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The ratio r of intercept to slope of the Pomeron trajectory is derived in a QCD inspired parton model

approach to diffraction based on a (re)normalization of the pp= �pp single-diffractive cross section

designed to enforce unitarity constraints by eliminating overlapping rapidity gaps. As the collision energy

increases, the renormalized single-diffractive cross section tends to a constant which depends on the ratio

r. Identifying the constant as the �o of the total cross section, � ¼ �o � s�, yields the ratio r in terms of

measured parameters that can be phenomenologically expressed in terms of the pion mass and QCD color

factors. The result agrees with the measured value of r.
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I. INTRODUCTION

Hadronic diffraction has traditionally been treated in the
framework of Regge theory [1–3]. In this approach, dif-
fractive processes at high energies are formally described
by the exchange of the Pomeron trajectory, presumed to be
formed by a family of particles carrying the quantum
numbers of the vacuum. Although no particles were known
to belong to this family, the Pomeron trajectory was intro-
duced in the 1970s to account for the observations that the
Kþp cross section was found to be increasing with energy
at the Serpukov 70 GeV (

ffiffiffi
s

p ¼ 11:5 GeV for pp colli-
sions) proton synchrotron, and the elastic and total pp
cross sections, which at low energies were falling with
increasing energy, started to flatten out and then began to
rise as collision energies up to

ffiffiffi
s

p ¼ 60 GeV became
available at the Intersecting Storage Rings at CERN.

In the long history of hadronic diffraction spanning a
period of nearly a half century, the intercept �Pð0Þ ¼
1þ � of the Pomeron trajectory �PðtÞ ¼ �Pð0Þ þ �0

Pt,
as determined from elastic and total pp and �pp cross
sections, was found to increase with increasing energy
from an initial value close to unity to the value of �Pð0Þ �
1:08 [4], while the slope parameter �0

P gradually decreased

from �1 ðGeV=cÞ�2 at
ffiffiffi
s

p � 5 GeV (see [5]) to reach a
stable value of �0

P � 0:25 ðGeV=cÞ�2 at pp and �pp col-

lider energies (see [3]). In contrast, the Reggeon trajecto-
ries formed by the known mesons and resonances have
maintained a constant �0

R � 1 ðGeV=cÞ�2. To date, no
particle or resonance that lies on the Pomeron trajectory
has yet been positively identified.

The small value of �0
P relative to �0

R remains a theoreti-

cal puzzle, whose phenomenological interpretation may
provide a clue to understanding the underlying QCD nature
of diffraction. In this paper, we present a QCD inspired
parton model approach that relates �0

P to �.
In Secs. II, III, IV, V, and VI below, we discuss the Regge

approach, the scaling properties and renormalization of
diffractive cross sections, the parton model approach, the
ratio of �0=�, and conclude with a brief summary.

II. REGGE APPROACH

In Regge theory, high energy hadronic cross sections are
dominated by Pomeron exchange. For pp interactions, the
Pomeron exchange contribution to the total, elastic, and
single diffractive cross sections is given by

�totðsÞ ¼ �2ð0Þ
�
s

s�

�
�Pð0Þ�1 ) ��

�
s

s�

�
�
; (1)

d�elðs; tÞ
dt

¼ �4ðtÞ
16�

�
s

s�

�
2½�PðtÞ�1�

; (2)

d2�sdðs; �; tÞ
d�dt

¼ �2ðtÞ
16�

�1�2�PðtÞ
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

fP=pð�;tÞ

�ð0ÞgðtÞ
�
s0

s�

�
�

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�Ppðs0;tÞ

: (3)

The differential diffractive cross section, Eq. (3), consists
of two terms: the one on the right, �Ppðs0; tÞ, which may be
viewed as the P-p total cross section, and the term on the
left, fP=pð�; tÞ, which is interpreted as the Pomeron flux

emitted by the diffractively scattered proton [6]. The pa-
rameters in Eq. (3) are defined as follows:
(i) �PðtÞ ¼ �Pð0Þ þ �0

P � t ¼ ð1þ �Þ þ �0
P � t is the

Pomeron trajectory;
(ii) �ðtÞ � �PppðtÞ is the coupling of the Pomeron to

the proton usually expressed as �2ðtÞ ¼ �� � eb�t,
where �� � �2ð0Þ and eb�t is an exponential ex-
pression for the form factor of the diffractively
escaping proton, F2

pðtÞ ¼ eb��t;
(iii) gðtÞ is the triple Pomeron (PPP) coupling;
(iv) s0 � M2 is the P-p center of mass system energy

squared, where M is the mass of the diffractively
excited proton;

(v) � � M2=s is the fraction of the momentum of the
incident proton carried by the Pomeron; and

(vi) s� is an energy scale parameter traditionally set to
1 GeV2.

