongly as D
increases. This leaves no possibility for a model with
such a mass term to comply with data on the deuteron
mass. A question immediately arises as to whether non-
axial deformations for the B ¼ 2 solution would deter this

conclusion. The answer is no since such solution would
only decrease the computed mass of the deuteron ED and
proportionately increase its binding energy. On the other
hand, comparing the sets of data in Fig. 1 indicates that the
minimization of the solution static energy with F� ¼
129 MeV (empty diamonds) was rather successful at de-

scribing the general behavior of R ¼ ED

2EN
(black squares).

FIG. 1. Ratio R ¼ ED

2EN
(R ¼ E2

s

2E1
s
) as a function of the mass

parameter D are illustrated as black squares (black triangles) in
Figure 1 which come from the same family of solutions that were
computed by minimizing (17) and (18). Also presented for

comparison are data for ratios R ¼ ED

2EN
as empty circles (R ¼

E2
s

2E1
s
as empty diamonds) obtained in [11] from the minimization

of the solution static energy alone. The dashed line at R ¼ 1
corresponds to the limit of instability of the bound state whereas
the experimental value for ED

2EN
¼ 0:99979, i.e. very close to 1.

TABLE I. Nucleon and deuteron masses obtained by minimizing the are presented in Table I. These are dissected into contributions
coming from the static energy EB

s , the mass term EB
� and the rotational energy EB

rot.

D F� EN E1
s E1

� E1
rot ED E2

s E2
� E2

rot ED=ð2ENÞ
0 109.04 938.82 879.18 53.90 59.65 938.82 1680.44 75.96 13.39 0.9021

0.02 108.65 939.36 879.01 56.27 60.35 939.36 1681.22 80.30 13.35 0.9020

0.04 108.04 939.03 877.99 59.32 61.04 939.03 1680.29 85.57 13.27 0.9018

0.06 107.33 939.01 877.07 62.97 61.94 939.01 1679.86 92.02 13.18 0.9015

0.08 106.46 939.35 876.29 67.59 63.05 939.35 1679.90 99.91 13.08 0.9011

0.1 105.15 938.69 874.16 73.43 64.53 938.69 1677.89 110.28 12.92 0.9006

0.12 103.47 939.07 872.58 81.39 66.49 939.07 1677.33 123.92 12.71 0.8999

0.14 100.80 938.87 869.74 92.84 69.13 938.87 1674.86 143.25 12.38 0.8985

0.16 96.20 938.67 865.68 110.66 72.99 938.67 1670.69 173.18 11.82 0.8962

0.18 86.18 938.96 864.09 144.94 74.87 938.96 1664.68 228.76 10.59 0.8921

0.19 73.68 939.06 862.87 176.54 76.20 939.06 1658.78 283.03 9.05 0.8880

0.195 60.05 938.66 863.33 204.35 75.33 938.66 1656.44 329.49 7.38 0.8863

0.1975 46.65 938.83 862.76 223.73 76.07 938.83 1653.69 362.59 5.73 0.8838
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So the procedure in [11] could serve as a good indication
when a full calculation including rotational deformation is
prohibitive. Despite the limitations of the model regarding
its ability to replicate with precision the nucleon and
deuteron masses, it remains a convenient prototype for
low-energy QCD and perhaps nuclear physics.

IV. VIBRATIONALMODESANDTHEIR ENERGIES

We consider here briefly the vibrational modes of the
B ¼ 1 and B ¼ 2, where (iso-)rotations have been in-
cluded in the minimization, in order to see if the B ¼ 2
Skyrmion, which correspond to the deuteron in the axial
symmetry approximation, tends to be more rigid as the
parameter D increases. The vibrational modes are deter-
mined by applying a time dependent global scale trans-
formations in the x, y and z directions in the form
xi ! 	ixi as first introduced by Hadjuk and Schwesinger
[15] and later used by Marleau and Davies [11]. The fields
change according to

�ðxÞ ! �ð	kxkÞ and �aðxÞ ! �að	kxkÞ; (25)

Substitution of (25) and (1) with the mass term (10)
results in the following Lagrangian

L ¼ 1

2
Mijð	Þ

_	i
_	j

	i	j

� Vð	Þ; (26)

where the matricesMijð	Þ and Vð	Þ are obtained by direct
inspection. We then proceed according to the procedure
described in [11,15] and consider only small amplitude
oscillations 
i around the stable configuration 	i ¼ 	0

i

	i ¼ 	0
i e


i ¼ 	0
i

�
1þ 
i þ 1

2

2
i þ . . .

�

and get the Lagrangian

L ¼ 1

2
Mijð	0Þ _
i _
j � 1

2

i
jvijð	0Þ: (27)

Performing the change of coordinates
 ¼ A�, with A such
as ATMð	0ÞA ¼ 1 to obtain the Hamiltonian in a standard
form

Hvib ¼ 1

2

X
i

@2

@�2
i

þ 1

2
ðATvAÞij�i�j: (28)

such that diagonalizing the matrix ðATvAÞij,
ðBTATvABÞij ¼ !2

i �ij; (29)

leads directly to the eigenvalues and eigenvectors of the
vibrational modes. One can then write the energies for the
different vibrational modes as

Evib
i ¼ hni!i; (30)

where the zero point of energy have been set to zero. Each
of three eigenvectors obtained from (29) corresponds to
one type of vibration. They are orthogonal in the �i basis

but it is useful to express them in terms of the Cartesian
directions xi, allowing us to see in which directions and
amplitudes the Skyrmions are deformed. For the B ¼ 2
Skyrmion, the first type of eigenvector has the form

