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We study exclusive nonleptonic two-body B, — (D(y), 1., B(s)) + F decays with F (pseudoscalar or
vector mesons) factored out in the QCD factorization approach. The nonleptonic decay amplitudes are
related to the product of meson decay constants and the form factors for semileptonic B, decays. As inputs
in obtaining the branching ratios for a large set of nonleptonic B, decays, we use the weak form factors for
the semileptonic B, — (D), 1., B(y)) decays in the whole kinematical region and the unmeasured meson
decay constants obtained from our previous light-front quark model. We compare our results for the

branching ratios with those of other theoretical studies.
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L. INTRODUCTION

The discovery of the B, meson by the Collider Detector
at Fermilab (CDF) Collaboration [1] in pp collisions at
/s = 1.8 TeV and the subsequent measurement of its life-
time have provided a new window for the analysis of the
heavy-quark dynamics and thus for an important test of
quantum chromodynamics. Recently the CDF and DO
Collaborations announced some new measurements of
the B, meson lifetime and mass [2,3],
0.46375:073 (stat) = 0.036(syst) ps [2], Mp = 6275.6 =
2.9(stat) = 2.5(syst) MeV  [2], and 6300 = 14(stat) =
5(syst) MeV [3]. The LHC is expected to produce around
~5 X 10'° B, events per year [4,5]. This will provide more
detailed information on the decay properties of the B,
meson. Since the B, mesons carry flavor explicitly (b
and c¢) and cannot annihilate into gluons, they are stable
against strong and electromagnetic annihilation processes.
The decays of the B. meson are therefore only via weak
interactions, which can be divided into three classes at the
quark level: (1) the b — g (¢ = c, u) transition with the ¢
quark being a spectator, (2) the c — g (¢ = s, d) transition
with the b quark being a spectator, and (3) the weak
annihilation channels. Although the phase space of the ¢ —
s, d transitions is much smaller than the phase space of the
b — ¢, u transitions, the Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements are greatly in favor of the ¢ quark
decay, i.e. |V,,| < |V,,|. In fact, the c-quark decays pro-
vide about ~70% of the B, decay width while the b-quark
decays and the weak annihilation yield about 20% and
10%, respectively [5]. This indicates that both b- and
c-quark decay processes contribute to the B, decay width
on a comparable footing.

Because the b and ¢ quarks can decay individually and
the B, meson has a sufficiently large mass, one can study a
great variety of decay channels. There have been many
theoretical efforts to calculate the semileptonic [5-26] and
nonleptonic [4-16,27-42] decays of the B, meson. The
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semileptonic B, decays provide a good opportunity to
measure not only the CKM elements such as |V, |, [V,,],
|V.l, and |V,4|, but also the weak form factors for the
transitions of B, to bottom and charmed mesons. The
nonleptonic B, decays, in which only hadrons appear in
the final state, are strongly influenced by the confining
color forces among the quarks. While in the semileptonic
transitions the long-distance QCD effects are described by
a few hadronic form factors parametrizing the hadronic
matrix elements of quark currents, the nonleptonic pro-
cesses are complicated by the phenomenon of the quark
rearrangement due to the exchange of soft and hard gluons.
The theoretical description of the nonleptonic decays in-
volves the matrix elements of the local four-quark opera-
tors. Although the four-quark operators are more
complicated than the current operators involved in the
semileptonic decays, the nonleptonic decays of the heavy
mesons are useful for exploring the most interesting aspect
of QCD, i.e. its nonperturbative long-range character.

In our recent paper [43], we analyzed the semileptonic
B, decays such as B.— (D, n., B, B,){v, and 7, —
B Av,({ = e, u, 7) using our light-front quark model
(LFQM) based on the QCD-motivated effective LF
Hamiltonian [44—49]. The weak form factors f.(g?) for
the semileptonic decays between two pseudoscalar mesons
are obtained in the g% = 0 frame (¢> = —¢3 <0) and
then analytically continued to the timelike region by
changing qi to —g* in the form factor. The covariance
(i.e., frame independence) of our model has been checked
by performing the LF calculation in the ¢* = 0 frame in
parallel with the manifestly covariant calculation using the
exactly solvable covariant fermion field theory model in
(3 + 1) dimensions. We also found the zero-mode contri-
bution to the form factor f_(g?) and identified the zero-
mode operator that is convoluted with the initial and final
state LF wave functions.

In this paper, we extend our previous LFQM analysis of
the semileptonic B, decays [43] to the nonleptonic two-
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body decays of B, mesons such as B, — (D(y), 0., B(s))P
and B, — (D, n, B(;))V (here P and V denote pseudosca-
lar and vector mesons, respectively). The QCD factoriza-
tion approach is widely used since it works reasonably well
in heavy-quark physics [50-55]. The factorization approx-
imates the complicated nonleptonic decay amplitude into
the product of the meson decay constant and the form
factor. A justification of this assumption is usually based
on the idea of color transparency [56]. We shall use the
form factors for semileptonic B, — (D), 1., B(;)) decays
as well as the meson decay constants obtained in our
LFQM [43,48] as input parameters for the nonleptonic
B. decays. As done by many others [5-14], we consider
only the contribution of current-current operators at the
tree level and calculate the decay widths for various non-
leptonic B, decays. As far as the decay width is concerned,
the contribution from the tree diagram is much larger than
that from the penguin diagram. The penguin contribution
may be important in evaluating the CP violation and
looking for new physics beyond the standard model, which
we do not consider in this work.

