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We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing

interaction of a bosonic system with a single fermion. We show how a system of second-quantized

fermions influences the ground state of the whole system by producing a gap between the highest

eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-

fermion states. We describe the development of the gap in both the strong and weak coupling regimes,

while for the intermediate coupling strength we expect formation of homolumo kinks.
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In the complex systems composed of fermions interact-
ing with bosons, such as a molecules, nuclei, etc., appear-
ance of the energy gap between the highest energy level
occupied by fermions and the lowest unoccupied level, the
so-called homolumo gap [1], is a well-known effect which
is observed in experiments and determined from the first
principles by exact calculations in various specific ex-
amples. Some of the most important properties of the
system, stability, interaction with another system, size,
etc., are determined by the physics in the neighborhood
of the gap. In a more general setting, we are interested in
the application of the homolumo effect in the project of
Random Dynamics [2]. There, one starts from the obser-
vation that the energies at our disposal are extremely low,
compared to the fundamental energy scale, presumably to
be identified with the Planck scale. Consequently, from the
fundamental scale point of view, the usual high-energy
physics can be described as low-energy excitations in the
neighborhood of the gap.

The purpose of this paper is to provide a model which
possesses the main features of the interactions involved in
the production of the homolumo gap and allows general-
izations which incorporate other properties such as the
appearance of the single level in the gap or mixing of the
densities of the occupied and unoccupied levels. This paper
can be viewed as continuation of our previous work [3]
which, using a different approach, gives a better insight
into the mechanism of production of the gap. In this new
approach we would like to confirm that the homolumo gap
arises whenever we have a system of fermions and bosons
in interaction, provided that bosons are sufficiently soft to
yield to the pressure from fermions, while the details of the
model itself seem to be unimportant.

The main assumption of the model is dynamics of
single-fermion energy levels. This assumption can arise,
for example, from the observation that the energies of the
single electron levels change as the nucleus of a molecule
vibrates. We show that the Hamiltonian describing the

system of interacting bosons and fermions can be con-
structed from very general assumptions and can be written1

as

H ¼ HB þ gHFB; (1)

with HB and HFB given by

HB ¼ !ðByBþ BByÞ; HFB ¼ fyBfþ fyByf: (2)

This form of the Hamiltonian appeared in descriptions of
black holes [4], mesons and hadrons in QCD [5], and the
Jahn-Teller effect [1]. Within our approach, the part of the
Hamiltonian which describes fermion-boson interaction is
completely determined, while the Hamiltonian describing
bosonic degrees of freedom is a matter of choice. Our
choice is motivated by possible applications in different
branches of physics. As written, the Hamiltonian HB has
been used in descriptions of (a sector within) supersym-
metric Yang-Mills theory in four dimensions, two-
dimensional quantum gravity and string theory [6], and
matrix cosmology [7]. It is also related to integrable mod-
els such as the Calogero model [8]. Furthermore, the
ground state wave function of HB corresponds to the
Gaussian ensemble from the random matrix theory
(RMT) [9] which has been successfully applied in analyses
of the spectra of complex molecules and nuclei, transport
properties of disordered mesoscopic systems [10].
We start modeling the Hamiltonian by considering a

system of the interacting fermions described by the
Hamiltonian in which we include appropriate antisymmet-
rization of fermionic modes in analogy with symmetriza-
tion of bosonic modes:

HFB ¼ 1

2

X

l;k

ðfyl fk � fkfyl ÞXl
k; (3)

where matrix X is, for the moment, fixed N � N Hermitian

1The equations should be understood as matrix equations; B’s
are represented by matrices and f’s as rows and columns.
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matrix and fi, fyi , i ¼ 1; . . . ; N are fermionic operators
satisfying the usual anticommutation relations. Using the
appropriate unitary matrix U, the matrix X and the fermi-
onic operators can be rewritten as

Xl
k¼

X

i

Uyk
i xiU

i
l; fyi ¼

X

k

dykU
k
i ; fj¼X

l

Uyj
l dl; (4)

where xi’s are eigenvalues of the matrix X. Expressed in
the new coordinates the Hamiltonian HFB becomes

HFB ¼ 1

2

X

i

xiðdyi di � didyi Þ: (5)

As the Hamiltonian HFB does not change the number of
fermions, the eigenstates can be chosen with definite num-
ber of fermions

j�i1;...;ini ¼ dyi1 � � �dyin j0if; (6)

where j0if represents a fermionic vacuum with property

dkj0if ¼ 0. As usual, we interpret operator dyi as the

creation operator for a fermion at level i with associated
energy xi, and j�i1;...;ini describes the state in which levels

i1; . . . ; in are occupied while the rest of the levels are
unoccupied. Therefore, the form of HFB is completely
determined by the requirement that the eigenvalues xi are
interpreted as the energy levels of a single fermion.

