
Nonleptonic two-body decays of the Bc meson in the light-front quark model
and the QCD factorization approach

Ho-Meoyng Choi1 and Chueng-Ryong Ji2

1Department of Physics, Teachers College, Kyungpook National University, Daegu, Korea 702-701
2Department of Physics, North Carolina State University, Raleigh, North Carolina 27695-8202, USA

(Received 28 September 2009; published 4 December 2009)

We study exclusive nonleptonic two-body Bc ! ðDðsÞ; �c; BðsÞÞ þ F decays with F (pseudoscalar or

vector mesons) factored out in the QCD factorization approach. The nonleptonic decay amplitudes are

related to the product of meson decay constants and the form factors for semileptonic Bc decays. As inputs

in obtaining the branching ratios for a large set of nonleptonic Bc decays, we use the weak form factors for

the semileptonic Bc ! ðDðsÞ; �c; BðsÞÞ decays in the whole kinematical region and the unmeasured meson

decay constants obtained from our previous light-front quark model. We compare our results for the

branching ratios with those of other theoretical studies.
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I. INTRODUCTION

The discovery of the Bc meson by the Collider Detector
at Fermilab (CDF) Collaboration [1] in p �p collisions atffiffiffi
s

p ¼ 1:8 TeV and the subsequent measurement of its life-
time have provided a new window for the analysis of the
heavy-quark dynamics and thus for an important test of
quantum chromodynamics. Recently the CDF and D0
Collaborations announced some new measurements of
the Bc meson lifetime and mass [2,3], �Bc

¼
0:463þ0:073

�0:065ðstatÞ � 0:036ðsystÞ ps [2], MBc
¼ 6275:6�

2:9ðstatÞ � 2:5ðsystÞ MeV [2], and 6300� 14ðstatÞ �
5ðsystÞ MeV [3]. The LHC is expected to produce around
�5� 1010 Bc events per year [4,5]. This will provide more
detailed information on the decay properties of the Bc

meson. Since the Bc mesons carry flavor explicitly (b
and c) and cannot annihilate into gluons, they are stable
against strong and electromagnetic annihilation processes.
The decays of the Bc meson are therefore only via weak
interactions, which can be divided into three classes at the
quark level: (1) the b ! q (q ¼ c, u) transition with the c
quark being a spectator, (2) the c ! q (q ¼ s, d) transition
with the b quark being a spectator, and (3) the weak
annihilation channels. Although the phase space of the c !
s, d transitions is much smaller than the phase space of the
b ! c, u transitions, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements are greatly in favor of the c quark
decay, i.e. jVcbj � jVcsj. In fact, the c-quark decays pro-
vide about�70% of the Bc decay width while the b-quark
decays and the weak annihilation yield about 20% and
10%, respectively [5]. This indicates that both b- and
c-quark decay processes contribute to the Bc decay width
on a comparable footing.

Because the b and c quarks can decay individually and
the Bc meson has a sufficiently large mass, one can study a
great variety of decay channels. There have been many
theoretical efforts to calculate the semileptonic [5–26] and
nonleptonic [4–16,27–42] decays of the Bc meson. The

semileptonic Bc decays provide a good opportunity to
measure not only the CKM elements such as jVcbj, jVubj,
jVcsj, and jVcdj, but also the weak form factors for the
transitions of Bc to bottom and charmed mesons. The
nonleptonic Bc decays, in which only hadrons appear in
the final state, are strongly influenced by the confining
color forces among the quarks. While in the semileptonic
transitions the long-distance QCD effects are described by
a few hadronic form factors parametrizing the hadronic
matrix elements of quark currents, the nonleptonic pro-
cesses are complicated by the phenomenon of the quark
rearrangement due to the exchange of soft and hard gluons.
The theoretical description of the nonleptonic decays in-
volves the matrix elements of the local four-quark opera-
tors. Although the four-quark operators are more
complicated than the current operators involved in the
semileptonic decays, the nonleptonic decays of the heavy
mesons are useful for exploring the most interesting aspect
of QCD, i.e. its nonperturbative long-range character.
In our recent paper [43], we analyzed the semileptonic

Bc decays such as Bc ! ðD;�c; B; BsÞ‘�‘ and �b !
Bc‘�‘ð‘ ¼ e;�; �Þ using our light-front quark model
(LFQM) based on the QCD-motivated effective LF
Hamiltonian [44–49]. The weak form factors f�ðq2Þ for
the semileptonic decays between two pseudoscalar mesons
are obtained in the qþ ¼ 0 frame (q2 ¼ �q2

? < 0) and

then analytically continued to the timelike region by
changing q2

? to �q2 in the form factor. The covariance

(i.e., frame independence) of our model has been checked
by performing the LF calculation in the qþ ¼ 0 frame in
parallel with the manifestly covariant calculation using the
exactly solvable covariant fermion field theory model in
ð3þ 1Þ dimensions. We also found the zero-mode contri-
bution to the form factor f�ðq2Þ and identified the zero-
mode operator that is convoluted with the initial and final
state LF wave functions.
In this paper, we extend our previous LFQM analysis of

the semileptonic Bc decays [43] to the nonleptonic two-
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body decays of Bc mesons such as Bc ! ðDðsÞ; �c; BðsÞÞP
and Bc ! ðD;�c; BðsÞÞV (here P and V denote pseudosca-

lar and vector mesons, respectively). The QCD factoriza-
tion approach is widely used since it works reasonably well
in heavy-quark physics [50–55]. The factorization approx-
imates the complicated nonleptonic decay amplitude into
the product of the meson decay constant and the form
factor. A justification of this assumption is usually based
on the idea of color transparency [56]. We shall use the
form factors for semileptonic Bc ! ðDðsÞ; �c; BðsÞÞ decays
as well as the meson decay constants obtained in our
LFQM [43,48] as input parameters for the nonleptonic
Bc decays. As done by many others [5–14], we consider
only the contribution of current-current operators at the
tree level and calculate the decay widths for various non-
leptonic Bc decays. As far as the decay width is concerned,
the contribution from the tree diagram is much larger than
that from the penguin diagram. The penguin contribution
may be important in evaluating the CP violation and
looking for new physics beyond the standard model, which
we do not consider in this work.

The paper is organized as follows. In Sec. II, we discuss
the weak Hamiltonian responsible for the nonleptonic two-
body decays of the Bc meson. In Sec. III, we present the
input parameters such as the weak decay constants and the
form factors obtained in our LFQM [43,48] based on the
QCD-motivated effective Hamiltonian [44,45]. The mix-
ing angles between � and �0 mesons are also analyzed,
both in octet-singlet and quark-flavor bases, to extract the
decay constants relevant to � and �0 mesons. Section IV is
devoted to the numerical results. A summary and conclu-
sions follow in Sec. V.