The paper is organized as follows. In Sec. II, we discuss
the weak Hamiltonian responsible for the nonleptonic two-
body decays of the B, meson. In Sec. III, we present the
input parameters such as the weak decay constants and the
form factors obtained in our LFQM [43,48] based on the
QCD-motivated effective Hamiltonian [44,45]. The mix-
ing angles between n and 7’ mesons are also analyzed,
both in octet-singlet and quark-flavor bases, to extract the
decay constants relevant to n and ' mesons. Section IV is
devoted to the numerical results. A summary and conclu-
sions follow in Sec. V.

II. NONLEPTONIC TWO-BODY DECAYS OF THE
B, MESON

The nonleptonic weak decays are described in the stan-
dard model by a single W-boson exchange diagram at tree
level. In the standard model, the nonleptonic B, decays are
described by the effective Hamiltonian, which was ob-
tained by integrating out the heavy W boson and top quark.
For the case of b — ¢, u and ¢ — s, d transitions at the
quark level, neglecting QCD penguin operators, one gets
the following effective weak Hamiltonian:

31 = SLW Lo (O + () 0F)

7
+ Viplei ()0 + cy(n) 0421 + Hee}b (1)

and

GF cd cd

—2{Vcd[c1(//~)(91 + ¢ (1) 057]

NG

+ Velei(w)OF + e2(w)05°] + Heel, (2)

—s(d) _
j-[gffs -

where G is the Fermi coupling constant and V,, ,, are the
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TABLE 1. Values for CKM matrix elements used in this work.
Vud Vus Vcd Vcs Vcb Vuh
0.974 0.2255 —0.230 1.04 0.0412 0.00393

corresponding CKM matrix elements. We use the central
values of the CKM matrix elements quoted by the Particle
Data Group (PDG) [57] that we summarize in Table 1. The
effective weak Hamiltonian consists of products of local
four-quark operators O, , renormalized at the scale w, and
scale-dependent Wilson coefficients ¢ ,(u), which incor-
porate the short-distance effects arising from the renormal-
ization of H . from u = my to w = O(m,). The local
four-quark operators O, and O, due to b and ¢ decays are
given by

01" = (Gb)y_sl(d'u)y_p + §'c)y_sllg = ¢, u),

0F = (qu)y—a(db)y_p + (GO)y-aTb)y_a(q = c, u),
O\ = (eq)y_a(d'u)y_a(q = s, d),

0 = @uy @ y-ala = s, d), ()

where (7q)y -4 = v, (1 — ys)q and the rotated antiquark
fields are given by

d' =V,d+V,s, 5 =V,d+ V.5 (4)

Without strong-interaction effects, one would have ¢; = 1
and ¢, = 0. However, this simple result is modified by
gluon exchange: i.e., the original weak vertices get renor-
malized and the new types of interactions (such as the
operators 0,) are induced [51]. In these decays, the final
hadrons are produced in the form of pointlike color-singlet
objects with a large relative momentum. Thus, the hadro-
nization of the decay products occurs after they separate far
away from each other. This provides the possibility to
avoid the final state interaction. A more general treatment
of factorization was presented in [58,59].

For the operators O) = (§14)y—4(7}q3)y—s and O, =
(@195)v-4(@'q2)v-a, using the Fierz transformation under
which V — A currents remain V — A currents, one gets the
following equivalent forms:

01(91 +C2@2:a]@1 +C2@2:a2@2+clél, (5)

where

an() = €1() + 3 ea(a),
lc (6)
ay(n) = cr(p) + ﬁcl(ﬂ),

and N_. is the number of colors. The terms @1 =

(@170 y-a(@ T q)y—s  and Oy = (§:Tq2)y—s X
(@1T°q)y—4 with SU(3) color generators 7¢ are the non-
factorizable color-octet current operators, which are ne-
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glected in the factorization assumption. A detailed analysis
of 1/N, corrections to the coefficients a;, a, as well as the
role of color-octet current operators in B decays can be
found in [51].

In the factorization approach to nonleptonic meson de-
cays, one can distinguish three classes of decays for which
the amplitudes have the following general structure [50]:

G

(classT): T; Verkma (w0, @)
Gp

(classTD): NG Vekma () 0s)p, @)

(class I1D): %vcm[alw T+ rawWKO)s )

where (O;) represents the hadronic matrix element given
as the products of matrix elements of quark currents and x
is a nonperturbative factor equal to unity in the flavor
symmetry limit [51]. The first (second) class is caused by
a color-favored (color-suppressed) tree diagram and con-
tains those decays in which only a charged (neutral) meson
can be generated directly from a color-singlet current. The
first and second class decay amplitudes are proportional to
a, and a,, respectively. The third class of transitions con-
sists of those decays in which both a; and a, amplitudes
interfere.

In this paper, we consider the following type of non-
leptonic B, — F; + F,, where F| is the pseudoscalar me-
son (n., D), B;)) and F, is the meson (vector or
pseudoscalar) being factored out. For instance, the factor-
ized matrix element of Bf — F{F; with F; = 7. and
F, = 7 is defined as

XBEFLED) = (F\|(2b)y— 4l BXF,(du)y—410).  (10)

The matrix elements of the semileptonic B, — F decays
can be parametrized by two Lorentz-invariant form factors:

(F1(PII(@q")y-alB.(P))) = f+(qz)P’L + ff(qz)qﬂ:
(11)

where P = P; + P, and ¢ = P — P,. The two form fac-
tors also satisfy the following relation:

2
0@ = 1+@) 3 p @) a2

The decay constants fp and fy of pseudoscalar (P) and
vector (V) mesons are defined by

(P(PI(Gq")y-al0) = —ifpp*,
(V(p, WI(Gq")y-4l0) = fyMye*(h),

(13)

where €(h) is the polarization vector of the vector meson.
In the above definitions for the decay constants, the ex-
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perimental values of pion and rho meson decay constants
are f, =~ 131 MeV from 7 — uv and f, =~ 220 MeV
from p — ete.

