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It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently

large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the

instability. We search numerically and find the stationary axisymmetric perturbations of Myers-Perry

black holes with a single spin that mark the onset of the instability and the appearance of the new black

hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and

branes.
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Black holes are the most basic and fascinating objects in
general relativity and the study of their properties is essen-
tial for a better understanding of the dynamics of spacetime
at its most extreme. In higher-dimensional spacetimes a
vast landscape of novel black holes has begun to be un-
covered [1]. Its layout—i.e., the connections between dif-
ferent classes of black holes in the space of solutions—
hinges crucially on the analysis of their classical stability:
most novel black hole phases are conjectured to branch off
at the threshold of an instability of a known phase.
Showing how this happens is an outstanding open problem
that we address in this paper.

The best known class of higher-dimensional black holes,
discovered by Myers and Perry (MP) in [2], appears in
many respects as natural generalizations of the Kerr solu-
tion. In particular, their horizon is topologically spherical.
However, the actual shape of the horizon can differ mark-
edly from the four-dimensional one, which is always ap-
proximately round with a radius parametrically �GM.
This is not so in d � 6. Considering for simplicity the
case where only one spin J is turned on (of the bd�1

2 c
independent angular momenta available), it is possible to
have black holes with arbitrarily large J for a given mass
M. The horizon of these ultraspinning black holes spreads
along the rotation plane out to a radius a� J=M much

larger than the thickness transverse to this plane, rþ �
ðGM3=J2Þ1=ðd�5Þ. This fact was picked out in [3] as an
indication of an instability and a connection to novel black
hole phases. In more detail, in the limit a ! 1 with rþ
fixed, the geometry of the black hole in the region close to
the rotation axis approaches that of a black membrane.

Black branes are known to exhibit classical instabilities
[4], at whose threshold a new branch of black branes with
inhomogeneous horizons appears [5]. Reference [3] con-
jectured that this same phenomenon should be present for
MP black holes at finite but sufficiently large rotation: they
should become unstable beyond a critical value of a=rþ,
and the marginally stable solution should admit a station-
ary, axisymmetric perturbation signaling a new branch of
black holes pinched along the rotation axis. Simple esti-
mates suggested that in fact ða=rþÞcrit should not be much
larger than 1. As a=rþ increases, the MP solutions should
admit a sequence of stationary perturbations, with pinches
at finite latitude, giving rise to an infinite sequence of
branches of ‘‘pinched black holes’’ (see Fig. 1).

FIG. 1. Diagram of entropy vs spin, at fixed mass, for MP
black holes in d � 6 illustrating the conjecture of [3] (see also
[6]): at sufficiently large spin the MP solution becomes unstable,
and at the threshold of the instability a new branch of black holes
with a central pinch appears (A). As the spin grows new of
branches of black holes with further axisymmetric pinches
(B;C; . . . ) appear. We determine the points where the new
branches appear, but it is not yet known in which directions
they run. We also indicate that at the inflection point (0), where
@2S=@J2 ¼ 0, there is a stationary perturbation that should not
correspond to an instability nor a new branch but rather to a zero-
mode that moves the solution along the curve of MP black holes.
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Reference [6] argued that this structure is indeed required
in order to establish connections between MP black holes
and the black ring and black Saturn solutions more recently
discovered. Our main result is a numerical analysis that
proves correct the conjecture illustrated in Fig. 1.

The solution for a MP black hole rotating in a single
plane in d dimensions is [2]

ds2 ¼ �dt2 þ rd�3
m

rd�5�
ðdtþ asin2�d�Þ2 þ�

�
dr2

� þ d�2
�

þ ðr2 þ a2Þsin2�d�2 þ r2cos2�d�2
ðd�4Þ; (1)

� ¼ r2 þ a2cos2�; � ¼ r2 þ a2 � rd�3
m

rd�5
: (2)

The parameters here are the mass-radius rm and the
rotation-radius a,

rd�3
m ¼ 16�GM

ðd� 2Þ�d�2

; a ¼ d� 2

2

J

M
: (3)

The event horizon lies at the largest real root r ¼ rþ of �.
The linearized perturbation theory of the Kerr black hole

(d ¼ 4) was disentangled in [7] using the Newman-
Penrose formalism. Attempts to extend this formalism to
decouple a master equation for the gravitational perturba-
tions of (1) in d � 5 have failed so far. Moreover, even if
some subsectors of the perturbations of some classes of MP
black holes have been decoupled [8], none of them shows
signs of any instability and indeed they do not contain the
precise kind of perturbations we are interested in. Thus we
take a more frontal numerical approach to a full set of
coupled partial differential equations (PDE).

