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The electromagnetic pion form factor is calculated in a Bethe-Salpeter approach which accounts for

pion rescattering. In the scattering kernel the pion-pion contact interaction from lowest-order chiral

perturbation theory is considered together with an optional vector meson in the s channel. Correspond-

ingly the virtual photon couples to a two-pion state and optionally to the vector meson. It is shown that for

reasonable ranges of input parameters the experimentally observed pion form factor cannot be described

by the iterated pion-pion contact interaction alone, i.e. without an elementary vector meson. The inclusion

of an elementary vector meson allows for an excellent description. This completes a recent study (‘‘Infor-

mation on the structure of the a1 from tau decay’’) where it has been shown that the a1 meson can be well

understood as a rescattering process of the � meson and the pion. Here it is demonstrated that within the

same formalism the � meson cannot be understood as a pion-pion rescattering process. This suggests that

the chiral partners a1 and � are not only different in mass, but also different in nature.
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I. INTRODUCTION AND SUMMARY

The � meson and the a1 meson are chiral partners in the
following sense: As deduced, e.g., from tau decays [1], the
�=a1 meson couples strongly to the isovector current of a
vector/axial-vector type. On the other hand, vector and
axial-vector currents are related by chiral transformations.
The fact that the masses of the � and a1 mesons are very
different is explained by the spontaneous breaking of chiral
symmetry. According to common lore the � and the a1
meson are both quark-antiquark states. In this quark-model
picture the two mesons have the same nature, but differ in
mass due to chiral symmetry breaking.

Recently, this picture has been cast into doubt. As has
been shown in [2] the spectrum of lowest-lying axial-
vector mesons—including the a1 meson—can be under-
stood as being dynamically generated from coupled-
channel scattering processes of Goldstone bosons on vector
mesons. Concerning the a1 meson this has been recon-
firmed in a technically somewhat different approach in [3].
In these works [2,3] axial-vector meson masses have been
deduced from the scattering amplitudes. The latter, how-
ever, are not observable quantities since the vector mesons
are not asymptotic states.1

An analysis of a real observable, namely, the semiha-
dronic tau decay into three pions, has been studied in [4,5].
In this decay process the a1 meson appears as a prominent
bump in the spectrum. As demonstrated in [4,5] this bump
can be well explained by a �-� rescattering process with-
out the need for an elementary (quark-antiquark) axial-

vector meson. This immediately raises the question
whether also the � meson, as the chiral partner of the a1
meson, can be seen as a meson-meson rescattering process
without the need for an elementary (quark-antiquark) vec-
tor meson. In principle, such a question has already been
addressed in [6]. Based on the N=D method, it has been
shown that pion-pion rescattering without an elementary
vector meson is not sufficient to describe the elastic pion-
scattering phase shifts.
In the present paper we will add three aspects to the

analysis of the �meson. First, to obtain a consistent picture
with our a1 analysis [4,5], we will use a Bethe-Salpeter
approach, i.e. the very same method which explained the
a1 bump in the tau decay data by meson-meson rescatter-
ing without an elementary axial-vector meson [4,5].
Second, we do not concentrate on the pion-scattering phase
shift but rather on the electromagnetic pion form factor as
this probes the isovector-vector channel just like the tau
decay into three pions probes the isovector–axial-vector
channel. As an intermediate step we will also obtain the
elastic pion-scattering phase shift for the p-wave isovector
channel.
We will study here two scenarios to describe the pion

form factor: one with and one without an elementary vector
meson. In both cases we take into account the pion-pion
and pion-photon interactions from lowest-order chiral
perturbation theory. It is an important aspect that these
interactions are fixed model independently by chiral
[2,3,6] or charge symmetry, respectively. In full qualitative
agreement with [6] we will find that an elementary vector
meson is needed to describe the pion form factor.
Thus, together with our previous analysis of the a1 meson
[4,5] it is suggestive that � and a1 are not only different
in mass, but also in nature (a1 ¼ dominantly �-� state,
� ¼ dominantly quark-antiquark state). Such a finding is
in line with the hadrogenesis conjecture [2,7,8] which

1Strictly speaking also the Goldstone bosons are not asymp-
totic states, but, e.g., the pions are stable with respect to the
strong interaction. Therefore the pions in practice live long
enough to allow for pion beams and for pions reaching the
detectors. In contrast, vector mesons only show up in scattering
phase shifts and not as scattering partners.
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implies that the lowest-lying pseudoscalar and vector me-
sons (and in the baryon sector the nucleon octet and the
Delta decuplet) are dominantly quark-antiquark (three-
quark) states while other low-lying hadrons are dynami-
cally generated.