Using Egs. (11) and (13), we obtain the following ex-
pressions for the factorized matrix elements:

XEPD) = —ifp (M3 — M7)fo " (MB),  (14)
when F, is a pseudoscalar meson, and
X(B:FI,VJr) — 2fVMV(6 . PBC)flir_’Fl (M‘Z/), (15)

when F, is a vector meson. For the latter case, only
longitudinally polarized vector mesons are produced in
the rest frame of the decaying B, meson, i.e.,

Mg

€- Py =M—V”pc, (16)

where

M3 — (M + ML)PTME, — (M) — M)
Pe = 2MBL.

17)

is the center of mass momentum of the final state meson
(Fl with M1 or F2 with M2)

The decay rate for B, — F| + F}, in the rest frame of the
B, meson is given by

(B, — FiFy) = 2 (R R\ H gl BOP. (18)
8TMp,

In Fig. 1, we show the example of quark diagrams for the

nonleptonic B. — BK decays: (a) color-favored (class I)

B} — BK* and (b) color-suppressed (class II) B —

B* K decays. We also show in Fig. 2 the example of quark

diagrams for the class III transitions such as B, — D" DO,

+
S
cWé d

+% % 0
BC b B

(a)
0
K
d
S
- VWWWY -
B+ % W % B+
c b
(b)

FIG. 1. Quark diagrams for the nonleptonic B, — BK decays:
(a) color-favored (class I) B — B°K ™" and (b) color-suppressed
(class IT) B} — BT K° decays.
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b W ¢ u
+ 0
B D
C C
(a)
0
D
u
C
° AW d
+ +
B % 4 %D
C C
(b)

FIG. 2. Quark diagrams for the class III nonleptonic B.—
DT D° decays, which consist of both color-favored (a) and
color-suppressed (b) decays.

In the factorization approximation, these nonleptonic de-
cay amplitudes can be expressed as the product of one-
particle matrix elements.

A. Class I decay modes

(1) For the b — (u, ¢)(q,g,) process,
Gr

(DM*|H B = NG a, X B DOM)

*
Vb Vql 9

19)

and

G " + +
M H |BE) = —E Vo, Vi oy XEEMD),

\/Q b T q192
(20)

(2) For the ¢ — (d, s)(q,g,) process,

Gr

<BOM+|3_[eff|B:> = ﬁVch* aIX(BfBO'M”

9192

21
and
(BOIM ™| H |BF) = %VCSV;]QZaIX(BJB?.MH,
(22)
where M = 7, K, p, K* and V, ,, = V,q or V,,

depending on whether M = (7, p) or (K, K*).
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B. Class II decay modes

(1) For the b — (d, s)(q;G,) process,

G
(D* MO\ H |BEy = LV

\/5 q2b

* B/ D" ,M°
VqldazX( ¢ )

(23)
and
<D+M°|3-[ff|3+>=ﬂv LVE a, XBEDEM)
$ eff1%¢ \/5 @bV qs .
(24)
(2) For the ¢ — u(q,g,) process,
GF +pt+ g0
(B*MO|H |BFY = —=V,, Vi, a,XBEM)
\/z q1 q2
(25)

and
(BT qV| H |BF)

G }
= _Faz[vcd\/;dx(BiBﬂnf/)) + VL.XVZSX(B‘*W'”‘(‘))],

V2
(26)

where M = (m, 3", p, w, D)) for ¢ — (d,s) in-
duced decays and M = (7, p, w, K, K, K*, K*) for
¢ — u induced decays, respectively. As in the case
of color-favored class I decay modes, the factorized
matrix elements for color-suppressed class II decay
modes can be obtained from Egs. (14) and (15)
except that the decay constants for the neutral 77,
p°, and @ mesons are replaced by f )/ V2.

C. Class III decay modes
For the class IIl Bf — D} M°(q = d, s) transitions, the
decay amplitude is given by
(D MO|H | BS)
_Gr
V2
where Vp =V, for M = n. and V,, for M = D. The

expressions for the factorized matrix elements can be
obtained from Egs. (14) and (15).

Ve Vila XBMD) 1 g, xBID1MO] - (27)

III. INPUT PARAMETERS

In this section we shall briefly discuss and summarize all
of the input parameters, such as the model parameters,
decay constants, and form factors for semileptonic B, —
(D(s), me» B(y)) decays, which are relevant to the present
work.
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A. Brief review of LFQM

The key idea in our LFQM [44,45] for the ground state
mesons is to treat the radial wave function as a trial
function for the variational principle to the QCD-motivated
effective Hamiltonian saturating the Fock state expansion
by the constituent quark and antiquark. The QCD-
motivated effective Hamiltonian for a description of the
ground state meson mass spectra is given by

HM=HNW%:%@+P+%@+ﬁ+%¢Q&
where
4& + % Sq i Sq

3r 3 mgymg

qu - VO + Vhyp =a+ br" - VZVCOUI'

(29)

In this work, we use two interaction potentials: (1) the
Coulomb plus linear confining (i.e. n = 1) potential and
(2) the Coulomb plus harmonic oscillator (HO) (i.e. n = 2)
potential, together with the hyperfine interaction (S, -
S;) = 1/4(=3/4) for the vector (pseudoscalar) meson,
which enables us to analyze the meson mass spectra and
various wave-function-related observables, such as decay
constants, electromagnetic form factors of mesons in a
spacelike region, and the weak form factors for the exclu-
sive semileptonic and rare decays of pseudoscalar mesons
in the timelike region [44—49].