II. NONLEPTONIC TWO-BODY DECAYS OF THE
Bc MESON

The nonleptonic weak decays are described in the stan-
dard model by a single W-boson exchange diagram at tree
level. In the standard model, the nonleptonic Bc decays are
described by the effective Hamiltonian, which was ob-
tained by integrating out the heavyW boson and top quark.
For the case of b ! c, u and c ! s, d transitions at the
quark level, neglecting QCD penguin operators, one gets
the following effective weak Hamiltonian:

H b!cðuÞ
eff ¼ GFffiffiffi

2
p fVcb½c1ð�ÞOcb

1 þ c2ð�ÞOcb
2 �

þ Vub½c1ð�ÞOub
1 þ c2ð�ÞOub

2 � þ H:c:g (1)

and

H c!sðdÞ
eff ¼ GFffiffiffi

2
p fVcd½c1ð�ÞOcd

1 þ c2ð�ÞOcd
2 �

þ Vcs½c1ð�ÞOcs
1 þ c2ð�ÞOcs

2 � þ H:c:g; (2)

where GF is the Fermi coupling constant and Vq1q2 are the

corresponding CKM matrix elements. We use the central
values of the CKM matrix elements quoted by the Particle
Data Group (PDG) [57] that we summarize in Table I. The
effective weak Hamiltonian consists of products of local
four-quark operators O1;2 renormalized at the scale �, and

scale-dependent Wilson coefficients c1;2ð�Þ, which incor-

porate the short-distance effects arising from the renormal-
ization of H eff from � ¼ mW to � ¼ OðmbÞ. The local
four-quark operators O1 and O2 due to b and c decays are
given by

Oqb
1 ¼ ð �qbÞV�A½ð �d0uÞV�A þ ð�s0cÞV�A�ðq ¼ c; uÞ;

Oqb
2 ¼ ð �quÞV�Að �d0bÞV�A þ ð �qcÞV�Að�s0bÞV�Aðq ¼ c; uÞ;

Ocq
1 ¼ ð �cqÞV�Að �d0uÞV�Aðq ¼ s; dÞ;

Ocq
2 ¼ ð �cuÞV�Að �d0qÞV�Aðq ¼ s; dÞ; (3)

where ð �qqÞV�A ¼ �q��ð1� �5Þq and the rotated antiquark

fields are given by

�d 0 ¼ Vud
�dþ Vus �s; �s0 ¼ Vcd

�dþ Vcs �s: (4)

Without strong-interaction effects, one would have c1 ¼ 1
and c2 ¼ 0. However, this simple result is modified by
gluon exchange: i.e., the original weak vertices get renor-
malized and the new types of interactions (such as the
operators O2) are induced [51]. In these decays, the final
hadrons are produced in the form of pointlike color-singlet
objects with a large relative momentum. Thus, the hadro-
nization of the decay products occurs after they separate far
away from each other. This provides the possibility to
avoid the final state interaction. A more general treatment
of factorization was presented in [58,59].
For the operators O1 ¼ ð �q1q2ÞV�Að �q01q02ÞV�A and O2 ¼

ð �q1q02ÞV�Að �q01q2ÞV�A, using the Fierz transformation under
which V � A currents remain V � A currents, one gets the
following equivalent forms:

c1O1 þ c2O2 ¼ a1O1 þ c2
~O2 ¼ a2O2 þ c1

~O1; (5)

where

a1ð�Þ ¼ c1ð�Þ þ 1

Nc

c2ð�Þ;

a2ð�Þ ¼ c2ð�Þ þ 1

Nc

c1ð�Þ;
(6)

and Nc is the number of colors. The terms ~O1 ¼
ð �q1Taq02ÞV�Að �q01Taq2ÞV�A and ~O2 ¼ ð �q1Taq2ÞV�A �
ð �q01Taq02ÞV�A with SUð3Þ color generators Ta are the non-
factorizable color-octet current operators, which are ne-

TABLE I. Values for CKM matrix elements used in this work.

Vud Vus Vcd Vcs Vcb Vub

0.974 0.2255 �0:230 1.04 0.0412 0.003 93
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glected in the factorization assumption. A detailed analysis
of 1=Nc corrections to the coefficients a1, a2 as well as the
role of color-octet current operators in B decays can be
found in [51].

In the factorization approach to nonleptonic meson de-
cays, one can distinguish three classes of decays for which
the amplitudes have the following general structure [50]:

ðclass IÞ: GFffiffiffi
2

p VCKMa1ð�ÞhO1iF; (7)

ðclass IIÞ: GFffiffiffi
2

p VCKMa2ð�ÞhO2iF; (8)

ðclass IIIÞ: GFffiffiffi
2

p VCKM½a1ð�Þ þ xa2ð�Þ�hO1iF; (9)

where hOiiF represents the hadronic matrix element given
as the products of matrix elements of quark currents and x
is a nonperturbative factor equal to unity in the flavor
symmetry limit [51]. The first (second) class is caused by
a color-favored (color-suppressed) tree diagram and con-
tains those decays in which only a charged (neutral) meson
can be generated directly from a color-singlet current. The
first and second class decay amplitudes are proportional to
a1 and a2, respectively. The third class of transitions con-
sists of those decays in which both a1 and a2 amplitudes
interfere.

In this paper, we consider the following type of non-
leptonic Bc ! F1 þ F2, where F1 is the pseudoscalar me-
son ð�c;DðsÞ; BðsÞÞ and F2 is the meson (vector or

pseudoscalar) being factored out. For instance, the factor-
ized matrix element of Bþ

c ! F1F
þ
2 with F1 ¼ �c and

F2 ¼ � is defined as

XðBþ
c F1;F

þ
2 Þ � hF1jð �cbÞV�AjBcihF2jð �duÞV�Aj0i: (10)

The matrix elements of the semileptonic Bc ! F1 decays
can be parametrized by two Lorentz-invariant form factors:

hF1ðP2Þjð �qq0ÞV�AjBcðP1Þi ¼ fþðq2ÞP� þ f�ðq2Þq�;
(11)

where P ¼ P1 þ P2 and q ¼ P1 � P2. The two form fac-
tors also satisfy the following relation:

f0ðq2Þ ¼ fþðq2Þ þ q2

M2
1 �M2

2

f�ðq2Þ: (12)

The decay constants fP and fV of pseudoscalar (P) and
vector (V) mesons are defined by

hPðpÞjð �qq0ÞV�Aj0i ¼ �ifPp
�;

hVðp; hÞjð �qq0ÞV�Aj0i ¼ fVMV�
�ðhÞ;