In analogy with Eq. (1), the �Ppðs0tÞ is written as

�Ppðs0; tÞ ¼ �Pppð0ÞgðtÞ
�
s0

s�

�
� ¼ �Pp� ðtÞ

�
s0

s�

�
�
;

�Pp
� ðtÞ ) �Pp

� ; (4)
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where �Pp� ðtÞ is set to a constant,�Pp� , as it has been shown
to be independent of t [7].

Regge theory was successful in describing elastic, dif-
fractive and total hadronic cross sections at energies up toffiffiffi
s

p � 60 GeV, with all processes accommodated in a sim-
ple Pomeron pole approach, as summarized in Ref. [5].
Results from an experiment on photon dissociation on
hydrogen [8] were also well described by this approach.
However, the early success of Regge theory was precari-
ous. The theory was known to asymptotically violate uni-
tarity, as the �s� power law increase of the total hadron-
hadron cross sections would eventually exceed the
Froissart bound of �T < �

m2
�
� ln2s, which is based on ana-

lyticity and unitarity.
The confrontation of Regge theory with unitarity came

at much lower energies than what would be considered
asymptopia by Froissart bound considerations. As collision
energies climbed upwards in the 1980s to reach

ffiffiffi
s

p ¼
630 GeV at the CERN S �ppS collider and

ffiffiffi
s

p ¼
1800 GeV at the Fermilab Tevatron �pp collider, diffraction
dissociation could no longer be described by Eq. (3),
signaling a breakdown of factorization. The first clear
experimental evidence for a breakdown of factorization
in Regge theory was reported by the CDF Collaboration
in 1994. In a measurement of the single diffractive cross
section in �pp collisions [9], CDF found a suppression
factor of �5 (� 10) at

ffiffiffi
s

p ¼ 546 GeV (1800 GeV) rela-
tive to predictions based on extrapolations from

ffiffiffi
s

p �
20 GeV (see [11–13]).

III. SCALING PROPERTIES AND
RENORMALIZATION

The breakdown of factorization in Regge theory was
traced back to the energy dependence of the single diffrac-
tive cross section, �tot

sd ðsÞ � s2�, which is faster than that of
the total cross section, �totðsÞ � s�, so that as s increased
unitarity would be violated if factorization held. This can
be seen more clearly in the s2� dependence of
d�sdðM2; tÞ=dM2jt¼0 of the cross section obtained from
Eq. (3) by a change of variables from � to M2 using � ¼
M2=s:

Regge : d�sdðM2; tÞ=dM2jt¼0 � s2�=ðM2Þ1þ�: (5)

In 1995 it was shown [10–12] that unitarization could be
achieved and the factorization breakdown in single diffrac-
tion dissociation fully accounted for by interpreting the
Pomeron flux of Eq. (3) as a probability density and
renormalizing it so that its integral over � and t could not
exceed unity:

fP=pð�; tÞ ) N�1
s � fP=pð�; tÞ (6)

Ns �
Z �ðmaxÞ

�ðminÞ
d�

Z �1

t¼0
dtfP=pð�; tÞ � s2�= lns: (7)

Here, �ðminÞ ¼ M2�=s, where M2� ¼ 1:4 GeV2 is the ef-
fective threshold for diffraction dissociation, and
�ðmaxÞ ¼ 0:1 [12]. With a Pomeron flux integral
�s2�= lns, the s dependence introduced through the renor-
malization factor N�1

s replaces the power law factor s2� in
Eq. (5) by lns ensuring unitarization:

d�sdðM2; tÞ=dM2jt¼0 !RENORM � lns=ðM2Þ1þ�: (8)