The momentum-space light-front wave function of
the ground state pseudoscalar and vector mesons is given
by  Wix, ki, A) = R/\l)uz(xi: ki1 )p(x;, k;1), where
¢(x;, k; 1) is the radial wave function and R, ,, is the
covariant spin-orbit wave function. The model wave func-
tion is represented by the Lorentz-invariant variables, x; =
pi/P", ki =p;L —xP, and A;, where PH =
(P*,P7,Py) = (P’ + P3,(M*> + P3)/P",P)) is the mo-
mentum of the meson M, and p¥ and A; are the momenta
and the helicities of constituent quarks, respectively.

The covariant forms of the spin-orbit wave functions for
pseudoscalar and vector mesons are given by

=iy, (p1)Ysva,(P2)

R(A)O/\ = ~ s
112
V2Mj, (30)
u (PO — 52T, (p))
R)\l)\z = = ’
V2M,
TABLE II.

variational principle. ¢ = u and d.

PHYSICAL REVIEW D 80, 114003 (2009)

where M, = \/M(z) —(my —my)?, Mi=32 (ki +
m?)/x; is the boost invariant meson mass square obtained
from the free energies of the constituents in mesons, and
€M(J,) is the polarization vector of the vector meson [60].
For the radial wave function ¢, we use the same Gaussian
wave function for both pseudoscalar and vector mesons:

4a3/* ok >
B, kiy) = %\/a—;exp(—kz/zﬂz), G

where S is the variational parameter and +/dk,/dx is the

Jacobian of the variable transformation {x, k }— k=
(ki k).

We apply our variational principle to the QCD-
motivated effective Hamiltonian first to evaluate the ex-
pectation value of the central Hamiltonian H, + V), i.e.,
(p|(Hy + V)| @), with a trial function ¢(x;, Kk, ) that de-
pends on the variational parameter (3. Once the model
parameters are fixed by minimizing the expectation value
(p|(Hy + V)| ), the mass eigenvalue of each meson is
obtained as M,; = (p|(H, + V,;)|$). Minimizing ener-
gies with respect to 8 and searching for a fit to the observed
ground state meson spectra, our central potential V,, ob-
tained from our optimized potential parameters (a =
—0.72 GeV, b = 0.18 GeV?, and a,; = 0.31) [44] for the
Coulomb plus linear potential was found to be quite com-
parable with the quark potential model suggested by Scora
and Isgur [61], where they obtained a = —0.81 GeV, b =
0.18 GeV?, and a, = 0.3 ~ 0.6 for the Coulomb plus
linear confining potential. A more detailed procedure for
determining the model parameters of light- and heavy-
quark sectors can be found in our previous works [44,45].

Our model parameters (m,, 3,;) obtained from the lin-
ear and HO potential models are summarized in Table II.
The predictions of the ground state meson mass spectra,
including bottom-charmed mesons, can be found in our
recent work, Ref. [43].

B. Form factors for semileptonic B, — P decays

For the nonleptonic two-body B, decays, we use the ¢>
dependent form factors f,(g?) and f,(¢*) for the B, —
(D, Dy, m,, B, B) decays as input parameters.

Within the framework of LF quantization, while the
form factor f, (g?) can be obtained only from the valence
contribution in the g™ = 0 frame with the “+” component
of the currents without encountering the zero-mode con-

The constituent quark mass (GeV) and the Gaussian parameters 3 (GeV) for the linear and HO potentials obtained by the

Model  m, mg  m. my, Byg Bas Bis

ch Bsc Bcc B(]b Bsb IBCb Bbb

Linear 022 045 1.8 52 03659 03886 04128
HO 025 048 1.8 52 03194 03419 0.3681

0.4679
0.4216  0.4686  0.6998

0.5016  0.6509 0.5266 0.5712

0.4960  0.5740

0.8068
1.0350

1.1452
1.8025
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tribution [62], the form factor f_(g?) [or equivalently
fo(g?)] receives the higher Fock state contribution (i.e.,
the zero mode in the g* = 0 frame or the nonvalence
contribution in the ¢* >0 frame). In order to calculate
f-(g%), we developed in [46,47] an effective treatment of
handling the higher Fock state (or nonvalence) contribution
to f_(g?) in the purely longitudinal ¢* > 0 frame (i.e.,
g> = g" g~ > 0) based on the Bethe-Salpeter (BS) formal-
ism. In our recent LFQM analysis [43] of the semileptonic
B.— (D, ., B, B;){v, decays, we utilized our effective
method [46] to express the zero-mode contribution as a
convolution of a zero-mode operator with the initial and
final state LF wave functions. In this way, we obtained the
form factor f_(g?) in the g* = 0 frame using the perpen-
dicular components of the currents and discussed the LF
covariance of f_(g?) in the valence region by analyzing the
covariant BS model and the LF covariant analysis de-
scribed by Jaus [63].