There is a third, technical, aspect why we present this
analysis in spite of the fact that the qualitative outcome is
fully in line with the findings of [6]: Typically the spectral
information of a resonance is determined in a Dyson-
Schwinger approach, i.e. by determining a one-body quan-
tity, the self-energy. In contrast, a Bethe-Salpeter approach
starts from the objects which form the resonance, i.e. from
a two-body quantity, the scattering amplitude. It is inter-
esting to work out the connections between the two ap-
proaches, in particular, for the nontrivial case where there
is not only the resonance in the scattering kernel, but also
an additional nonresonant, here pointlike, interaction.

For the pion rescattering we will restrict ourselves in the
following to the elastic channel, as will be discussed in
more detail below. In principle, it is straightforward to
include the K �K channel as intermediate states. However,
there is a second channel with about the same threshold,
namely, the �! channel which then should also be in-
cluded. It can also be seen as one, presumably important,
representative of the four-pion channel. The inclusion of
the �! channel is more demanding since the scattering
kernel of �� ! !� is not in the realm of chiral perturba-
tion theory. The power counting for pseudoscalar and
vector mesons as developed in [8,9] can be used for such
an extension. However, the interactions which play a role
there are not restricted to point interactions and s-channel
resonance formation while they are in our present approach
as we will discuss in more detail below. Rather t- and
u-channel exchange diagrams come into play there which
calls for a proper treatment of the appearing left-hand cuts
within a resummation scheme like the Bethe-Salpeter ap-
proach (cf. also the discussion in [6,10]). Without a proper
handling of the left-hand cuts analyticity is spoiled and
statements concerning the possibility to dynamically gen-
erate a state become questionable. Such an extension is
beyond the scope of the present work. We therefore restrict
ourselves to elastic pion rescattering and leave the inclu-
sion of the channels K �K and �! for future work.

The paper is structured in the following way: In the next
section we present the formalism to calculate the pion form
factor. After some general considerations we will formu-
late the Bethe-Salpeter equation for pion rescattering in
Sec. II B. The pion form factor is addressed in Sec. II C.
Section II D is devoted to a comparison of the Dyson-
Schwinger and the Bethe-Salpeter equations. In Sec. III
the results are presented and compared to the experimental
data for the pion form factor and the pion-scattering phase
shift. The two Secs. III A and III B concern the two scenar-
ios without and with an elementary vector meson. Finally
an Appendix is added for some technical details.

II. FORMALISM

A. General considerations

The electromagnetic pion form factor is defined via

h�þðp0Þjj�emj�þðpÞi ¼ ðpþ p0Þ�F�ðq2Þ; (1)

with q ¼ p� p0 and the electromagnetic current j�em. The
normalization is chosen such that the form factor is unity
for the pure QED process where only the charge of the pion
is probed. The timelike region of the pion form factor is
accessible by the reaction eþe� ! �þ�� [11–13]. The
pion form factor has been studied by many groups; see,
e.g., [14–18] and references therein. However, a Bethe-
Salpeter approach has rarely been used and the question
whether one can understand the pion form factor by pure
rescattering of pions without an elementary vector meson
has not been addressed. For the scenario where an elemen-
tary vector meson is included our approach is technically
very similar to the one of [17]. Only the renormalization
issue is treated somewhat differently where we take into
account the considerations of [2,19], as will be explained
below. For a Bethe-Salpeter approach, i.e. including re-
scattering, one needs at least the scattering kernels for the
following reactions: eþe� ! �þ�� and �þ�� !
�þ��. In principle, one also needs the elastic channel
eþe� ! eþe�, but as a nonhadronic channel its contribu-
tion is negligibly small (cf. also the Appendix). One can
also imagine considering other intermediate states like K �K
or 4�. In the following we restrict ourselves to center-of-
mass energies below 1 GeV. The threshold for K �K produc-
tion lies at about 1 GeVand it opens up as a pwave. Thus it
should be reasonable to neglect this channel. If one in-
cluded K �K, one should presumably also consider �!
which is a representative of the four-pion channel. The
nominal threshold for �! is at about 900 MeV. For un-
correlated pions the 4� threshold is even below 600 MeV.
Experimentally, however, it turns out that the four-pion
channel is not very important below 1 GeV [20]. Therefore,
we keep things as simple as possible and consider only
two-pion intermediate states for the reaction of interest,
eþe� ! �þ��.
Finally, a comment is in order concerning the three-pion

intermediate state. This state is forbidden by G parity, but
since isospin is not an exact symmetry, such an intermedi-
ate state is possible. In particular, the three pions might be
correlated to an ! meson. Thus the small probability to
violate isospin can be overcompensated by the large proba-
bility to create a sharp resonance. Indeed, one observes the
! meson in the reaction eþe� ! �þ�� (‘‘�-! mixing’’).
However, if one stays outside of the isolated ! peak there
is no further visible trace of the three-pion intermediate
state. The present work is not concerned with the isospin
violating mixing to the ! meson. It is well known how to
include this mixing on a phenomenological level [17,21].
For the present work we ignore this aspect and demand
exact isospin symmetry.
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Under this assumption additional experimental informa-
tion is available: In the limit where the isospin symmetry is
exact one can relate the pion form factor to the decay of the
tau lepton into neutrino plus two pions. In this limit the
hadronic spectral information extracted from the latter
process is related to the pion form factor by [1]