We intend to solve for a stationary linearized perturba-
tion hab around the background (1). Choosing traceless-
transverse (TT) gauge, haa ¼ 0 and rahab ¼ 0, the equa-
tions to solve are

ð4LhÞab ¼ �rcrchab � 2Ra
c
b
dhcd ¼ 0; (4)

where 4L is the Lichnerowicz operator in the TT gauge.
Actually, we solve the more general eigenvalue problem

ð4LhÞab ¼ �k2hab; (5)

which is known to appear in two contexts: Eqs. (5) deter-
mine the stationary perturbations of a black string in dþ 1
dimensions [obtained by adding a flat direction z to (1)]
with a profile eikzhab. Thus such modes with k > 0 corre-
spond to the threshold of the Gregory-Laflamme instability
of black strings [4]. The same equations also describe the
negative modes of quadratic quantum corrections to the
gravitational Euclidean partition function [9]. A recent
study of this problem for the Kerr black hole has shown
the existence of a branch of solutions extending the nega-
tive Schwarzschild mode (with kSch � 0) to finite rotation,
with k growing as the rotation increases toward the Kerr
bound [10].

Our reason to consider (5) instead of trying to solve
directly for k ¼ 0 is that there exist powerful numerical
methods for eigenvalue problems that give the eigenvalues
k together with the eigenvectors, i.e., the metric perturba-
tions. If the ultraspinning instability is present for MP
black holes in d � 6, then, in addition to the analogue of
the branch studied in [10], a new branch of negative modes
extending to k ¼ 0 must appear. The eigenvalue k ¼ 0
corresponds to a (perturbative) stationary solution with a
slightly deformed horizon. In fact, as explained above, we
expect an infinite sequence of such branches that reach k ¼
0 at increasing values of the rotation. The solutions for k >
0 imply new kinds of Gregory-Laflamme instabilities and
inhomogeneous phases of ultraspinning black strings (see
also [11]).
The modes we seek preserve the SOðd� 3Þ � SOð2Þ

rotational symmetries of the MP solution and depend only
on the radial and polar coordinates, r and � [3]. Thus we
take the ansatz

ds2 ¼ �e2�0ðdt�!d�Þ2 þ e2�1d�2 þ e2�sin2�d�2

þ e2�ðdr� � sin�d�Þ2 þ e2�d�2
d�4: (6)

We decompose a given quantity Q ¼ f�0; �1; �; �;!;
�;�g as Q ¼ �Qþ �Q. The unperturbed contribution
�Qðr; �Þ describes (1). The perturbations �Qðr; �Þ are de-
termined solving the eigenvalue problem (5) subject to
appropriate boundary conditions. After imposing TT
gauge, Eq. (5) reduces to four coupled PDEs for ��, ��,
��, and �� (the TT conditions then give ��0, ��1, and
�!). The boundary conditions are that the perturbations
are regular and finite at the horizon, r ¼ rþ, at infinity, r ¼
1, and at the poles � ¼ 0, �=2. In addition, we impose
��ðrþÞ ¼ 0. It is important to ensure that the eigenmodes
we find are not pure gauge, hab ¼ rða	bÞ. We can prove

that in the TT gauge, pure gauge perturbations within our
ansatz necessarily diverge at either the horizon or infinity.
Thus, with our boundary conditions, the eigenmodes we
obtain are never pure gauge.
We use a numerical approach successfully applied to the

identification of the negative mode of Kerr and Kerr–anti-
de Sitter (AdS) black holes [10]. It employs a Chebyshev
spectral numerical method (see [10] for further details). We
have carried out the calculations for d ¼ 7; 8; 9. The cases
d ¼ 5 (where the heuristics of [3] do not allow one to
predict any instability) and d ¼ 6 present more difficult
numerics. These, as well as a more detailed presentation of
our numerical approach, will be discussed elsewhere.
The results for d ¼ 7 are displayed in Fig. 2, the other