The LF covariant form factors f,(g?) and f_(g?) for
B.(q,G) — P(q,g) transitions obtained from the ¢ =
frame are given by (see [43] for more detailed derivations)

1 d’k Lk Lk’
f+(‘12):_[ dxf]6 J3. d1(x k) ¢ (x J_)
0 T AT KL A3 KT

X(A A, +k - K)),

no Y P’k di(x ki) ¢r(nk))
r-tg= [t =xax [ o e e

X {—x(l —x)M} — K3 — mym;

P ki q,)
+(my —mg) Ay +2L 1 [k2l+2—( L ;“):I
q

z(kJ. “qy)? n k,-q,
2 2
q q

X [M3—(1—x)(g*>+q-P)+2xM}

_I_

— (1= 20M? = 2(m; — my)(m, + mz)]}, (32)

where k', =k; +(1 —x)q;, A, =0 —x)m; + xmy
(i=1,2),and g - P = M? — M5 with M; and M, being
the physical masses of the initial and final state mesons,
respectively. We should note that the LF covariant form
factor f_(g?) in Eq. (32) is the sum of the valence con-
tribution £¥(¢?) and the zero-mode contribution fZM-(4?).

For the analysis of the nonleptonic B, — D F decays
where F is the vector or pseudoscalar meson being factored
out, we show in Fig. 3 the ¢g*> dependence of the weak form
factors £ (g?) (solid line) and f,(¢?) (dashed line) for the
B. — D transition obtained from the linear (upper panel)
and HO (lower panel) potential parameters. The circles
represent the valence contribution f3(g?) to fo(g?). That
is, the difference between fy(¢?) and f3¥(g*) represents

PHYSICAL REVIEW D 80, 114003 (2009)

1 — T T T T T T T T
- B -->D (Linear potential) B

08— — 1 _|

fig)

7 Gev?)

T T T T T T T T T
- B, -->D (HO potential) T

fig)

0 5 10 15 20

FIG. 3. The weak form factors £ (g?) (solid line) and f(q?)
(dashed line) for the B, — D, transition obtained from the linear
(upper panel) and HO (lower panel) potential parameters. The
circles represent the valence contributions £3(g%) to fo(g?).

the zero-mode contribution to f,(g?). We obtain f, (0) =
fo(0) = 0.120 [0.126] at g> = O for the linear [HO] poten-
tial model. The form factors at the zero-recoil point (i.e.
g* = q2,,,) are obtained as f,(g2.) = 0.992 [0.868] and
fo(ghax) = 0.475 [0.493] for the linear [HO] potential
model. On the other hand, the valence contribution to
fo(g?) at the zero-recoil point is obtained as f3(g2.,) =
0.442 [0.443] for the linear [HO] potential model.

In Table III, we show the decay form factors f, (0) =
f0(0) at g> = 0 for the semileptonic B, — (D, 1., B, B,)
decays obtained from [43] and the rare B. — D, decay
obtained in the present work (i.e. Fig. 3), and compare
them to other theoretical model predictions.
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TABLE III.  Form factors f(0) = f,(0) at g*> = 0 for B, — (D), 1., B, B,) transitions.

Linear (HO) [8,9] [19] [22] [14] [26] [23] [16]
2P (0) 0.086 [0.079] 0.14 0.69 0.1446 0.089 0.16 0.08 * 0.02
P (0) 0.120 [0.126] e - . - e 0.28 0.15 = 0.02
F37me(0) 0.482 [0.546] 0.47 0.76 0.5359 0.49 0.622 0.61 0.58

Framd () 0.467 [0.426] 0.39 0.58 0.4504 0.39 0.362 0.63 0.41 = 0.04
BB 0) 0.573 [0.571] 0.50 0.61 0.5917 0.58 0.564 0.73 0.55 = 0.03

C. Weak decay constants of » and 5’

In this work, we shall also consider the nonleptonic
decays of B, mesons to isoscalar states such as @ and
(1, 1'). Isoscalar states with the same JFC¢ will mix, but
mixing between the two light-quark isoscalar mesons and
the much heavier charmonium or bottomonium states is
generally assumed to be negligible. Since the vector mix-
ing angle is known to be very close to ideal mixing, we
assume ideal mixing between w and ¢ mesons, i.e., © =
(uit + dd)/~2 and ¢ = s5. However, the octet-singlet
mixing angle 6 of 1 and 7’ is known to be in the range
of —10° to —23°. The physical 1 and 7’ are the mixtures
of the flavor SU(3) octet ng and singlet 7, states:

ny\ _ 78 33
< n’) Uw)( Mo ) 33)
where
_ (cosf —sind
u(o) = (sin0 cosf ) (34)

and mg = (uii + dd — 255)//6 and ny = (uii + dd +
55)//3. Analogously, in terms of the quark-flavor basis
n, = (ui + dd)/+/2 and 7, = s3, one obtains [64]

()=o)

The two schemes are equivalent to each other by ¢ = 6 +
arctan/2 when SU/(3) symmetry is perfect. However,
when one takes into account the SUf(3) breaking effect,
this relationship is not maintained but given by the follow-

ing Fock decompositions of the octet-singlet basis states
[64]:

(35

W, + 2V, |ui + dd — 255)

Img) = 3 NG
V2V, = W) Jui + dd + 55)
3 N
ey = Y20 = W) i + dd = 255) (36)
=

3 V6
2V, + W |uii + dd + s5)
+ ,
3 V3

where W; denote LF wave functions of the corresponding

parton states. Only in the SU(3) symmetry limit, i.e.,
W, = ¥, would one find pure octet and singlet states in
Eq. (36). Although it was frequently assumed that the
decay constants follow the same pattern of state mixing,
the mixing properties of the decay constants will generally
be different from the mixing properties of the meson state
since the decay constants only probe the short-distance
properties of the valence Fock states while the state mixing
refers to the mixing of the overall wave function [64].