v1ðsÞ ¼ 1

12

�
1� 4m2

�

s

�
3=2jF�ðsÞj2; (2)

where m� denotes the pion mass. In reality, isospin sym-
metry is explicitly broken by the difference between up-
and down-quark masses and by electromagnetic effects.
This breaking induces differences between the ‘‘neutral’’
pion form factor defined in (1) and the ‘‘charged’’ pion
form factor which can be extracted from (2). Therefore one
should keep in mind that an excellent description of the
(neutral) pion form factor (1) does not necessarily imply a
reproduction of v1 with the very same quality, and vice
versa. In the present work we will ignore isospin breaking
effects. Concerning this issue for low-energy reactions
where chiral perturbation theory applies, we refer to [22]
and references therein.

For the construction of the scattering kernels we follow
the logic of [4,5]: If there is an elementary resonance in the
kinematical region of interest we include the correspond-
ing s-channel diagram in the kernel. All other interactions
are smooth functions of the center-of-mass energy

ffiffiffi
s

p
. We

approximate these nonresonant interactions by the respec-
tive lowest-order term of chiral perturbation theory [23–
25]. Of course, one has to make sure that there is no double
counting in this procedure. We will come back to this point
later.

For our case of interest we have the following contribu-
tions to the kernels:

keþe�!�þ�� ¼ kQED
eþe�!��!�þ�� þ kres

eþe�!��!�0!�þ�� ;

(3)

k�þ��!�þ�� ¼ kpoint
�þ��!�þ�� þ kres

�þ��!�0!�þ�� : (4)

The nonresonant contributions kQED and kpoint emerge from
chiral perturbation theory in lowest, i.e. second, order [23–
25]. kQED is just the QED-type process where the virtual
photon couples to the charge of the pion. kpoint is the pion
four-point interaction of the nonlinear sigma model.

As already announced we study two scenarios: One with
and one without an elementary vector meson. In the latter
case we set kres��� ¼ 0 in (3) and (4). For the former case we
follow [8,17,26] and use the tensor realization of the vector
mesons. If the vector mesons were integrated out for low
energies, they would only contribute to the fourth-order
Lagrangian of chiral perturbation theory, not to the second-
order one [26,27]. Thus there is no double counting in (3)
and (4) on the level of the kernels.

The Bethe-Salpeter equation iterates the kernels to infi-
nite order. In that way loops emerge which require renor-
malization. In general, the renormalization of the
resummed series is not as clear-cut as the renormalization
of a perturbation theory. Ambiguities arise which can also
influence the issue of double counting [19]. We will come
back to that point later when discussing the Bethe-Salpeter
equation in more detail.

B. Pion-scattering amplitude

We discuss in the following the more general scenario
which includes an elementary vector meson. The other
scenario can easily be obtained by putting the appropriate
coupling constants (eV and hP, see below) to zero. We
specify first the scattering amplitude for elastic pion-pion
scattering: In the center-of-mass system the Feynman scat-
tering amplitudeM is decomposed into amplitudes tl with
fixed orbital angular momentum l:

M ðs; cos�Þ ¼ X
l

ð2lþ 1ÞtlðsÞPlðcos�Þ; (5)

with the Legendre polynomials Pl. The phase shift is given
by

cot�l ¼ Retl
Imtl

; (6)

and the optical theorem reads

Im ðt�1
l Þ ¼ � pc:m:

8�
ffiffiffi
s

p ; (7)

with the center-of-mass momentum pc:m:.
The final process of interest, eþe� ! �þ��, proceeds

via a virtual photon in the s channel. Consequently the
orbital angular momentum of the two-pion system is fixed
to l ¼ 1. The isospin is then fixed to I ¼ 1 to allow for an
overall symmetric two-pion state.
The scattering amplitude can be decomposed into two-

particle reducible and two-particle irreducible parts. The
latter constitute the kernel of the Bethe-Salpeter equation
while the former are automatically generated by this equa-
tion. As a first step we need an approximation for the
kernel. As already spelled out we use lowest-order chiral
perturbation theory plus a (bare) vector-meson s-channel
diagram. Note that the width of the vector meson is gen-
erated by the Bethe-Salpeter equation. Hence both parts are
tree-level contributions.
With the conventions of [8] we find

k�þ��!�þ�� ¼ kl¼1;I¼1ðsÞ

¼ 2

3f2
p2
c:m:

�
1�m2

Vh
2
P

8f2
s

s�m2
�;bare

�
: (8)