In the QCD inspired parton model approach presented in
Sec. IV, this renormalization procedure eliminates over-
lapping rapidity gaps caused by multiple Pomeron emis-
sions while preserving the ð�; tÞ, or ðM2; tÞ, dependence of
the differential cross section.
In Fig. 1 (from Ref. [12]), �tot

sd ðsÞ is compared with

Regge predictions using the standard and renormalized
Pomeron flux factors. The renormalized flux prediction is
in excellent agreement with the data. An important aspect
of renormalization is that it leads to a scaling behavior
whereby d�sdðM2Þ=dM2 has no power law dependence on
s. This ‘‘scaling law’’ holds for the differential soft single
diffractive cross section as well, as shown in Fig. 2 (from
Ref. [13]).
The elastic and total cross sections are not affected by

the renormalization procedure presented here. Uni-
tarization for the elastic and total cross sections may be
achieved using an eikonal approach, e.g. as reported in
Ref. [14] where excellent agreement is obtained between
p�, ��, and K� cross section data and the corresponding
predictions based on Regge theory and eikonalization.
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FIG. 1. Total pp= �pp single diffraction dissociation cross sec-
tion data (both �p and p sides) for � < 0:05 compared with
predictions based on the standard and the renormalized
Pomeron flux [12].
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The features of the data displayed in Figs. 1 and 2 are
obtained below in the parton model approach to diffrac-
tion. As these features are used to derive the ratio of � to�0,
they play a crucial role in validating the model.

IV. PARTON MODEL APPROACH

The Regge theory form of the rise of the total pp= �pp
cross sections at high energies,�tot

pp= �ppðsÞ ¼ �� � s�, which
requires a Pomeron trajectory with intercept �ð0Þ ¼ 1þ �,
is precisely the form expected in a parton model approach,
where cross sections are proportional to the number of
available ‘‘wee’’ (lowest energy) partons. In [15], the
parton model cross section is obtained as �tot

pp= �pp ¼ N 	
��, where N is the flux of wee partons and �� the cross
section of a wee parton interacting with the target proton.
The wee partons originate from emissions of single partons
cascading down to lower energy partons in treelike chains.
The average spacing in (pseudo)rapidity [16] between two
successive parton emissions is �1=�s, where �s is the
strong coupling constant. This spacing governs the wee
parton density in the � region where particles are pro-
duced, defined here as ��0, which in the case of the total
cross section is equal to �� ¼ lns and leads to a total pp
cross section of (see [15]):

�tot
pp= �pp ¼ �� � e���: (9)

This expression is similar to the Regge theory Pomeron
contribution to the total cross section. Since from the

optical theorem �tot
pp= �pp is proportional to the imaginary

part of the forward (t ¼ 0) elastic scattering amplitude, the
full parton model amplitude may be written as

Im felpp= �ppðt;��Þ � eð�þ�0tÞ��; (10)

where �0ðtÞ is introduced as a simple linear parametriza-
tion of the t dependence. The parameter �0 reflects the
transverse size of the cluster of wee partons in a chain,
which is governed by the �� spacing between successive
chains and is thereby related to the parameter �.
For the relationship between �0 and � we turn to single

diffraction dissociation, which through the coherence re-
quirement isolates the cross section from a single wee
parton interacting with the proton, since all possible inter-
actions of the remaining wee partons are shielded by the
formation of the diffractive rapidity gap. Based on the
amplitude of Eq. (10), the single diffractive cross section
in the parton model approach takes the form:

d2�sdðs;��; tÞ
dtd��

¼ 1

NgapðsÞ
	 Cgap � F2

pðtÞfeð�þ�0tÞ��g2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Pgapð��;tÞ

� � � ½��e���
0 �; (11)

where:
(i) the factor in square brackets represents the cross

section due to the wee partons in the � region of
particle production ��0;

(ii) �� ¼ lns-��0 is the rapidity gap;
(iii) � is a QCD color factor selecting color-singlet gg

or q �q exchanges to form the rapidity gap;
(iv) Pgapð��; tÞ is a gap probability factor representing

the elastic scattering between the dissociated pro-
ton (cluster of dissociation particles) and the sur-
viving proton;

(v) NgapðsÞ is the integral of the gap probability distri-

bution over all phase space in t and ��;
(vi) F2

pðtÞ in Pgapð��; tÞ is the proton form factor de-

fined in the discussion of the parameters that appear
in the Pomeron flux in Eq. (3); and

(vii) Cgap is a normalization constant, whose value is

rendered irrelevant by the renormalization division
by NgapðsÞ.