Using the decay constants of Eq. (13) defined in the
quark-flavor basis, the two basic decay constants f, and f
arising from n, and 7, are obtained as

1 d’k |
Fairy = 26 [0 dx [ Yy

167 G7

and simply follow the pattern of state mixing due to the
Okubo-Zweig-lizuka rule [65], i.e.,

5 f ) fq O
;)= 7))

( S ' S o 0 f
The Okubo-Zweig-lizuka rule implies that the difference
between the two mixing angles ¢, and ¢, vanishes [i.e.,

¢, = ¢, = ¢ in Eq. (38)]. On the other hand, the decay
constants in the octet-singlet basis are parametrized as

[64,60]
5 %\ [cosfg —sinfy\[(fs O
s 0 | =1\ . (39
VATENN b sinfg  cosf 0 fo
where 63 and 6, turn out to differ considerably and become
equal only in the SU;(3) symmetry limit.
By using the correlation between the quark-flavor mix-
ing scheme and the octet-singlet scheme [64,65], one
obtains

2 2

fo = J@ 05 = ¢ — arctan(v2f,/f,),
2 o

fo= ’%;fs 0o = ¢ — arctan(v2f,/f,).

In our previous work [44], we obtained the n — 1/ mixing
angle @ =~ —19° for both linear and HO potential models
by fitting the physical masses of 1 and n’. This corre-
sponds to the mixing angle ¢ = 35.7 in the quark-flavor

(38)

(40)

114003-7



HO-MEOYNG CHOI AND CHUENG-RYONG JI

PHYSICAL REVIEW D 80, 114003 (2009)

TABLE IV. Meson decay constants (in units of MeV) used in this work.

fﬂ' fK fp f(u fK* f?'l

A B fo fa fo,

131 [57] 159.8 [57] 220 [57] 195 [57] 217 [57] 104.8 —110.3 753 150.0 222.6 [68] 241 [48] 340 [48] 259.5 [69]

basis. We applied this mixing angle to predict the decay
widths for 1(n’) — yvy using the axial anomaly plus
partial conservation of the axial vector current (PCAC)
relations [67] and obtained f5/f, = 1.32(1.25) and
fo/f»=1.16(1.13) for the linear (HO) potential model
[44]. From the decay constants of octet and singlet mesons
together with Eq. (40), we now obtain the four parameters
(fg» [s» 05, 0p) as follows: f,,/f, = 0.97(1.00), f,/f» =
1.46 (1.36), 0y = —29.2° (—26.8°), and 0y =
—7.3°(—10.6") for the linear (HO) potential model, re-
spectively. Given this background, we finally obtain the
decay constants related to the 1 and 1’ mesons as follows:

£4 =103.2(106.4) MeV,

f3 = —116.6 (—104.0) MeV,
1, =74.2(76.4) MeV,

3, =155.3(144.7) MeV.

(41)

Our results for the mixing parameters of n and 7’
are consistent with those obtained from Feldmann et al.
[64]9 namel}@ fS/fﬂ = 126’ fO/fn' = 117’ fq/fﬂ' =
(.07 £0.02), f,/f-=(1.34=%0.06), ¢ =(39.3°=*
1.0°), 6g = —21.2°, 6,=—9.2°, fI=(1085=
2.0) MeV, f3 = —(111.2 = 5.0) MeV, ffl, = (88.8 =
1.7) MeV, and f‘;], = (135.8 = 6.1) MeV.

For the measured values of meson decay constants, we
use the central values extracted from the experimental
measurements [57,68,69]. However, for the unmeasured
decay constants, we use the average values obtained from
our linear and HO model predictions in [48] in addition to
the present work. The values for the decay constants used
in this work are compiled in Table IV. Since the decay
constant f, extracted from CLEO Collaboration [70] has
a large error bar, i.e., f5F0 = 335 + 75 MeV, we instead
take the average value f, = 340 MeV of our LFQM
predictions [48], ie., fi'=326MeV and fHO =
354 MeV.

IV. NUMERICAL RESULTS

In our numerical calculations of exclusive B, decays, we
use two sets of model parameters (m, 8) for the linear and
HO confining potentials given in Table II to compute the
weak form factors for semileptonic B, — (D(y), 1. By))
decays and the unmeasured decay constants as given in
Tables III and IV, respectively. Using them together with
the CKM matrix elements given by Table I, we finally
predict the branching ratios which are given in Tables V

and VI. Although we show the form factors in Table III
only at a maximum recoil point ¢g> = 0, we use the form
factor at g> = M2 obtained from [43] for the correspond-
ing nonleptonic B, — (D(y), M., B(;))Mf decays.

In Table V we show the nonleptonic decay widths of the
B. meson for a general value of the Wilson coefficients a;
and a,, whereas in Table VI we give the corresponding
branching ratios (in %) at the fixed choice of Wilson
coefficients [5], a$(a}) = 1.20(1.14) and a5(ab) =
—0.317(—0.20), relevant for the nonleptonic decays of
the c(b) quark. For the lifetime of the B,, we take the
central value 7(B,) =0.46ps (i.e. [ =143X
10712 GeV) presented by PDG [57]. Our branching ratios
for both » and ¢ induced decays listed in Table VI are
generally close to the other quark model results [7-
9,14,26] but differ substantially from the ones obtained
by Refs. [5,10,40].