two cases being qualitatively very similar. We plot the
negative eigenvalue �k2 as a function of the rotation
parameter a. We normalize k and a relative to the mass-
radius rm, which is equivalent to plotting their values for
fixed mass (or mass per unit length, in the black string
interpretation). As described above, the left-most curve,
which does not reach k ¼ 0, is the higher-dimensional
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counterpart of the Kerr negative mode, and the eigenvalues
k are the wave numbers of the Gregory-Laflamme thresh-
old modes at rotation a. At larger rotation we find new
branches of negative modes that intersect k ¼ 0 at finite
a=rm. We label these successive branches with an integer
‘ ¼ 1; 2; 3; . . . , and refer to them as ‘‘harmonics.’’ The
values of a=rm at which the stationary perturbations appear
are listed in Table I.

It is important to note that the k ¼ 0 eigenmode of the
harmonic ‘ ¼ 1 does not correspond to a new stationary
solution. Instead it is a zero-mode that takes the solution to
a nearby one along the family of MP black holes. The
existence and location of this zero-mode is a consequence
of the fact that if the Hessian of the Gibbs potential

GðT;�iÞ ¼ M� TS�P
iJi�i, calculated along a family

of solutions, has an eigenvalue changing sign for some
particular solution, then there is a zero-mode perturbation
of the gravitational (Euclidean) action I ¼ G=T that takes
that solution to an infinitesimally nearby one along that
family. That is, perturbing the solution with that zero-mode
does not correspond to branching off into a new family of
solutions.
One can easily check that the determinant of the Hessian

of the Gibbs potential is inversely proportional to the
determinant of the Hessian of the entropy with respect to
only the angular momenta, i.e., to the determinant of

Hij ¼
�

@2S

@Ji@Jj

�
M
: (7)

Therefore, for solutions with a single spin, there must
appear a stationary perturbation, in principle not associated
to an instability of the black hole, at the inflection point of
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FIG. 3. Embedding diagram at ða=rmÞcrit of the d ¼ 7 black
hole horizon, unperturbed (solid), and with the first unstable
harmonic perturbation (‘ ¼ 2, k ¼ 0) (dashed). The embedding
Cartesian coordinates Z and X lie respectively along the rotation
axis � ¼ 0 and the rotation plane � ¼ �=2. We also show the
logarithmic difference between the embeddings of the perturbed
(Z‘¼2) and unperturbed (Z0) horizons. The spikes represent the
points where the two embeddings intersect. The perturbation has
two nodes, so the horizon squeezes around the rotation axis, then
bulges out, and squeezes again at the equator, as in the conjec-
tured shape A in Fig. 1.
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FIG. 5. Like Fig. 3, for ‘ ¼ 4: the four nodes deform the
horizon into shape C of Fig. 1.
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FIG. 4. Like Fig. 3, for ‘ ¼ 3: between the first two nodes of
the perturbation the horizon has a pinch (shape B in Fig. 1).
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FIG. 2. Negative eigenvalues for the MP black hole in d ¼ 7.
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the curve SðJÞ at fixed M (point 0 in Fig. 1). For the MP
solutions this happens at�

a

rm

�
d�3

mem
¼ d� 3

2ðd� 4Þ
�
d� 3

d� 5

�ðd�5Þ=2
: (8)

The values of ða=rmÞmem for d ¼ 7; 8; 9 agree with the
central values of the numerically determined rotations
(a=rm) for ‘ ¼ 1 (first column in Table I) up to the third
decimal place. This is a very good check of the accuracy of
our numerical methods.

The k ¼ 0 eigenmodes of the higher harmonics, ‘ � 2,
do not admit this interpretation as perturbations along the
MP family of solutions and thus correspond to genuinely
new (perturbative) black hole solutions with deformed
horizons. Their appearance conforms perfectly to the pre-
dictions in [3,6]. It is then natural to expect, although our
approach does not prove it since it only captures zero-
frequency perturbations, that the harmonic ‘ ¼ 2 signals
the onset of the instability conjectured in [3]. The k ¼ 0
eigenmodes for higher harmonics confirm the appearance
of the sequence of new black hole phases as the rotation
grows.