(13)

where �ðhÞ is the polarization vector of the vector meson.
In the above definitions for the decay constants, the ex-

perimental values of pion and rho meson decay constants
are f� � 131 MeV from � ! �� and f� � 220 MeV

from � ! eþe�.
Using Eqs. (11) and (13), we obtain the following ex-

pressions for the factorized matrix elements:

XðBþ
c F1;P

þÞ ¼ �ifPðM2
Bc

�M2
F1
ÞfBc!F1

0 ðM2
PÞ; (14)

when F2 is a pseudoscalar meson, and

XðBþ
c F1;V

þÞ ¼ 2fVMVð� 	 PBc
ÞfBc!F1þ ðM2

VÞ; (15)

when F2 is a vector meson. For the latter case, only
longitudinally polarized vector mesons are produced in
the rest frame of the decaying Bc meson, i.e.,

� 	 PBc
¼ MBc

MV

pc; (16)

where

pc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½M2

Bc
� ðM1 þM2Þ2�½M2

Bc
� ðM1 �M2Þ2�

q
2MBc

(17)

is the center of mass momentum of the final state meson
(F1 with M1 or F2 with M2).
The decay rate for Bc ! F1 þ F2 in the rest frame of the

Bc meson is given by

�ðBc ! F1F2Þ ¼ pc

8�M2
Bc

jhF1F2jH effjBþ
c ij2: (18)

In Fig. 1, we show the example of quark diagrams for the
nonleptonic Bc ! BK decays: (a) color-favored (class I)
Bþ
c ! B0Kþ and (b) color-suppressed (class II) Bþ

c !
BþK0 decays. We also show in Fig. 2 the example of quark
diagrams for the class III transitions such as Bc ! DþD0.

FIG. 1. Quark diagrams for the nonleptonic Bc ! BK decays:
(a) color-favored (class I) Bþ

c ! B0Kþ and (b) color-suppressed
(class II) Bþ

c ! BþK0 decays.
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In the factorization approximation, these nonleptonic de-
cay amplitudes can be expressed as the product of one-
particle matrix elements.

A. Class I decay modes

(1) For the b ! ðu; cÞðq1 �q2Þ process,

hD0MþjH effjBþ
c i ¼ GFffiffiffi

2
p VubV



q1q2a1X

ðBþ
c D

0;MþÞ

(19)

and

h�cM
þjH effjBþ

c i ¼ GFffiffiffi
2

p VcbV


q1q2a1X

ðBþ
c �c;M

þÞ:

(20)

(2) For the c ! ðd; sÞðq1 �q2Þ process,

hB0MþjH eff jBþ
c i ¼ GFffiffiffi

2
p VcdV



q1q2a1X

ðBþ
c B

0;MþÞ

(21)

and

hB0
sM

þjH effjBþ
c i ¼ GFffiffiffi

2
p VcsV



q1q2a1X

ðBþ
c B

0
s ;M

þÞ;

(22)

where M ¼ �, K, �, K
 and Vq1q2 ¼ Vud or Vus

depending on whether M ¼ ð�;�Þ or ðK;K
Þ.

B. Class II decay modes

(1) For the b ! ðd; sÞðq1 �q2Þ process,

hDþM0jH effjBþ
c i ¼ GFffiffiffi

2
p Vq2bV



q1d

a2X
ðBþ

c D
þ;M0Þ

(23)

and

hDþ
s M

0jH effjBþ
c i ¼ GFffiffiffi

2
p Vq2bV



q1sa2X

ðBþ
c D

þ
s ;M

0Þ:

(24)

(2) For the c ! uðq1 �q2Þ process,

hBþM0jH effjBþ
c i ¼ GFffiffiffi

2
p Vcq1V



uq2a2X

ðBþ
c B

þ;M0Þ

(25)

and

hBþ�ð0ÞjH effjBþ
c i

¼ GFffiffiffi
2

p a2½VcdV


udX

ðBþ
c B

þ;�ð0Þ
q Þ þ VcsV



usX

ðBþ
c B

þ;�ð0Þ
s Þ�;

(26)

where M ¼ ð�;�ð0Þ; �;!; �Dð
ÞÞ for c ! ðd; sÞ in-
duced decays and M ¼ ð�;�;!;K; �K;K
; �K
Þ for
c ! u induced decays, respectively. As in the case
of color-favored class I decay modes, the factorized
matrix elements for color-suppressed class II decay
modes can be obtained from Eqs. (14) and (15)
except that the decay constants for the neutral �0,

�0, and ! mesons are replaced by fPðVÞ=
ffiffiffi
2

p
.

C. Class III decay modes

For the class III Bþ
c ! Dþ

q M
0ðq ¼ d; sÞ transitions, the

decay amplitude is given by

hDþ
q M

0jH effjBþ
c i

¼ GFffiffiffi
2

p VcqV


F½a1XðBþ

c M
0;Dþ

q Þ þ a2X
ðBþ

c D
þ
q ;M

0Þ�; (27)

where VF ¼ Vcb for M ¼ �c and Vub for M ¼ D. The
expressions for the factorized matrix elements can be
obtained from Eqs. (14) and (15).

III. INPUT PARAMETERS

In this section we shall briefly discuss and summarize all
of the input parameters, such as the model parameters,
decay constants, and form factors for semileptonic Bc !
ðDðsÞ; �c; BðsÞÞ decays, which are relevant to the present

work.

FIG. 2. Quark diagrams for the class III nonleptonic Bc !
DþD0 decays, which consist of both color-favored (a) and
color-suppressed (b) decays.
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A. Brief review of LFQM

The key idea in our LFQM [44,45] for the ground state
mesons is to treat the radial wave function as a trial
function for the variational principle to the QCD-motivated
effective Hamiltonian saturating the Fock state expansion
by the constituent quark and antiquark. The QCD-
motivated effective Hamiltonian for a description of the
ground state meson mass spectra is given by

Hq �q ¼ H0 þ Vq �q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

q þ ~k2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

�q þ ~k2
q

þ Vq �q; (28)

where

Vq �q ¼ V0 þ Vhyp ¼ aþ brn � 4	s

3r
þ 2

3

Sq 	 S �q

mqm �q

r2VCoul:

(29)

In this work, we use two interaction potentials: (1) the
Coulomb plus linear confining (i.e. n ¼ 1) potential and
(2) the Coulomb plus harmonic oscillator (HO) (i.e. n ¼ 2)
potential, together with the hyperfine interaction hSq 	
S �qi ¼ 1=4ð�3=4Þ for the vector (pseudoscalar) meson,

which enables us to analyze the meson mass spectra and
various wave-function-related observables, such as decay
constants, electromagnetic form factors of mesons in a
spacelike region, and the weak form factors for the exclu-
sive semileptonic and rare decays of pseudoscalar mesons
in the timelike region [44–49].