The relative size of the branching ratios for various
decay modes may be estimated from power counting of
the Wilson coefficients a; and the CKM factors with re-
spect to the small parameter of the Cabibbo angle A =
sinf- in the Wolfenstein parametrization [71]; e.g. the
CKM matrix elements can be expanded in terms of A as
Vud -~ 17 Vus -~ /\’ Vub -~ /\3’ chl -~ _A9 VCA‘ -~ 1’ and
V., ~ A%. From Tables V and VI, we make the following
observations:

(1) The class I decay modes determined by the Wilson
coefficient a; have comparatively large branching
ratios. The CKM favored ¢ decays such as B —
BY(m*, p*) decays with the CKM factor V. Vi, ~
A% have branching ratios of the order of 1072 (e.g.
2%—4% in our model predictions), which are the
most promising class I decay modes shown in
Tables V and VI. The CKM-suppressed ¢ decays
such as B — B°K™ with V Vi ~ Al and B} —
B%(m*, p*) with V.4V, ~ A!, as well as the CKM-
suppressed b decays such as B — n (7", p")
with V., V>, ~ A%, have branching ratios of the
order of 1073 and should still be accessible at
high luminosity hadron colliders. However, the
branching ratios of the » — u induced decay modes
are too small O(1073-107°) to be measured
experimentally.

(2) The branching ratios for the class II decay modes
determined by a, are relatively smaller than those
for the class I decay modes. However, the B} —
BT (K° K*) decays with V.V, ~ A? have branch-
ing ratios of the order of 1073 and these modes
should be accessible experimentally. Of interest is
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TABLE V. Exclusive nonleptonic decay widths I' (in 10~'> GeV) of the B, meson for the general values of the Wilson coefficients

PHYSICAL REVIEW D 80, 114003 (2009)

a, and a,.
Class Mode Linear (HO) [8,9] [14] [26]
I B — D7 4.7[4.7](X10™%)a?
B — D" 1.4[1.2](x1073)a?
B — DK+ 3.9[3.4](X107°)a}
B:— — DOE*t 7.5[6.4]()(10_5)61% . . . e
Bf — .t 0.997[1.280]a? 0.93a? 1.02a? 1.47a?
B — n.p" 2.827[3.563]a? 2.3a2 2.60a? 3.35a43
Bf - n.K" 0.081[0.103]a? 0.073a2 0.082a2 0.15a2
Bl — 9 K** 0.147[0.184]a? 0.12a2 0.1542 0.24a%
B — Bz 1.557[1.296]a? 1.0a2 1.10a? 1.51a?
B — B%p™" 1.936[1.505]a? 1.3a2 1.41a2 1.93a2
B! — B'K* 0.126[0.104]a? 0.09a3 0.098a? o
B — BYK** 0.042[0.032]a? 0.04a% 0.038a? e
B — Bz 36.97[36.71]a? 25a? 34.7a3 34.78a%
Bl — B+ 25.43[23.22]a? 14a? 23.1a2 23.61a2
B — BYK* 2.853[2.816]a? 2.1a} 2.87a% e
B — BYK** 0.069[0.061]a? 0.03a? 0.13a?
| Bf - D' #® 2.4[2.0](x10*)a}
B} = D" p° 7.0[6.0](X 10 *)a3
Bl - D'w 5.5[4.7](x10"*)a3
Bl —-D"'n 3.1[2.7](x 10" *)a3
BI — D'y L7[1.5])(X107)a3
B — D™D 0.219[0.185]a3
B — D™D 0.261[0.212]a3
B} - D} n° 2.4[2.6](x1073)a3
BY — D} p° 7.1[7.6](X107%)a3
Bl = D'w 5.6[6.0](x1073)a3
B — D}n 3.2[3.4](xX107%)a3
B} — D} n/ 1.7[1.9](X107%)a3
B} — DD 0.0216[0.0227]a3
B — DD 0.0248[0.0250]a3 e e e
Bf — BT#° 0.779[0.648]a3 0.5a3 0.54a3 1.03a3
Bf — BT p° 0.967[0.752]a3 0.7a3 0.71a3 1.28a3
Bf - Bw 0.721[0.558]a3 ‘e e e
Bf — BTy 3.99[3.30]a?
B — BTy’ 0.054[0.045]a3
B — BTK? 0.125[0.104]a3 e e
B} — B*K? 47.85[39.66]a3 34a3 35.3a3
B — BTK* 0.040[0.030]a3 e e
B — BTK*0 15.36[11.38]a3 13a3 13.1a3
I B} —D'DY  (0.011a; + 0.011a,)*[(0.0097a, + 0.0097a,)*]
B — Dy D° (0.058a, + 0.064a,)*[(0.052a, + 0.066a,)?] e e
Bf — n.D" (0.428a, + 0.226a,)*[(0.482a, + 0.208a,)?] (0.438a, + 0.236a,)> (0.47a, + 0.73a,)?
B — n.D/ (2.27a, + 1.32a,)*[(2.47a, + 1.34a,)?] (2.54a, + 1.93a,)? (2.59a, + 3.40a,)?

the abnormally small branching ratio of B —
B* %' compared to that of B — B* 7. As stated
in [40], the reason for such a small branching ratio is
not only because the available physical phase space
is too small but also because there are large destruc-
tive interferences between 7, and 7} due to the
serious cancellation between the CKM factors

VeV, and V Vi

114003-9

(3) The class III decay modes involve the Pauli inter-
ference. Taking into account the negative value of a,
with respect to a;, one can see that the class III
decay modes shown in Table V should be sup-
pressed in comparison with the cases in which
the interference is switched off. In order to test the
effects of the interference, one may put the widths in
the form of I' = [y + AT, where Iy = x,a? + x,d3
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TABLE VI.  Branching ratios (in %) of the exclusive nonleptonic B, decays at the fixed choice of Wilson coefficients, ai(ab) =
1.20(1.14) and a5(a5) = —0.317(—0.20), relevant for the nonleptonic decays of the ¢(b) quark. For the lifetime of the B, we take
7(B,.) = 0.46 ps.