To visualize the effect on the horizon of the perturba-
tions that give new solutions, and provide further confir-
mation of our interpretation, we draw an embedding
diagram of the unperturbed MP horizon and compare it
with the deformations induced by the ultraspinning har-
monics ‘ � 2. This is best done using the embedding
proposed in [12], which has the advantage of allowing
one to embed the horizon along the entire range 0 � � �
�=2 for any rotation, although at the cost of stretching the
pole region, which acquires a conical profile. We do it for
the ‘ ¼ 2; 3; 4 ultraspinning harmonics in Figs. 3–5. In
spite of the distortion created by the embedding, the effect
of the perturbations is clear: ‘ ¼ 2 modes create a pinch
centered on the rotation axis � ¼ 0; ‘ ¼ 3 modes have a
pinch centered at finite latitude �; ‘ ¼ 4 modes pinch the
horizon twice: around the rotation axis and at finite lati-
tude. These are the kind of deformations depicted in Fig. 1.
To better identify the number of times that the perturbed
horizon crosses the unperturbed solution, in these figures
we also plot the logarithmic difference between the two
embeddings.

Reference [3] gave several arguments to the effect that
critical values a=rm close to 1 were to be expected. In
particular, it was pointed out that the change in the behav-

ior of the black hole from ‘‘Kerr-like’’ to ‘‘black–-
membrane-like’’ could be pinpointed to the value of the
spin where the temperature (i.e., surface gravity) reaches a
minimum for fixed mass, which is the same, for solutions
with a single spin, as the inflection point of SðJÞ. As we
have argued, the zero-mode at this solution should not
signal an instability. The ‘ ¼ 2 mode at the threshold of
the actual instability instead appears at larger rotation, well
within the regime of membrane-like behavior as conjec-
tured in [6]. We expect this to be true in general: the
ultraspinning instability of MP black holes should appear
for angular momenta strictly beyond the (codimension 1)
locus in the space of angular momenta where the Hessian
Hij has a zero eigenvalue.

In particular, in d ¼ 5 this criterion does not allow any
ultraspinning instability for any J1, J2, and in d � 6 with
all the N ¼ bd�1

2 c angular momenta Ji equal it predicts that

the instability should appear at a=rm > 2�N=ðd�3Þ.
However we cannot predict the precise values of the rota-
tion where the instability appears.
We have identified the points in the phase diagram

where the new branches must appear, but we cannot de-
termine in which direction these run. This requires calcu-
lating the area, mass, and spin of the perturbed solutions.
However, for any k � 0—and numerically we can never
obtain an exact zero—the linear perturbations decay ex-
ponentially in the radial direction, and so the mass and
spin, measured at asymptotic infinity, are not corrected. It
seems that in order to obtain the directions of the new
branches one has to go beyond our level of approximation
or adopt a different approach.
The new ‘ � 1 branches extend to nonzero eigenvalues

k. These imply a new ultraspinning Gregory-Laflamme
instability for black strings, in which the horizon is de-
formed not only along the direction of the string, but also
along the polar direction of the transverse sphere. Observe
that, even if the ‘ ¼ 1, k ¼ 0 mode is not an instability of
the MP black hole, the modes ‘ ¼ 1, k > 0 are expected to
correspond to thresholds of Gregory-Laflamme instabil-
ities of MP black strings. At a given rotation, modes with
larger ‘ have longer wavelength k�1 and so the branch ‘ ¼
1 is expected to dominate the instability. The growth of k
with a can be understood heuristically, since as a grows the
horizon becomes thinner in directions transverse to the
rotation plane and hence it can fit into a shorter compact
circle.
To finish, we mention that pinched phases of rotating

plasma balls, dual to pinched black holes in Scherk-
Schwarz compactifications of AdS, have been found [13],
as well as new kinds of deformations of rotating plasma
tubes [14] and rotating plasma ball instabilities [15]. The
relation of our results to these and other phenomena of
rotating fluids will be discussed elsewhere.
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TABLE I. Values of the rotation a=rm for the first three har-
monics of stationary perturbation modes (k ¼ 0). The estimated
numerical error is �3� 10�3 in d ¼ 7 and �5� 10�3 in d ¼
8, 9.

d ða=rmÞj‘¼1 ða=rmÞj‘¼2 ða=rmÞj‘¼3

7 1.075 1.714 2.141

8 1.061 1.770 2.275

9 1.051 1.792 2.337
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