Here f ¼ 90 MeV denotes the pion-decay constant in the
chiral limit and m�;bare the mass of the elementary vector

meson. The combination mVhP parametrizes the coupling
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of the vector meson to the pions. The dimensionful quan-
tity mV is conveniently chosen as mV ¼ 776 MeV. In the
following we use the dimensionless quantity hP as a free
input parameter which will be adjusted to the data for the
scenario including an elementary vector meson. For the
alternative scenario, i.e. where there is no elementary
vector meson, we simply set hP to zero. Finally we note

for completeness: pc:m: ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s� 4m2

�

p
with the pion mass

m�.
With the formalism of [2] the Bethe-Salpeter equation

reads

t�1
l¼1;I¼1ðsÞ ¼ k�1

l¼1;I¼1ðsÞ � IðsÞ þ ReIð�2Þ: (9)

Here IðsÞ is the loop function

Iðs ¼ p2Þ ¼ �i
Z ddq

ð2�Þd

� 1

½q2 �m2
� þ i��½ðq� pÞ2 �m2

� þ i�� ;

(10)

regularized by dimensional regularization with d ¼ 4þ
2�. Several remarks are in order here:

(1) Unitarity (7) is exactly fulfilled by (9) since Imk ¼
0 (two-particle irreducibility) and ImIðsÞ ¼
pc:m:=ð8�

ffiffiffi
s

p Þ. This is in contrast to any perturbation
theory which satisfies unitarity only perturbatively,
but not exactly. On the other hand, exact unitarity is
an important requirement in the resonance region
[10], i.e. for energies larger than the region of ap-
plicability of strict chiral perturbation theory.

(2) Analyticity is also fulfilled by (9) since the kernel k
as a rational function—given in (8)—does not have
any cuts. This property is actually a necessary re-
quirement to write down the Bethe-Salpeter equa-
tion in an analytic way as given by (9).

(3) Crossing symmetry is not fulfilled by any Bethe-
Salpeter equation since processes are iterated in the
s channel, but not in the t and u channels. As pointed
out in [2] approximate crossing symmetry can be
ensured by a proper choice of the renormalization
point � (see the next item).

(4) The loop function is renormalized by the replace-
ment

IðsÞ ! IðsÞ � ReIð�2Þ ¼ JðsÞ � ReJð�2Þ; (11)

where we have introduced the finite function

JðsÞ ¼ 1

16�2

�
2þ 	ðsÞ log	ðsÞ � 1

	ðsÞ þ 1

�
; (12)

and the phase space 	ðsÞ ¼ 2pc:m:=
ffiffiffi
s

p
. By the re-

placement (11) a new parameter, the renormaliza-
tion point �, is introduced. Approximate crossing
symmetry is ensured if the full scattering amplitude
t reduces to the perturbative amplitude k below and

close to threshold [2]. For the scenario with an
elementary vector meson we will follow this re-
quirement and choose

� � m�: (13)

We will study the impact of moderate changes. For the
scenario without an elementary vector meson wewill allow
for arbitrary changes of the renormalization point. But we
will keep in mind that a drastic deviation from (13) is
physically questionable. As pointed out in [19] an im-
proper choice of � is even related to the double-counting
problem raised above.Wewill come back to that point later
when we discuss the results for our two scenarios.

C. Pion form factor

The process eþe� ! �þ�� can be treated within the
Bethe-Salpeter approach as a two-channel problem. A
simplification arises, however, if one treats the electromag-
netic processes on a perturbative level. This issue is worked
out in the Appendix. The result is

teþe�!�þ��ðsÞ � keþe�!�þ��ðsÞ
� ½1þðIðsÞ�ReIð ~�2ÞÞtl¼1;I¼1ðsÞ�; (14)

with the elastic pion-scattering amplitude tl¼1;I¼1 intro-

duced already in (9).
It is worth discussing the renormalization issue, i.e. the

replacement IðsÞ ! IðsÞ � ReIð ~�2Þ which led from (A2)
to (14). Note, in particular, that we have introduced a new
renormalization point ~� here which we kept distinct from
the renormalization point � of pion rescattering appearing
in (9). In principle, the coupled-channel Bethe-Salpeter
approach [2] demands that the renormalization points �
and ~� should be the same:

~� ¼ � � m�: (15)

For the scenario with an elementary vector meson in the
kernels we will follow this demand (15). For the case
without an elementary vector meson we will explore the
consequences of a free choice for � and ~� independent of
each other.
It is interesting to figure out which loop is actually

renormalized in (14): The first contribution to teþe�!�þ��

(coming from the 1) is just the emission of two pions
without rescattering. The second contribution is the pro-
cess where the pions rescatter. Thus the loop function I
appearing in (14) emerges from the process with an in-
coming virtual photon, two pions in the loop and two
outgoing pions. In contrast, the loop function appearing in
(9) emerges from the process with two incoming pions
instead of the virtual photon. One could imagine that in
principle both processes are renormalized in different
ways. Thus we feel legitimated to explore the consequen-
ces of different renormalization points � and ~�.
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Nonetheless, we recall the argument from [2] that the
choice (15) ensures approximate crossing symmetry. We
will come back to that point later.