/ 1 1 9:715
� 	

(31)

in Cartesian coordinates, which could be identified to some
sort of axially-symmetric breathing mode since the
compression-expansion is in phase in all direction. This
configuration is expected given the toroidal shape of the
B ¼ 2 Skyrmion. As the D increases, the value of the third
component goes from 9.715 forD ¼ 0:02 to 1.002 forD ¼
0:1975. For D ¼ 0, the oscillation amplitude is almost
entirely suppressed in the x� y plane while remaining
important along the z- direction. The second eigenvector
has the same form as the one for the B ¼ 1 Skyrmion

/ 1 �1 0
� 	

(32)

corresponding to an compression along the x axis while
there is expansion along the y axis and vice-versa. Finally,
the third eigenvector looks like

/ 1 1 �0:757
� 	

(33)

with the third component ranging from �0:757 for D ¼ 0
to �1:95 for D ¼ 0:1975. All eigenvectors are consistent
with the notion of small oscillation around an axial
configuration.
We analyzed vibrational energies of the B ¼ 1

Skyrmion for solutions obtained both with and without
the rotational energy in the minimization in [11].
Vibrational energies, and thus rigidity, were found to in-
crease with D. We concentrate here on the B ¼ 2
Skyrmion, including rotational energy minimization in
the axially-symmetric ansatz, to verify if the same behavior
regarding increases still holds. The results are presented in
Table II. We can see from the data that similarly to the
nucleon, the energy of the breathing mode increases as the

TABLE II. Vibrational energies for the B ¼ 2 Skyrmion in-
cluding rotational energy minimization.

D !br !2 !3

0 209.52 296.37 196.67

0.02 211.43 297.01 197.4

0.04 214.08 297.42 197.51

0.06 217.9 297.98 197.22

0.08 223.15 298.74 196.48

0.1 230.11 299.17 194.91

0.12 239.98 299.98 192.75

0.14 254.27 300.42 189.08

0.16 277.36 300.05 182.7

0.18 322.83 295.7 169.09

0.19 369.68 284.53 152.51

0.195 410.31 266.62 134.65

0.1975 435.51 242.9 116.55
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value of D gets larger. However, a totally different behav-
ior is observed for the two remaining modes of vibration of
the deuteron. The energies from the !2 and !3 modes get
smaller with the increasing D, as can be seen on Fig. 2.
Furthermore, the breathing mode is not the lowest energy
vibrational mode for the deuteron. For the nucleon, the
energies of the !2 and !3 modes were shown to increase
with D [11], supporting the idea that an increasing rigidity
would result from the inclusion of a large mass term. For
the deuteron, however, the apparent contradictory behavior
of !i’s suggest a more elaborate explanation. To this end,
some insight could be provided by the form of the vector
representing the deformation in Cartesian coordinates. Let
us first we consider the breathing mode. This mode repre-
sents simultaneous expansions (or contractions) of the
Skyrmion in all directions around some ground state,
thus modifying the total volume of the soliton. But as
mentioned in the previous section, the increase ofD should
compel the Skyrmion to occupy a smaller volume. Since
this vibrational mode involves expansion of the Skyrmion,
the energy required for excitation should increase as is
readily observed. The case of the !2 mode is somewhat
different. It can be visualized as a torus going from a
circular cross section in the x� y plane to an ellipsoid
shape, the major axis oscillating from one axis to the other.
For small vibrations, the total volume occupied by the
Skyrmion should not change very much so the constraining
effect of the mass term should not be as important. The
variation of !2 expressed in MeV is somewhat misleading
in that respect, as it is obtained from the!i’s resulting from

(30) multiplied by the conversion factor F�e=ð2
ffiffiffi
2

p Þ. It

turns out that the decrease of the !2 with respect to D is
entirely due to the changes in the parameter F�. Finally, for
the third mode, the oscillations involve expansion in x and
y-directions while there is compression in the z-direction,
with the relative importance of the z displacement increas-
ing as D get larger. Once again, this mode allows the
changes in volume of the Skyrmion to remain minimal
during the vibration even for large D and as for !2, the
parameter F� is responsible for the declining behavior of
!3. The mass term propose by [10] thus seems to imply
lower vibrational states for the deuteron in the !2 and !3

mode while becoming more rigid against the breathing
oscillations.

V. CONCLUSION

We have computed the nucleon and deuteron masses in
the framework of the Skyrme model with a chiral symme-
try breaking term proposed by Kopeliovich, Piette and
Zakrzewski [10]. The calculations allowed axial deforma-
tions due to rotational and/or isorotational contributions.
For a value of the Skyrme parameter e ¼ 4:84, it was not
possible to find a set of values for F� and D which would
replicate the small experimental value for the binding
energy of the deuteron. Furthermore, these results com-
bined to previous calculations in [11] suggests that the ratio
R is not very sensitive to the Skyrme parameter e which
would relegate the model only to a gross approximation or
a prototype model of nuclear matter. There are of course
other alternatives to the simple form of Lagrangian in (1).
A Skyrme-like effective Lagrangian, derived from QCD,
would most likely include higher or all orders in deriva-

FIG. 2. Ratios of vibrational energies with respect to the total energy of the nucleon Ri ¼ !i

EN
as a function of the mass parameter D

where in (a) i labels the vibrational mode i ¼ br, in (b) i ¼ 2 and in (c) i ¼ 3. Triangles (squares) correspond to the nucleon (deuteron)
where rotational energy have been included in the minimization for both cases.
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tives of the pion field such as those proposed in [16,17]. It
remains to be seen if such Lagrangians can accommodate
both the nucleon and deuteron masses. On the other hand,
all our calculations were obtained assuming null zero-point
energy. Going beyond zero-mode quantization could ac-
count for the small deuteron binding energy as suggested
by the work of Leese et al [18]. This work also presented a
computation of the vibrational modes and energies for the

deuteron which showed that its toroidal configuration re-
sults in an increased complexity in the vibrational modes.
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