The momentum-space light-front wave function of
the ground state pseudoscalar and vector mesons is given
by �ðxi;ki?; 
iÞ ¼ R
1
2

ðxi;ki?Þ�ðxi;ki?Þ, where

�ðxi;ki?Þ is the radial wave function and R
1
2
is the

covariant spin-orbit wave function. The model wave func-
tion is represented by the Lorentz-invariant variables, xi ¼
pþ
i =P

þ, ki? ¼ pi? � xiP? and 
i, where P� ¼
ðPþ; P�;P?Þ ¼ ðP0 þ P3; ðM2 þ P2

?Þ=Pþ;P?Þ is the mo-

mentum of the meson M, and p
�
i and 
i are the momenta

and the helicities of constituent quarks, respectively.
The covariant forms of the spin-orbit wave functions for

pseudoscalar and vector mesons are given by

R00

1
2

¼ � �u
1
ðp1Þ�5v
2

ðp2Þffiffiffi
2

p
~M0

;

R1Jz

1
2

¼ � �u
1
ðp1Þ½6�ðJzÞ � �	ðp1�p2Þ

M0þm1þm2
�v
2

ðp2Þffiffiffi
2

p
~M0

;

(30)

where ~M0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 � ðm1 �m2Þ2
q

, M2
0 ¼

P
2
i¼1ðk2

i? þ
m2

i Þ=xi is the boost invariant meson mass square obtained
from the free energies of the constituents in mesons, and
��ðJzÞ is the polarization vector of the vector meson [60].
For the radial wave function �, we use the same Gaussian
wave function for both pseudoscalar and vector mesons:

�ðxi;ki?Þ ¼ 4�3=4

�3=2

ffiffiffiffiffiffiffiffi
@kz
@x

s
expð� ~k2=2�2Þ; (31)

where � is the variational parameter and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@kz=@x

p
is the

Jacobian of the variable transformation fx;k?g ! ~k ¼
ðk?; kzÞ.
We apply our variational principle to the QCD-

motivated effective Hamiltonian first to evaluate the ex-
pectation value of the central Hamiltonian H0 þ V0, i.e.,
h�jðH0 þ V0Þj�i, with a trial function �ðxi;ki?Þ that de-
pends on the variational parameter �. Once the model
parameters are fixed by minimizing the expectation value
h�jðH0 þ V0Þj�i, the mass eigenvalue of each meson is
obtained as Mq �q ¼ h�jðH0 þ Vq �qÞj�i. Minimizing ener-

gies with respect to� and searching for a fit to the observed
ground state meson spectra, our central potential V0 ob-
tained from our optimized potential parameters (a ¼
�0:72 GeV, b ¼ 0:18 GeV2, and 	s ¼ 0:31) [44] for the
Coulomb plus linear potential was found to be quite com-
parable with the quark potential model suggested by Scora
and Isgur [61], where they obtained a ¼ �0:81 GeV, b ¼
0:18 GeV2, and 	s ¼ 0:3� 0:6 for the Coulomb plus
linear confining potential. A more detailed procedure for
determining the model parameters of light- and heavy-
quark sectors can be found in our previous works [44,45].
Our model parameters ðmq;�q �qÞ obtained from the lin-

ear and HO potential models are summarized in Table II.
The predictions of the ground state meson mass spectra,
including bottom-charmed mesons, can be found in our
recent work, Ref. [43].

B. Form factors for semileptonic Bc ! P decays

For the nonleptonic two-body Bc decays, we use the q
2

dependent form factors fþðq2Þ and f0ðq2Þ for the Bc !
ðD;Ds; �c; B; BsÞ decays as input parameters.
Within the framework of LF quantization, while the

form factor fþðq2Þ can be obtained only from the valence
contribution in the qþ ¼ 0 frame with the ‘‘þ’’ component
of the currents without encountering the zero-mode con-

TABLE II. The constituent quark mass (GeV) and the Gaussian parameters � (GeV) for the linear and HO potentials obtained by the
variational principle. q ¼ u and d.

Model mq ms mc mb �qq �qs �ss �qc �sc �cc �qb �sb �cb �bb

Linear 0.22 0.45 1.8 5.2 0.3659 0.3886 0.4128 0.4679 0.5016 0.6509 0.5266 0.5712 0.8068 1.1452

HO 0.25 0.48 1.8 5.2 0.3194 0.3419 0.3681 0.4216 0.4686 0.6998 0.4960 0.5740 1.0350 1.8025
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tribution [62], the form factor f�ðq2Þ [or equivalently
f0ðq2Þ] receives the higher Fock state contribution (i.e.,
the zero mode in the qþ ¼ 0 frame or the nonvalence
contribution in the qþ > 0 frame). In order to calculate
f�ðq2Þ, we developed in [46,47] an effective treatment of
handling the higher Fock state (or nonvalence) contribution
to f�ðq2Þ in the purely longitudinal qþ > 0 frame (i.e.,
q2 ¼ qþq� > 0) based on the Bethe-Salpeter (BS) formal-
ism. In our recent LFQM analysis [43] of the semileptonic
Bc ! ðD;�c; B; BsÞ‘�‘ decays, we utilized our effective
method [46] to express the zero-mode contribution as a
convolution of a zero-mode operator with the initial and
final state LF wave functions. In this way, we obtained the
form factor f�ðq2Þ in the qþ ¼ 0 frame using the perpen-
dicular components of the currents and discussed the LF
covariance of f�ðq2Þ in the valence region by analyzing the
covariant BS model and the LF covariant analysis de-
scribed by Jaus [63].

The LF covariant form factors fþðq2Þ and f�ðq2Þ for
Bcðq1 �qÞ ! Pðq2 �qÞ transitions obtained from the qþ ¼ 0
frame are given by (see [43] for more detailed derivations)

fþðq2Þ ¼
Z 1

0
dx
Z d2k?

16�3

�1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þk2
?

q �2ðx;k0
?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þk02

?
q

�ðA1A2 þk? 	k0?Þ;

f�ðq2Þ ¼
Z 1

0
ð1� xÞdx

Z d2k?
16�3

�1ðx;k?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2

1 þk2
?

q �2ðx;k0
?Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2 þk02

?
q

�
�
�xð1� xÞM2

1 �k2
?�m1m �q

þðm2 �m �qÞA1 þ 2
q 	P
q2

�
k2
?þ 2

ðk? 	q?Þ2
q2

�

þ 2
ðk? 	q?Þ2

q2
þk? 	q?

q2

�½M2
2 �ð1� xÞðq2 þq 	PÞþ 2xM2

0

�ð1� 2xÞM2
1 � 2ðm1 �m �qÞðm1 þm2Þ�

�
; (32)

where k0
? ¼ k? þ ð1� xÞq?, Ai ¼ ð1� xÞmi þ xm �q

(i ¼ 1, 2), and q 	 P ¼ M2
1 �M2

2 with M1 and M2 being
the physical masses of the initial and final state mesons,
respectively. We should note that the LF covariant form
factor f�ðq2Þ in Eq. (32) is the sum of the valence con-
tribution fval� ðq2Þ and the zero-mode contribution fZ:M:� ðq2Þ.