The pion form factor emerges from the scattering am-
plitude teþe�!�þ�� by normalizing to the QED process, i.e.
the coupling of the virtual photon to the charge of the pion,
cf. (3):

F�ðsÞ¼ teþe�!�þ��ðsÞ
kQED
eþe�!��!�þ��ðsÞ

¼ keþe�!�þ��ðsÞ
kQED
eþe�!��!�þ��ðsÞ

½1þðIðsÞ�ReIð ~�2ÞÞtl¼1;I¼1ðsÞ�

¼
�
1þ

kres
eþe�!��!�0!�þ��ðsÞ
kQED
eþe�!��!�þ��ðsÞ

�

�½1þðIðsÞ�ReIð ~�2ÞÞtl¼1;I¼1ðsÞ�
¼:Ftree

� ðsÞ½1þðIðsÞ�ReIð ~�2ÞÞtl¼1;I¼1ðsÞ�: (16)

With the conventions of [8] and ignoring the electron mass
one gets

Ftree
� ðsÞ ¼ 1�m2

VhPeV
16ef2

s

s�m2
�;bare

; (17)

with the electromagnetic charge e of the pion �þ. The
dimensionless quantity eV parametrizes the coupling of the
photon to the elementary vector meson.

We have argued above that it is reasonable to explore the
consequences of choosing renormalization points � and ~�
different from each other and different from (15). It is
important to add, however, that this line of reasoning
does not hold for processes with an elementary vector
meson. In this case the pion loop starts at the three-point
vertex with the vector meson, no matter whether the vector
meson has emerged from a photon or from incoming pions.
Thus one has to renormalize always the same type of loop.
Consequently, for the scenario with an elementary vector
meson one should keep at least � ¼ ~�. Also from a
technical point of view the equality of � and ~� is neces-
sary: The tree-level singularity of Ftree

� ðsÞ at s ¼ m2
�;bare is

only dressed for the full F�ðsÞ if both renormalization
points coincide. Only in this case one finds

F�ðsÞ ¼ Ftree
� ðsÞ½1þ ðIðsÞ � ReIð�2ÞÞtl¼1;I¼1ðsÞ�

¼ Ftree
� ðsÞ

kl¼1;I¼1ðsÞ
1

k�1
l¼1;I¼1ðsÞ � ðIðsÞ � ReIð�2ÞÞ :

(18)

The tree-level pion form factor Ftree
� ðsÞ and the tree-level

pion-scattering amplitude kl¼1;I¼1ðsÞ both diverge at s ¼
m2

�;bare, but their ratio remains finite. The rewriting of (18)

cannot be achieved for � � ~�.
To summarize the renormalization issue: For the sce-

nario with an elementary vector meson we have only one

renormalization point. To ensure approximate crossing
symmetry we will use (15), but explore moderate devia-
tions from this relation. For the scenario without an ele-
mentary vector meson we will study the consequences of
arbitrary choices for the two renormalization points.

D. Resummations in the Bethe-Salpeter and the
Dyson-Schwinger equations

The discussion in the present section will concern, of
course, only the scenario with an elementary vector meson.
We start out slightly more general than the case considered
in the rest of the paper. At the same time we will be
somewhat more schematic (e.g., by concentrating on scalar
quantities for the Dyson-Schwinger equation and disre-
garding renormalization issues). Suppose that a scattering
process happens via a resonant and a nonresonant subpro-
cess, i.e. the scattering kernel is given by

K ¼ g21ðsÞ �
g22ðsÞ

s�m2
bare

¼ g21ðsÞ � g22ðsÞDbareðsÞ; (19)

cf. (8). Here g21 can be regarded as coming from a point
interaction between the scattering partners while g2 is the
coupling of the scattering partners to the resonance. The
scattering amplitude as obtained from the Bethe-Salpeter
equation, cf. (9) and (10), is given by

T ¼ K

1� KI
: (20)

The graphical version is displayed in Fig. 1. For conve-
nience we also introduce the modified scattering amplitude
which emerges if there was only the nonresonant part in the
kernel:

T0 ¼ g21
1� g21I

: (21)

For illustration we refer to Fig. 2.
Next we turn to the Dyson-Schwinger equation. It is

given by

FIG. 1. Bethe-Salpeter equation (top) and its kernel (bottom)
from (19). The dashed lines correspond to the scattering partners,
the solid line to the (bare) resonance propagator.
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D�1
full ¼ D�1

bare �� (22)

and displayed in Fig. 3. All nontrivial information is con-
tained in the self-energy � which appears in (22). The
standard approach is to approximate the self-energy by the
one-loop expression. For our case at hand this is given by

�one loop ¼ �g22I: (23)

Within the same spirit one calculates the scattering ampli-
tude in resonance approximation:

T�? Tres :¼ �g22Dfull: (24)