Since �� ¼ � ln�, the form of Eq. (11) is identical to
the Regge form of Eq. (3). This identifies Cgap and ��� as

��=16� and �Pp� , respectively. However, there is an im-
portant difference from the Regge expression, namely, the
renormalization factor introduced in Sec. III.
The traditional way to proceed would have been to

consider single diffraction as the elastic scattering between
the dissociated and escaping protons and use the eikonal
procedure to achieve unitarity. The first attempt to apply

14   GeV    (0.01 < ξ < 0.03)

20   GeV    (0.01 < ξ < 0.03)

546  GeV   (0.005 < ξ < 0.03)

1800 GeV  (0.003 < ξ < 0.03)

1____

(M2)1+∆
.....

←_____ 546 GeV   std.
flux prediction

← 1800 GeV  std.
flux prediction

∆ = 0.05 ________→

∆ = 0.15 _________→

renorm. flux
prediction

_________→

std. and renorm.
flux fits

|↑

FIG. 2. Cross sections d2�sd=dM
2dt for pþ pð �pÞ ! pð �pÞ þ

X at t ¼ �0:05 GeV2 and
ffiffiffi
s

p ¼ 14, 20, 546, and 1800 GeV.
Standard (renormalized) flux predictions are shown as dashed
(solid) lines. At

ffiffiffi
s

p ¼ 14 and 20 GeV, the fits using the standard
and the renormalized flux coincide [13].
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such a unitarization scheme [17] failed to describe the
energy dependence of �sd (see [13]). Subsequently, several
different eikonal models were introduced to incorporate
diffraction dissociation, but to date no complete agreement
has been reached among the proponents of such models
[18]. Interpreting Pgapð��; tÞ in Eq. (11) as a gap forma-

tion probability whose integral over all phase space satu-
rates at unity offers a transparent and effective way of
unitarizing diffraction. Moreover, this formulation of the
parton model approach to diffraction is directly applicable
to central and multigap diffractive processes, as shown in
the review of Ref. [19]. The predictions of the model
extend to pseudorapidity, multiplicity, and ET distributions
of single and double gap soft diffraction processes [19]. For
these reasons, we adopt the renormalization procedure as
an axiom whose predictions the more rigorous theoretical
approaches to diffraction will have to reproduce if they are
to agree with the available experimental data.

It should be emphasized that our approach is a simple
phenomenological interpretation of the parton model as it
applies to diffraction. Renormalization ensures that once a
gap is formed by a color-singlet exchange, another such
exchange that could have formed a gap in the same event
cannot contribute to the cross section. Theoretically, this
represents a saturation effect, which is accounted for by the
removal of overlapping rapidity gaps. While this concept
cannot readily be represented by simple Feynman dia-
grams, it can nevertheless provide useful constraints to
traditional parton model QCD approaches. Guided by the
experimental results [19], we assume that the probability of
having multiplicity fluctuations in parton cascades to much
larger than the average multiplicity that would spoil this
picture is suppressed.

Below, in Sec. V, the factor � of Eq. (11) is expressed in
Eq. (16) in terms of the (soft scale) gluon and quark
fractions of the proton weighted by the corresponding
QCD color factors, ensuring a fully QCD based phenome-
nological description of the differential single diffraction
dissociation cross section on which the derivation of the
ratio of slope to intercept rests.

V. THE RATIO OF �0=�

By a change of variables from �� to M2 using ��0 ¼
lnM2 and �� ¼ lns� lnM2, Eq. (11) takes the form

d2�sdðs;M2; tÞ
dM2dt

¼
�
��
16�

�Pp
�
�

s2�

NðsÞ
1

ðM2Þ1þ�
ebt

)s!1�
2�0eð�b0Þ=�0

�Pp�
�

lns2�

ðM2Þ1þ�
ebt; (12)

where b ¼ b� þ 2�0 ln s
M2 . Integrating this expression over

M2 and t yields the total single diffractive cross section,

�sd !s!1
2�Pp

� exp

�
�b�
2�0

�
¼ const � �1

sd: (13)

The remarkable property that the total single diffractive
cross section becomes constant as s ! 1 is a direct con-
sequence of the coherence condition required for the recoil
proton to escape the interaction intact. This condition
selects one out of several available wee partons to provide
a color shield to the exchange and enable the formation of a
diffractive rapidity gap. The selection of one of the partons
of the outgoing proton identifies the constant �1

sd as the ��
of Eq. (9), since this is the part of the total cross section that
does not contain any wee parton contributions. The pa-
rameter �� is specific to the dissociating particle, which in
this case is the proton and therefore equals �pp