For the analysis of the nonleptonic Bc ! DsF decays
where F is the vector or pseudoscalar meson being factored
out, we show in Fig. 3 the q2 dependence of the weak form
factors fþðq2Þ (solid line) and f0ðq2Þ (dashed line) for the
Bc ! Ds transition obtained from the linear (upper panel)
and HO (lower panel) potential parameters. The circles
represent the valence contribution fval0 ðq2Þ to f0ðq2Þ. That
is, the difference between f0ðq2Þ and fval0 ðq2Þ represents

the zero-mode contribution to f0ðq2Þ. We obtain fþð0Þ ¼
f0ð0Þ ¼ 0:120 [0.126] at q2 ¼ 0 for the linear [HO] poten-
tial model. The form factors at the zero-recoil point (i.e.
q2 ¼ q2max) are obtained as fþðq2maxÞ ¼ 0:992 [0.868] and
f0ðq2maxÞ ¼ 0:475 [0.493] for the linear [HO] potential
model. On the other hand, the valence contribution to
f0ðq2Þ at the zero-recoil point is obtained as fval0 ðq2maxÞ ¼
0:442 [0.443] for the linear [HO] potential model.
In Table III, we show the decay form factors fþð0Þ ¼

f0ð0Þ at q2 ¼ 0 for the semileptonic Bc ! ðD;�c; B; BsÞ
decays obtained from [43] and the rare Bc ! Ds decay
obtained in the present work (i.e. Fig. 3), and compare
them to other theoretical model predictions.
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FIG. 3. The weak form factors fþðq2Þ (solid line) and f0ðq2Þ
(dashed line) for the Bc ! Ds transition obtained from the linear
(upper panel) and HO (lower panel) potential parameters. The
circles represent the valence contributions fval0 ðq2Þ to f0ðq2Þ.
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C. Weak decay constants of � and �0

In this work, we shall also consider the nonleptonic
decays of Bc mesons to isoscalar states such as ! and
ð�;�0Þ. Isoscalar states with the same JPC will mix, but
mixing between the two light-quark isoscalar mesons and
the much heavier charmonium or bottomonium states is
generally assumed to be negligible. Since the vector mix-
ing angle is known to be very close to ideal mixing, we

assume ideal mixing between ! and � mesons, i.e., ! ¼
ðu �uþ d �dÞ= ffiffiffi

2
p

and � ¼ s�s. However, the octet-singlet
mixing angle  of � and �0 is known to be in the range
of �10

�
to �23�. The physical � and �0 are the mixtures

of the flavor SUð3Þ octet �8 and singlet �0 states:

�
�0

� �
¼ UðÞ �8

�0

� �
; (33)

where

UðÞ ¼ cos � sin
sin cos

� �
; (34)

and �8 ¼ ðu �uþ d �d� 2s�sÞ= ffiffiffi
6

p
and �0 ¼ ðu �uþ d �dþ

s�sÞ= ffiffiffi
3

p
. Analogously, in terms of the quark-flavor basis

�q ¼ ðu �uþ d �dÞ= ffiffiffi
2

p
and �s ¼ s�s, one obtains [64]

�
�0

� �
¼ Uð�Þ �q

�s

� �
: (35)

The two schemes are equivalent to each other by � ¼ þ
arctan

ffiffiffi
2

p
when SUfð3Þ symmetry is perfect. However,

when one takes into account the SUfð3Þ breaking effect,

this relationship is not maintained but given by the follow-
ing Fock decompositions of the octet-singlet basis states
[64]:

j�8i ¼
�q þ 2�s

3

ju �uþ d �d� 2s�siffiffiffi
6

p

þ
ffiffiffi
2

p ð�q ��sÞ
3

ju �uþ d �dþ s�siffiffiffi
3

p ;

j�0i ¼
ffiffiffi
2

p ð�q ��sÞ
3

ju �uþ d �d� 2s�siffiffiffi
6

p

þ 2�q þ�s

3

ju �uþ d �dþ s�siffiffiffi
3

p ;

(36)

where �i denote LF wave functions of the corresponding

parton states. Only in the SUfð3Þ symmetry limit, i.e.,

�q ¼ �s, would one find pure octet and singlet states in

Eq. (36). Although it was frequently assumed that the
decay constants follow the same pattern of state mixing,
the mixing properties of the decay constants will generally
be different from the mixing properties of the meson state
since the decay constants only probe the short-distance
properties of the valence Fock states while the state mixing
refers to the mixing of the overall wave function [64].
Using the decay constants of Eq. (13) defined in the

quark-flavor basis, the two basic decay constants fq and fs
arising from �q and �s are obtained as

fqðsÞ ¼ 2
ffiffiffi
6

p Z 1

0
dx

Z d2k?
16�3

�qðsÞ; (37)

and simply follow the pattern of state mixing due to the
Okubo-Zweig-Iizuka rule [65], i.e.,

fq� fs�
fq
�0 fs

�0

 !
¼ Uð�Þ fq 0

0 fs

� �
: (38)

The Okubo-Zweig-Iizuka rule implies that the difference
between the two mixing angles �q and �s vanishes [i.e.,

�q ¼ �s ¼ � in Eq. (38)]. On the other hand, the decay

constants in the octet-singlet basis are parametrized as
[64,66]

f8� f0�
f8
�0 f0

�0

 !
¼ cos8 � sin0

sin8 cos0

� �
f8 0
0 f0

� �
; (39)

where 8 and 0 turn out to differ considerably and become
equal only in the SUfð3Þ symmetry limit.