Of course, in the absence of the point interaction�g21 in
(19)—or in practice if all nonresonant interactions are
sufficiently small—the result of the Bethe-Salpeter equa-
tion is identical to the result of (24), if the full propagator is
obtained from the Dyson-Schwinger equation (22) within
the one-loop approximation (23) for the self-energy. In this
case one gets

Tjg21¼0 ¼
1

K�1 � I

��������g2
1
¼0
¼ �g22

D�1
bare þ g22I

¼ �g22Dfull

¼ Tres: (25)

However, for the more general case g21 � 0 it should be
clear that the result from the Bethe-Salpeter equation (20)

resums more processes than the one-loop plus resonance
approximation, (23) and (24), respectively. Therefore we
ask how we have to improve (23) and (24) such that they
contain the same information as (20). The demand is that
the scattering amplitude can be obtained from the full
propagator plus nonresonant terms. It is natural to expect
the following relation:

T ¼ T0 � T0Ig2Dfullg2IT
0 � g2Dfullg2IT

0 � T0Ig2Dfullg2

� g2Dfullg2; (26)

which is graphically displayed in Fig. 4. Note that here the
modified scattering amplitude (21) shows up which resums
the nonresonant scattering kernel. It is a straightforward
exercise to show that (26) is equivalent to (20) if the self-
energy is given by

� ¼ �g22I� g22I
2T0 ¼ �g22I

1

1� g21I
: (27)

The graphical version of this relation is shown in Fig. 5.
Note that the appearance of T0 instead of T in (27) is very
natural: The self-energy contains only one-particle irreduc-
ible diagrams. This would be spoiled by the appearance of
any intermediate resonance propagator. T contains such
diagrams while T0 does not.
The physics point we want to make is the following: In

resonance models one typically uses (23) and (24).
However, from a more general effective-field-theory point
of view one should not disregard point interactions—or
more general nonresonant interactions—without checking
their importance. Here the Bethe-Salpeter equation pro-
vides a natural tool. Alternatively, one can use the Dyson-
Schwinger equation together with the improved relations
(26) and (27). Even if one includes point interactions it is
common practice to treat them on a perturbative level
while for the resonant part a Dyson-Schwinger resumma-
tion is performed. The reason is clear from a practical point
of view: A bare resonance propagator needs a width to
provide sensible, nondivergent results. For the nonresonant
interactions it is not obvious that something is missing if
one does not resum them. However, from the point of view
of exact unitarity one should resum all interactions, just
like the Bethe-Salpeter equation automatically does.

FIG. 2. Bethe-Salpeter equation for a purely pointlike kernel.

FIG. 3. The Dyson-Schwinger equation. The solid line denotes
the bare and the double line the full resonance propagators.

FIG. 4. Representation of the scattering amplitude via the full propagator and the nonresonant terms. For details see the captions of
Figs. 1 and 3.
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Finally it is interesting to study how the high-energy
behavior is modified when changing from the one-loop
self-energy (23) to the improved version (27). For point
interactions g21ðsÞ is a polynomial in s and is real. The same

holds for g2ðsÞ. After renormalization the loop function
IðsÞ diverges logarithmically with s [cf. (12)]. Its imagi-
nary part reaches a constant. Therefore the real part of the
quantity �one loop=g

2
2 diverges logarithmically while its

imaginary part becomes constant. In contrast, the improved
quantity�=g22 has a real part which converges �1=g21 and
an imaginary part which drops to zero �1=ðg41log2sÞ.

After these general considerations how a Bethe-Salpeter
resummation compares to a Dyson-Schwinger resumma-
tion we return to the main subject of the present work. We
recall that the task is to figure out whether one needs an
elementary vector meson to describe the experimental data
for the electromagnetic pion form factor or whether it is
sufficient to iterate the point interaction of lowest-order
chiral perturbation theory.

III. RESULTS

The pion form factor is given in (16). With the ingre-
dients specified in (8), (9), (11), (12), and (17) one obtains
an expression which in general depends on the resonance
parameters hP, eV , andm�;bare of the bare vector meson and

on the renormalization points� and ~�. In the following we
will discuss the two scenarios where an elementary (bare)
vector meson is not included or is included, respectively.

A. Scenario without an elementary vector meson

The case where there is no elementary vector meson is
easily obtained by setting hP ¼ 0 in (8) and (17). In this
case the values for eV and m�;bare are irrelevant. The only

parameters left are the renormalization points. Demanding
in addition approximate crossing symmetry for the scatter-
ing amplitudes resulting from the Bethe-Salpeter equation,
i.e. fixing the renormalization points according to (15), one
is left with a parameter-free result. This result is compared
to data in Fig. 6, with the solid line labeled ‘‘low �.’’
Obviously, the pion four-point interaction of leading-order
chiral perturbation theory, iterated by the Bethe-Salpeter
equation, is insufficient to create the peak seen in the data.
This confirms the findings of [6]. Hence, one needs in
addition an elementary vector meson and in the following
section we will demonstrate that then an excellent descrip-
tion of the pion form factor can be obtained.