Class Mode Linear (HO) [8,9] [14] [26] [7] [5] [13] [40] [10]
I B}l = D7 4.3[4.3](X107)
Bl — D% 1.3[1.1](X107%)
B} — DKt 3.5[3.1](X1079)
Bl — n.mt 0.091[0.116]  0.085 0.094 0.13 0.19 0.20 0.025 0.18
Bl — n.p”* 0.257[0.324] 021 024 030 0.45 0.42 0.067 0.49
Bl — n,KT  0.0074[0.0094] 0.0075 0.0075 0.013 0.015 0.013 0.002 0.014
Bf — n.K*"  0.013[0.017] 0011 0.013 0.021 0.025 0.020 0.004 e 0.025
Bl — Bz* 0.157[0.131] 0.10 011 0.5 0.20 1.06 0.19 0.373 0.32
Bl — B+ 0.195[0.152] 013 014 0.19 0.20 0.96 0.15 0.527 0.59
B — BK* 0.013[0.011]  0.009 0.010 0.015 0.07 0.014 0.027 0.025
B — BYK*T  0.0042[0.0032] 0.004 0.0039 0.0048 0.015 0.003 0.023 0.018
B} — B7* 3.723[3.697] 252 351 342 3.9 16.4 3.01 5.309 5.75
B — Bip* 2.561[2.338] 141 234 233 2.3 7.2 1.34 6.265 4.41
B — BYK* 0.287[0.284] 021 029 0.29 1.06 0.21 0.367 0.41
B — BYK**  0.0069[0.0061] 0.003 0.013 0.011 0.0043 0.165 e
I Bl = D'#® 6.7[5.6](X1077)
B — D*p" 2.0[1.7](x107%)
Bl - D'w  1.5[1.3](X1079)
B} —=D*n  87[1.6](x1077)
B — D™D 6.1[5.2](X107%) 33X 1073 53X1073 41x1074 1.8 X 1073
B} — D*D* 7.3[59](X107%) 38X 1073 7.5%x107° 3.6x1074 1.9 x 1073
B:.' — D;*' Py 6.7[7.3](><10_8) - . - A
Bl = D}p® 2.0[2.1](X1077)
B} = Dfw  1.6[1.7](xX1077)
BY = Dfn  9.0[9.5](X1078)
B:—PD;T)/ 4.8[5.3]()(10_8)
Bl — DD 6.0[6.3](xX107%) 21X 107* 48X 1074 27X 1073 9.3X107°
B} — DD 6.9[7.0](x107%) --- cee 24X107% 71X 1074 25X 1077 9.7 X107
B = B*7"  0.0055[0.0046] 0.004 0.0038 0.007  0.007 0.037 4.6 X107 0.011
Bf — BTp®  0.0068[0.0053] 0.005 0.0050 0.009  0.0071 0.034 6.5 X 1073 0.020
B - B w 0.0051[0.0039] - -- 5.8 %1073
B — B™q 0.028[0.023] 1.6 X 107*
Bf = Btn'  3.8[3.2](X107%) 8.9 X 107°
B} — B'K® 8.8[7.3](X107%)  --- e e e 6.5 X 107° .-
B — BTK? 0.336[0.279] 024 025 0.38 1.98 0.0022 0.66
Bl — BTK*0 2.8[2.1](X107%) e e e 5.5 X 1070 e
Bl — BTK*  0.108[0.080] 0.09  0.093 0.11 0.43 0.0018 0.47
111 B — D*D® 7.5[5.8](x107°) 3.1 X107 3.2X107°
B} — DD 2.0[1.5](X107%) = 7.4X107% 6.6 X 107* xx
Bl — n.DF 0.014{0.018] 0.014 0.010  0.019 0.032 0.0055 0.0012
Bl — n.Df 0.378[0.454] 0.44 035 0.44 0.86 0.51 0.056

and AT = za,a,, and then compute the AT'/T’; (in
%) as done in [5]. Our absolute values of AI'/I",
obtained from the linear (HO) model are 34.0
(34.0)% for Bf — D'D°, 373 (424)% for
B} — DD’ 18.4 (15.1)% for Bf — n.D", and
20.2 (18.9)% for B — m.D;, respectively. This
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indicates that the interference is the most signifi-
cantly involved in the B} — D/ D° decay compared
to others. In particular, the B} — D D and B} —
DD, decay modes have been proposed in
[29,33,38,41] for the extraction of the CKM angle
v through amplitude relations.
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V. SUMMARY

In this work, we have studied the exclusive nonleptonic
B, — (D), ., B;))M decays, where the final state M
mesons are factored out in the QCD factorization ap-
proach. The inputs used to obtain their branching ratios
were the weak form factors for the semileptonic B, —
(D(s), Me» Bs)) decays in the whole kinematical region
and the unmeasured weak decay constants obtained from
our previous LFQM analysis [43-45,48]. For the measured
values of decay constants, we use the central values ex-
tracted from the experimental measurements [57,68,69].

Our predictions for the branching ratios are summarized
in Tables V and VI and compared with other theoretical
results. Overall, the class II decay modes have more dis-
crepancies among the theoretical models than the class 1
and IIT decay modes do. The upcoming experimental mea-

PHYSICAL REVIEW D 80, 114003 (2009)

surements of the corresponding decay rates can examine
various theoretical approaches. The most promising mea-
surable decay modes appear to be the CKM favored ¢
decays such as B} — BY(xr*, p*) decays. It is thus ex-
pected that the dominant contribution to the B, total rate
comes from the ¢ induced decays. The more ¢ induced
B.— VP and B, — VV decay modes seem to deserve
further consideration.
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