By using the correlation between the quark-flavor mix-
ing scheme and the octet-singlet scheme [64,65], one
obtains

f8 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f2q þ 2f2s

3

s
; 8 ¼ �� arctanð ffiffiffi

2
p

fs=fqÞ;

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2f2q þ f2s

3

s
; 0 ¼ �� arctanð ffiffiffi

2
p

fq=fsÞ:
(40)

In our previous work [44], we obtained the �� �0 mixing
angle  ’ �19� for both linear and HO potential models
by fitting the physical masses of � and �0. This corre-
sponds to the mixing angle � ¼ 35:7

�
in the quark-flavor

TABLE III. Form factors fþð0Þ ¼ f0ð0Þ at q2 ¼ 0 for Bc ! ðDðsÞ; �c; B; BsÞ transitions.
Linear (HO) [8,9] [19] [22] [14] [26] [23] [16]

fBc!D
þ ð0Þ 0.086 [0.079] 0.14 0.69 0.1446 	 	 	 0.089 0.16 0:08� 0:02

f
Bc!Dsþ ð0Þ 0.120 [0.126] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 0.28 0:15� 0:02

F
Bc!�cþ ð0Þ 0.482 [0.546] 0.47 0.76 0.5359 0.49 0.622 0.61 0.58

fBc!B
þ ð0Þ 0.467 [0.426] 0.39 0.58 0.4504 0.39 0.362 0.63 0:41� 0:04

f
Bc!Bsþ ð0Þ 0.573 [0.571] 0.50 0.61 0.5917 0.58 0.564 0.73 0:55� 0:03
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basis. We applied this mixing angle to predict the decay
widths for �ð�0Þ ! �� using the axial anomaly plus
partial conservation of the axial vector current (PCAC)
relations [67] and obtained f8=f� ¼ 1:32ð1:25Þ and
f0=f� ¼ 1:16ð1:13Þ for the linear (HO) potential model
[44]. From the decay constants of octet and singlet mesons
together with Eq. (40), we now obtain the four parameters
(fq, fs, 8, 0) as follows: fq=f� ¼ 0:97 ð1:00Þ, fs=f� ¼
1:46 ð1:36Þ, 8 ¼ �29:2� ð�26:8�Þ, and 0 ¼
�7:3

� ð�10:6
�Þ for the linear (HO) potential model, re-

spectively. Given this background, we finally obtain the
decay constants related to the � and �0 mesons as follows:

fq� ¼ 103:2 ð106:4Þ MeV;

fs� ¼ �116:6 ð�104:0Þ MeV;

fq�0 ¼ 74:2 ð76:4Þ MeV;

fs
�0 ¼ 155:3 ð144:7Þ MeV:

(41)

Our results for the mixing parameters of � and �0
are consistent with those obtained from Feldmann et al.
[64], namely, f8=f� ¼ 1:26, f0=f� ¼ 1:17, fq=f� ¼
ð1:07� 0:02Þ, fs=f� ¼ ð1:34� 0:06Þ, � ¼ ð39:3� �
1:0�Þ, 8 ¼ �21:2�, 0 ¼ �9:2�, fq� ¼ ð108:5�
2:0Þ MeV, fs� ¼ �ð111:2� 5:0Þ MeV, fq

�0 ¼ ð88:8�
1:7Þ MeV, and fs

�0 ¼ ð135:8� 6:1Þ MeV.

For the measured values of meson decay constants, we
use the central values extracted from the experimental
measurements [57,68,69]. However, for the unmeasured
decay constants, we use the average values obtained from
our linear and HO model predictions in [48] in addition to
the present work. The values for the decay constants used
in this work are compiled in Table IV. Since the decay
constant f�c

extracted from CLEO Collaboration [70] has

a large error bar, i.e., fCLEO�c
¼ 335� 75 MeV, we instead

take the average value f�c
¼ 340 MeV of our LFQM

predictions [48], i.e., flin�c
¼ 326 MeV and fHO�c

¼
354 MeV.

IV. NUMERICAL RESULTS

In our numerical calculations of exclusive Bc decays, we
use two sets of model parameters ðm;�Þ for the linear and
HO confining potentials given in Table II to compute the
weak form factors for semileptonic Bc ! ðDðsÞ; �c; BðsÞÞ
decays and the unmeasured decay constants as given in
Tables III and IV, respectively. Using them together with
the CKM matrix elements given by Table I, we finally
predict the branching ratios which are given in Tables V

and VI. Although we show the form factors in Table III
only at a maximum recoil point q2 ¼ 0, we use the form
factor at q2 ¼ M2

F obtained from [43] for the correspond-
ing nonleptonic Bc ! ðDðsÞ; �c; BðsÞÞMF decays.

In Table V we show the nonleptonic decay widths of the
Bc meson for a general value of the Wilson coefficients a1
and a2, whereas in Table VI we give the corresponding
branching ratios (in %) at the fixed choice of Wilson
coefficients [5], ac1ðab1Þ ¼ 1:20 ð1:14Þ and ac2ðab2Þ ¼
�0:317 ð�0:20Þ, relevant for the nonleptonic decays of
the cð �bÞ quark. For the lifetime of the Bc, we take the
central value �ðBcÞ ¼ 0:46 ps (i.e. �tot ¼ 1:43�
10�12 GeV) presented by PDG [57]. Our branching ratios
for both b and c induced decays listed in Table VI are
generally close to the other quark model results [7–
9,14,26] but differ substantially from the ones obtained
by Refs. [5,10,40].
The relative size of the branching ratios for various

decay modes may be estimated from power counting of
the Wilson coefficients ai and the CKM factors with re-
spect to the small parameter of the Cabibbo angle 
 ¼
sinC in the Wolfenstein parametrization [71]; e.g. the
CKM matrix elements can be expanded in terms of 
 as
Vud � 1, Vus � 
, Vub � 
3, Vcd ��
, Vcs � 1, and
Vcb � 
2. From Tables V and VI, we make the following
observations:
(1) The class I decay modes determined by the Wilson

coefficient a1 have comparatively large branching
ratios. The CKM favored c decays such as Bþ

c !
B0
sð�þ; �þÞ decays with the CKM factor VcsV



ud �


0 have branching ratios of the order of 10�2 (e.g.
2%–4% in our model predictions), which are the
most promising class I decay modes shown in
Tables V and VI. The CKM-suppressed c decays
such as Bþ

c ! B0
sK

þ with VcsV


us � 
1 and Bþ

c !
B0ð�þ; �þÞ with VcdV



ud � 
1, as well as the CKM-

suppressed b decays such as Bþ
c ! �cð�þ; �þÞ

with VcbV


ud � 
2, have branching ratios of the

order of 10�3 and should still be accessible at
high luminosity hadron colliders. However, the
branching ratios of the b ! u induced decay modes
are too small Oð10�8–10�6Þ to be measured
experimentally.

(2) The branching ratios for the class II decay modes
determined by a2 are relatively smaller than those
for the class I decay modes. However, the Bþ

c !
Bþð �K0; �K
0Þ decays with VcsV



ud � 
0 have branch-

ing ratios of the order of 10�3 and these modes
should be accessible experimentally. Of interest is

TABLE IV. Meson decay constants (in units of MeV) used in this work.

f� fK f� f! fK
 fq� fs� fq
�0 fs

�0 fD fD
 f�c
fDs

131 [57] 159.8 [57] 220 [57] 195 [57] 217 [57] 104.8 �110:3 75.3 150.0 222.6 [68] 241 [48] 340 [48] 259.5 [69]
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the abnormally small branching ratio of Bþ
c !