The physics case is closed with the previous remarks.
Nonetheless, it is interesting to explore whether it is tech-
nically possible at all to come close to the data in an
approach without an elementary vector meson.
Therefore, we abandon the constraints (15) in the follow-
ing and study the dependence of our result on the renor-
malization points � and ~�. It turns out that for choices
below the TeV range no appreciable peak is obtained. (We
also refer to [6] for a similar discussion concerning the
pion-scattering amplitude.) If one keeps the two renormal-
ization points the same, one can generate a peak for large
values of � ¼ ~�, but not a decent description of the data.
An example is provided in Fig. 6 by the dotted line labeled
‘‘high �.’’ A (technically but not physically) satisfying
description of the data is obtained, if the renormalization
points are allowed to differ from each other. This is dem-
onstrated in Fig. 6 by the dashed line labeled ‘‘two �s.’’
Here we have chosen � ¼ 1:1 TeV, ~� ¼ 10 TeV.
The technical success of this approach is nicely ex-

plained in [19]: It is shown there that an improper choice
of the renormalization point(s), i.e. a choice which deviates
significantly from (15), mimics an elementary resonance.
Therefore, such an improper choice can lead to the wrong
conclusion. The naive interpretation of the good agreement
between the dashed line in Fig. 6 and the data would be that
one can describe the pion form factor without an elemen-
tary vector meson. The correct interpretation, however, is
that one has introduced an elementary resonance through
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FIG. 6. Description of the modulus square of the pion form
factor in the Bethe-Salpeter approach without an elementary
vector meson, i.e. including in the kernels only the interactions
from lowest-order chiral perturbation theory. The solid line,
labeled ‘‘low �,’’ denotes the physically reasonable case where
the renormalization points are chosen according to (15). The
other lines denote the technically possible, but physically ques-
tionable, cases where the renormalization points are chosen in
the TeV range. The dotted line, labeled ‘‘high�,’’ is obtained for
� ¼ ~� ¼ 1:1 TeV and the dashed line, labeled ‘‘two �s,’’ for
� ¼ 1:1 TeV, ~� ¼ 10 TeV. See the main text for details. Data
taken from [11–13].

FIG. 5. The improved self-energy. For details see the captions
of Figs. 1 and 3.
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the back door by the (improper) choice for the renormal-
ization points.

B. Scenario including an elementary vector meson

The previous considerations also tell us something for
the case to which we turn now, namely, the one with an
elementary vector meson. Since an improper choice for the
renormalization points mimics an elementary resonance,
one generates double counting in such a case. Both the
included elementary state and the wrongly chosen renor-
malization point would introduce one and the same reso-
nance. This is avoided by the constraint (15) which we use
from now on more or less. Still we will study the conse-
quences of small deviations from (15).

Having fixed the renormalization points, we are left with
three parameters: The coupling of the virtual photon to the
elementary vector meson�eV , the coupling of the pions to
this vector meson �hP, and the (bare) mass of this vector
meson, m�;bare. It should not be too surprising that these

parameters can be used to fix the height, the position, and
the width of the peak and obtain in this way a good
description of the data. This is demonstrated in Fig. 7 by
the solid line. We note in passing that the largest deviation
of our curve from the data happens at the small additional
narrow peak slightly to the right of the peak position of the
broad main peak. This is just the appearance of the !
meson due to the already mentioned isospin violating
�-! mixing.

As already pointed out in Sec. II A, in the limit of exact
isospin symmetry the pion form factor is related to the
hadronic spectral information v1 extracted from tau de-
cays. The relation is expressed in (2). For v1 the compari-
son between data [1] and theory (including an elementary
vector meson) is shown in Fig. 8.
We have chosen the following parameter sets to produce

the theory curves displayed in Figs. 7 and 8:

para 1: hP ¼ 0:304; eV ¼ 0:228;

m�;bare ¼ 0:711 GeV;

para 2: hP ¼ 0:310; eV ¼ 0:228;

m�;bare ¼ 0:711 GeV:

(28)