� . We thus
have

�1
sd ¼ 2�Pp� exp

�
�b�
2�0

�
¼ �pp� ; (14)

which is the sought after relationship between � and �0 in
terms of constants which can be deduced from QCD pa-
rameters through the relationships

�Pp� ¼ �Pppð0Þ � gðtÞ ¼ ��pp� (15)

� ¼ f1g
N2

c � 1
þ f1q

Nc

(16)

b� ¼ R2
p=2 ¼ 1=ð2m2

�Þ: (17)

Here, the color factor � is expressed in terms of the gg and
q �q color factors weighted by the corresponding gluon and
sea-quark fractions, and Rp is the radius of the proton

expressed in terms of the pion mass m�. The fractions
f1g and f1q , where the superscript indicates the limit s !
1, as in Eq. (13), are extracted from the CTEQ5L [20]
parametrizations of the corresponding nucleon parton dis-
tribution functions x � fðsÞ at a scale of Q2 � 1 GeV2,
considered the appropriate scale for the soft pp and �pp
scattering that is being discussed (see [19], Sec. 5.1).
Inserting these parameters in Eq. (13) yields

r ¼ �0

�
¼ �½16m2

� lnð2�Þ��1: (18)

The above equation, in which r is expressed in terms of
the mass of the pion and the parameter �which depends on
QCD color factors and the gluon and sea-quark fractions of
the underlying parton distribution function of the nucleon,
represents the sought after ‘‘QCD connection’’ between the
Pomeron intercept and its slope. For a numerical estimate
of r, we use m� ¼ 0:14 GeV=c2 and � ¼ 0:18� 0:02, as
obtained for gluon and quark fractions of f1g ¼ 0:75 and

f1q ¼ 0:25 evaluated from the CTEQ5L nucleon parton

distribution function (see [19] Sec. 5.1). The uncertainty
in � is due to an estimated uncertainty of 10% in the gluon
fraction and a corresponding uncertainty in the quark
fraction as constrained by f1g þ f1q ¼ 1. Using these val-

ues yields rpheno ¼ 3:2� 0:4 ðGeV=cÞ�2.
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This result is in excellent agreement with the ratio
calculated from the values of � ¼ 0:08 and �0

P ¼
0:25 ðGeV=cÞ�2 for the soft Pomeron trajectory
obtained from fits to experimental data of total and
elastic pp and �pp cross sections for collision energies
up to

ffiffiffi
s

p ¼ 540 GeV, rexp ¼ 0:25 ðGeV=cÞ�2=0:08 ¼
3:13 ðGeV=cÞ�2 [4]. The smaller value for rexp obtained

from a global fit to p�p, ��p, and K�p cross sections,
rexpðglobal fitÞ ¼ 0:26 ðGeV=cÞ�2=0:104 ¼
2:5 ðGeV=cÞ�2 [14], is presumed to be due to the increase
of the intercept from the additional radiation from hard
(high Q2) partonic exchanges at higher energies, as, for
example, manifested in the two-Pomeron model of
Ref. [21].

VI. SUMMARY

In a QCD based parton model approach to elastic,
diffractive, and total cross sections, interactions occur
through the emission of partons, which cascade down to
wee partons in chains of treelike configurations. As the
spacing between successive emissions is controlled by the

strong coupling constant, the total cross section, which is
proportional to the number of wee partons produced, as-
sumes a power law behavior similar to that of Regge
theory. This partonic description is used in this paper to
relate the Pomeron intercept of Regge theory to the under-
lying parton distribution function. The transverse size of
the cluster of wee partons in a chain originating from one
such emission, which is the source of the slope parameter
�0 of the Pomeron trajectory, depends on the distance in
(pseudo)rapidity space between successive emissions and
thereby on the parameter �. Exploiting single diffraction,
which through the coherence requirement isolates a par-
tonic chain due to a single parton emission, the ratio of �0
to � is derived in terms of the pion mass m� and a QCD
color factor � appropriately weighted by the gluon and
quark fractions of the proton at the soft scale of Q2 �
1 GeV2, as obtained from the CTEQ5L parametrization
of the nucleon parton distribution function. The derived
value of the ratio of �0=�, rpheno ¼ 3:12� 0:4 ðGeV=cÞ�2,

is in excellent agreement with the experimental value of
rexp ¼ 3:13 ðGeV=cÞ�2.
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