Bþ�0 compared to that of Bþ
c ! Bþ�. As stated

in [40], the reason for such a small branching ratio is
not only because the available physical phase space
is too small but also because there are large destruc-
tive interferences between �0

q and �0
s due to the

serious cancellation between the CKM factors
VcdV



ud and VcsV



us.

(3) The class III decay modes involve the Pauli inter-
ference. Taking into account the negative value of a2
with respect to a1, one can see that the class III
decay modes shown in Table V should be sup-
pressed in comparison with the cases in which
the interference is switched off. In order to test the
effects of the interference, one may put the widths in
the form of � ¼ �0 þ ��, where �0 ¼ x1a

2
1 þ x2a

2
2

TABLE V. Exclusive nonleptonic decay widths � (in 10�15 GeV) of the Bc meson for the general values of the Wilson coefficients
a1 and a2.

Class Mode Linear (HO) [8,9] [14] [26]

I Bþ
c ! D0�þ 4:7½4:7�ð�10�4Þa21 	 	 	 	 	 	 	 	 	

Bþ
c ! D0�þ 1:4½1:2�ð�10�3Þa21 	 	 	 	 	 	 	 	 	

Bþ
c ! D0Kþ 3:9½3:4�ð�10�5Þa21 	 	 	 	 	 	 	 	 	

Bþ
c ! D0K
þ 7:5½6:4�ð�10�5Þa21 	 	 	 	 	 	 	 	 	

Bþ
c ! �c�

þ 0:997½1:280�a21 0:93a21 1:02a21 1:47a21
Bþ
c ! �c�

þ 2:827½3:563�a21 2:3a21 2:60a21 3:35a21
Bþ
c ! �cK

þ 0:081½0:103�a21 0:073a21 0:082a21 0:15a21
Bþ
c ! �cK


þ 0:147½0:184�a21 0:12a21 0:15a21 0:24a21
Bþ
c ! B0�þ 1:557½1:296�a21 1:0a21 1:10a21 1:51a21

Bþ
c ! B0�þ 1:936½1:505�a21 1:3a21 1:41a21 1:93a21

Bþ
c ! B0Kþ 0:126½0:104�a21 0:09a21 0:098a21 	 	 	

Bþ
c ! B0K
þ 0:042½0:032�a21 0:04a21 0:038a21 	 	 	

Bþ
c ! B0

s�
þ 36:97½36:71�a21 25a21 34:7a21 34:78a21

Bþ
c ! B0

s�
þ 25:43½23:22�a21 14a21 23:1a21 23:61a21

Bþ
c ! B0

sK
þ 2:853½2:816�a21 2:1a21 2:87a21 	 	 	

Bþ
c ! B0

sK

þ 0:069½0:061�a21 0:03a21 0:13a21 	 	 	

II Bþ
c ! Dþ�0 2:4½2:0�ð�10�4Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ�0 7:0½6:0�ð�10�4Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ! 5:5½4:7�ð�10�4Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ� 3:1½2:7�ð�10�4Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ�0 1:7½1:5�ð�10�5Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ �D0 0:219½0:185�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ �D
0 0:261½0:212�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s �
0 2:4½2:6�ð�10�5Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s �
0 7:1½7:6�ð�10�5Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s ! 5:6½6:0�ð�10�5Þa22 	 	 	 	 	 	 	 	 	
Bþ
c ! Dþ

s � 3:2½3:4�ð�10�5Þa22 	 	 	 	 	 	 	 	 	
Bþ
c ! Dþ

s �
0 1:7½1:9�ð�10�5Þa22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s
�D0 0:0216½0:0227�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s
�D
0 0:0248½0:0250�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Bþ�0 0:779½0:648�a22 0:5a22 0:54a22 1:03a22

Bþ
c ! Bþ�0 0:967½0:752�a22 0:7a22 0:71a22 1:28a22

Bþ
c ! Bþ! 0:721½0:558�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Bþ� 3:99½3:30�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Bþ�0 0:054½0:045�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! BþK0 0:125½0:104�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Bþ �K0 47:85½39:66�a22 34a22 35:3a22 	 	 	

Bþ
c ! BþK
0 0:040½0:030�a22 	 	 	 	 	 	 	 	 	

Bþ
c ! Bþ �K
0 15:36½11:38�a22 13a22 13:1a22 	 	 	

III Bþ
c ! DþD0 ð0:011a1 þ 0:011a2Þ2½ð0:0097a1 þ 0:0097a2Þ2� 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s D
0 ð0:058a1 þ 0:064a2Þ2½ð0:052a1 þ 0:066a2Þ2� 	 	 	 	 	 	 	 	 	

Bþ
c ! �cD

þ ð0:428a1 þ 0:226a2Þ2½ð0:482a1 þ 0:208a2Þ2� 	 	 	 ð0:438a1 þ 0:236a2Þ2 ð0:47a1 þ 0:73a2Þ2
Bþ
c ! �cD

þ
s ð2:27a1 þ 1:32a2Þ2½ð2:47a1 þ 1:34a2Þ2� 	 	 	 ð2:54a1 þ 1:93a2Þ2 ð2:59a1 þ 3:40a2Þ2
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and �� ¼ za1a2, and then compute the ��=�0 (in
%) as done in [5]. Our absolute values of ��=�0

obtained from the linear (HO) model are 34.0
(34.0)% for Bþ

c ! DþD0, 37.3 (42.4)% for
Bþ
c ! Dþ

s D
0, 18.4 (15.1)% for Bþ

c ! �cD
þ, and

20.2 (18.9)% for Bþ
c ! �cD

þ
s , respectively. This

indicates that the interference is the most signifi-
cantly involved in the Bþ

c ! Dþ
s D

0 decay compared
to others. In particular, the Bþ

s ! Dþ
s D

0 and Bþ
c !

Dþ
s
�D0 decay modes have been proposed in

[29,33,38,41] for the extraction of the CKM angle
� through amplitude relations.

TABLE VI. Branching ratios (in %) of the exclusive nonleptonic Bc decays at the fixed choice of Wilson coefficients, ac1ðab1Þ ¼
1:20ð1:14Þ and ac2ðab2Þ ¼ �0:317ð�0:20Þ, relevant for the nonleptonic decays of the cð �bÞ quark. For the lifetime of the Bc we take

�ðBcÞ ¼ 0:46 ps.