Obviously, the first parameter set yields a very good de-
scription of the pion form factor (except for �-! mixing)
while the second parameter set better fits the spectral
information v1. There are two reasons why we have de-
cided to present two parameter sets instead of an inter-
mediate one which would lie on the lower edge of the error
bars for the pion form factor and on the upper edge for v1.
First, as already pointed out in Sec. II A, there is no need
that the data fully agree: Electromagnetic corrections and
other isospin breaking effects yield experimentally differ-
ent neutral and charged pion form factors. In [1] it has been
suggested that there is disagreement between the data even
if these effects are accounted for. Second, we used the
opportunity to display the sensitivity of the results on the
chosen resonance parameters: The deviation between the
values for hP from the first and from the second parameter
set is only on the 2% level, but one already sees visible
differences in Figs. 7 and 8. Clearly it is the high quality of
the data which enables a discrimination between the two
parameter sets for a given observable. We also note that
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FIG. 7. Description of the modulus square of the pion form
factor in the Bethe-Salpeter approach including in the kernels an
elementary vector-meson resonance together with the interac-
tions from lowest-order chiral perturbation theory. For parameter
set ‘‘para 1’’ the resonance parameters are chosen such that a
good description of the pion form factor is obtained concerning
height (mainly controlled by parameter eV), peak position
(m�;bare), and width (hP). For ‘‘para 2’’ a good description of

the spectral information v1 is achieved, cf. Figure 8. The
renormalization points are always chosen according to (15).
See the main text for details. Data taken from [11–13].
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FIG. 8. Description of the hadronic spectral information con-
tained in the process 
� ! �
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0��. The Bethe-Salpeter ap-
proach is used including an elementary vector meson,
cf. Figure 7 and the main text for details. Data taken from [1].

S. LEUPOLD PHYSICAL REVIEW D 80, 114012 (2009)

114012-8



variations of the other parameters eV and m�;bare on a

comparable level would worsen the agreement with the
data. It remains to be seen in future work if both observ-
ables of Figs. 7 and 8 can be simultaneously described even
better if electromagnetic corrections and isospin breaking
effects are taken into account in the Bethe-Salpeter ap-
proach. In view of the initial assumptions—isospin limit,
contact interactions from lowest-order chiral perturbation
theory—we can be very satisfied with the quality of the
theory curves and with the possibility to pin down the
resonance parameters at the few-percent level.

Finally we note that the parameters hP and eV have also
been determined in [8] from the partial decay widths of the
two-body decays of vector mesons. Our results (28) are
more precise, but in full agreement with the determination
of [8]. The precise value for hP from ‘‘para 1’’ in (28) has
already been used in [9] with good success in the descrip-
tion of the three-pion decay of the ! meson.

For completeness we also show the pion-scattering
phase shift introduced in (6). The result is displayed in
Fig. 9. Note that our intention was to achieve a good
description of the pion form factor. Hence our resonance
parameters (28) have not been tuned to describe the pion-
scattering phase shift. In view of that we can be rather
satisfied with the solid and the dotted lines of Fig. 9 which
use (15) and (28). We have also displayed the result for the
phase shift if no elementary vector meson is included using
(15), the dashed line in Fig. 9.

Finally we explore the consequence of a small deviation
from (15): Varying � ¼ ~� between the electron mass (i.e.

essentially zero) and twice the pion mass and keeping the
resonance parameters unchanged from (28) does not lead
to visible changes in Fig. 7. Even for larger deviations from
(15) one can argue that a change in the renormalization
point can be largely compensated by a change in the
resonance parameters. After all, what determines the pion
form factor to a large extent is the elementary vector
meson. In other words, the pion form factor is more or
less fixed by its total height, the peak position, and the peak
width. These quantities are dominantly influenced by the
vector-meson–photon coupling eV , the bare vector-meson
mass m�;bare, and the vector-meson–pion coupling hP,

respectively.
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APPENDIX: TWO-CHANNEL BETHE-SALPETER
EQUATION WITH A PERTURBATIVE CHANNEL

In this Appendix we keep the discussion more general
than in the rest of the paper, but also more schematic. We
consider a two-channel Bethe-Salpeter equation

T�1 ¼ K�1 � I; (A1)

with symmetric 2� 2 matrices T, K, and I where I is a
diagonal matrix. We want to determine the off-diagonal
matrix element T12 for the case in which all matrix ele-
ments of K except for K11 are very small. A straightfor-
ward exercise yields

T12 ¼ K12

1� I11K11 � I22K22 � I11I22ðK2
12 � K11K22Þ

� K12

1� I11K11

� K12ð1þ I11T11Þ: (A2)

In the last step we have used the fact that T11 can be
obtained in lowest-order approximation from the one-
channel Bethe-Salpeter equation

T�1
11 � K�1

11 � I11; (A3)

if all other entries of K are perturbatively small:

T11 ¼ K11 þ I22ðK2
12 � K11K22Þ

1� I11K11 � I22K22 � I11I22ðK2
12 � K11K22Þ

� K11

1� I11K11

: (A4)
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FIG. 9. Description of the pion-scattering phase shift in the
Bethe-Salpeter approach. The dashed line labeled ‘‘no �’’:
including in the kernel only the interaction from lowest-order
chiral perturbation theory. Solid and dotted lines labeled ‘‘with
�’’: including in addition an elementary vector-meson reso-
nance. For the differences between the parameter sets
‘‘para 1’’ (solid line) and ‘‘para 2’’ (dotted line), see the caption
of Fig. 7 and the main text for details. The data set 1=2 is taken
from [28,29].
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