Class Mode Linear (HO) [8,9] [14] [26] [7] [5] [13] [40] [10]

I Bþ
c ! D0�þ 4:3½4:3�ð�10�5Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! D0�þ 1:3½1:1�ð�10�4Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! D0Kþ 3:5½3:1�ð�10�6Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! D0K
þ 6:8½5:8�ð�10�6Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! �c�

þ 0.091[0.116] 0.085 0.094 0.13 0.19 0.20 0.025 	 	 	 0.18

Bþ
c ! �c�

þ 0.257[0.324] 0.21 0.24 0.30 0.45 0.42 0.067 	 	 	 0.49

Bþ
c ! �cK

þ 0.0074[0.0094] 0.0075 0.0075 0.013 0.015 0.013 0.002 	 	 	 0.014

Bþ
c ! �cK


þ 0.013[0.017] 0.011 0.013 0.021 0.025 0.020 0.004 	 	 	 0.025

Bþ
c ! B0�þ 0.157[0.131] 0.10 0.11 0.15 0.20 1.06 0.19 0.373 0.32

Bþ
c ! B0�þ 0.195[0.152] 0.13 0.14 0.19 0.20 0.96 0.15 0.527 0.59

Bþ
c ! B0Kþ 0.013[0.011] 0.009 0.010 	 	 	 0.015 0.07 0.014 0.027 0.025

Bþ
c ! B0K
þ 0.0042[0.0032] 0.004 0.0039 	 	 	 0.0048 0.015 0.003 0.023 0.018

Bþ
c ! B0

s�
þ 3.723[3.697] 2.52 3.51 3.42 3.9 16.4 3.01 5.309 5.75

Bþ
c ! B0

s�
þ 2.561[2.338] 1.41 2.34 2.33 2.3 7.2 1.34 6.265 4.41

Bþ
c ! B0

sK
þ 0.287[0.284] 0.21 0.29 	 	 	 0.29 1.06 0.21 0.367 0.41

Bþ
c ! B0

sK

þ 0.0069[0.0061] 0.003 0.013 	 	 	 0.011 	 	 	 0.0043 0.165 	 	 	

II Bþ
c ! Dþ�0 6:7½5:6�ð�10�7Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ�0 2:0½1:7�ð�10�6Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ! 1:5½1:3�ð�10�6Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ� 8:7½7:6�ð�10�7Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ�0 4:8½4:2�ð�10�8Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ �D0 6:1½5:2�ð�10�4Þ 	 	 	 	 	 	 	 	 	 3:3� 10�3 5:3� 10�3 4:1� 10�4 	 	 	 1:8� 10�3

Bþ
c ! Dþ �D
0 7:3½5:9�ð�10�4Þ 	 	 	 	 	 	 	 	 	 3:8� 10�3 7:5� 10�3 3:6� 10�4 	 	 	 1:9� 10�3

Bþ
c ! Dþ

s �
0 6:7½7:3�ð�10�8Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s �
0 2:0½2:1�ð�10�7Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s ! 1:6½1:7�ð�10�7Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Bþ
c ! Dþ

s � 9:0½9:5�ð�10�8Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
Bþ
c ! Dþ

s �
0 4:8½5:3�ð�10�8Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s
�D0 6:0½6:3�ð�10�5Þ 	 	 	 	 	 	 	 	 	 2:1� 10�4 4:8� 10�4 2:7� 10�5 	 	 	 9:3� 10�5

Bþ
c ! Dþ

s
�D
0 6:9½7:0�ð�10�5Þ 	 	 	 	 	 	 	 	 	 2:4� 10�4 7:1� 10�4 2:5� 10�5 	 	 	 9:7� 10�5

Bþ
c ! Bþ�0 0.0055[0.0046] 0.004 0.0038 0.007 0.007 0.037 	 	 	 4:6� 10�5 0.011

Bþ
c ! Bþ�0 0.0068[0.0053] 0.005 0.0050 0.009 0.0071 0.034 	 	 	 6:5� 10�5 0.020

Bþ
c ! Bþ! 0.0051[0.0039] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 5:8� 10�5 	 	 	

Bþ
c ! Bþ� 0.028[0.023] 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1:6� 10�4 	 	 	

Bþ
c ! Bþ�0 3:8½3:2�ð�10�4Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 8:9� 10�6 	 	 	

Bþ
c ! BþK0 8:8½7:3�ð�10�4Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 6:5� 10�6 	 	 	

Bþ
c ! Bþ �K0 0.336[0.279] 0.24 0.25 	 	 	 0.38 1.98 	 	 	 0.0022 0.66

Bþ
c ! BþK
0 2:8½2:1�ð�10�4Þ 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 5:5� 10�6 	 	 	

Bþ
c ! Bþ �K
0 0.108[0.080] 0.09 0.093 	 	 	 0.11 0.43 	 	 	 0.0018 0.47

III Bþ
c ! DþD0 7:5½5:8�ð�10�6Þ 	 	 	 	 	 	 	 	 	 3:1� 10�5 3:2� 10�5 	 	 	 	 	 	 	 	 	

Bþ
c ! Dþ

s D
0 2:0½1:5�ð�10�4Þ 	 	 	 	 	 	 	 	 	 7:4� 10�4 6:6� 10�4 	 	 	 	 	 	 	 	 	

Bþ
c ! �cD

þ 0:014½0:018� 	 	 	 0.014 0.010 0.019 0.032 0.0055 	 	 	 0.0012

Bþ
c ! �cD

þ
s 0:378½0:454� 	 	 	 0.44 0.35 0.44 0.86 0.51 	 	 	 0.056
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V. SUMMARY

In this work, we have studied the exclusive nonleptonic
Bc ! ðDðsÞ; �c; BðsÞÞM decays, where the final state M

mesons are factored out in the QCD factorization ap-
proach. The inputs used to obtain their branching ratios
were the weak form factors for the semileptonic Bc !
ðDðsÞ; �c; BðsÞÞ decays in the whole kinematical region

and the unmeasured weak decay constants obtained from
our previous LFQM analysis [43–45,48]. For the measured
values of decay constants, we use the central values ex-
tracted from the experimental measurements [57,68,69].

Our predictions for the branching ratios are summarized
in Tables V and VI and compared with other theoretical
results. Overall, the class II decay modes have more dis-
crepancies among the theoretical models than the class I
and III decay modes do. The upcoming experimental mea-

surements of the corresponding decay rates can examine
various theoretical approaches. The most promising mea-
surable decay modes appear to be the CKM favored c
decays such as Bþ

c ! B0
sð�þ; �þÞ decays. It is thus ex-

pected that the dominant contribution to the Bc total rate
comes from the c induced decays. The more c induced
Bc ! VP and Bc ! VV decay modes seem to deserve
further consideration.
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