Next, we introduce a model where the matrix elements
Xi
j are not fixed, but are random variables, the distribution

of which is determined by a probability law PðXi
jÞ. Then,

we can naturally ask the question about densities of occu-
pied and unoccupied levels in a certain state of the system.
These are given by the expectation values of the operators

�occðxÞ¼XN

i¼1

�ðx�xiÞdyi di; �unoccðxÞ¼XN

i¼1

�ðx�xiÞdidyi :

(7)

For the fixed matrix X, the densities (7) in a generic
eigenstate are given by the appropriate sums of the delta
functions. Particularly, in the ground state of the system,
the interval of nonvanishing density of occupied levels lies
below the interval of nonvanishing density of unoccupied
levels. The main consequence of introducing the distribu-
tion law PðXi

jÞ is that the sharp delta-functions’ profiles are
smeared, thus allowing the penetration of the density of the
unoccupied levels into the interval in which density of
occupied levels is nonzero and vice versa. In such a situ-
ation one expects that the gap between the highest occu-
pied level and the lowest unoccupied level disappears. We
explore this question in the setting where matrix X is a
dynamical matrix, so that probability law PðXi

jÞ is a con-

sequence of the quantization of the dynamical degrees of
freedom2 of the matrix X. In that case the matrix degrees of

freedom contribute to the total energy of the system and to
be specific, we assume that self-energy of the matrix X is
determined by the following Hamiltonian:

HB ¼ 1

2

X

ij

Pi
jP

j
i þ

!2

2

X

ij

Xi
jX

j
i ; (8)

where Pi
j ¼ �i@=@Xj

i is momentum conjugate to Xj
i . After

quantization, HB can be expressed in terms of the appro-
priate bosonic operators and together with HFB, which we
now interpret as the Hamiltonian of fermion-boson inter-
action, constitute the system governed by the Hamiltonian
(1). The parameter g defines fermion-boson interaction
strength and can be taken as a positive number without
loss of generality, since for negative g we can transform
X ! �X.
In the following, we are interested in the behavior of

densities (7) in the ground state of the system. In the strong
coupling limit the dominant behavior of the ground state is
determined byHFB. This means that the suitable fermionic
coordinates are the coordinates which diagonalize HFB.
Accordingly, we rewrite the Hamiltonian (1) in terms of

xi’s, U
j
l’s, d

y
i ’s, and dj’s defined by (4), expressing deriva-

tives as [5]

@

@Xk
l

¼ X

i

Ui
kU

yl
i

@

@xi
þ X

i;j;m;m�i

Ui
kU

yl
m Um

j

xi � xm

@

@Ui
j

þ X

m;n;m�n

Um
k U

yl
n

xn � xm
dymdn: (9)

This transformation of coordinates induces a nontrivial
measure in the definition of the scalar product of the states.
After performing similarity transformation and defining a

new Hamiltonian ~H ¼ SHS�1 with S being S ¼Q
i�jðxi � xjÞ1=2, the scalar product of new states j ~�i ¼

Sj�i is defined with respect to the desirable trivial mea-
sure. Finally, the Hamiltonian (1) can be recast into the
following form:

~H ¼ � 1

2

X

k

@2

@x2k
þ!2

2

X

k

x2k þ
g

2

X

k

xkðdyk dk � dkdyk Þ

þ 1

2

X

m;n;m�n

Ln
mL

m
n

ðxm � xnÞ2
; (10)

where we defined for n � m

Ln
m ¼ Un

l

@

@Um
l

� i

2
ðdymdn � dndymÞ: (11)

The operators Ln
m ¼ Uky

m JlkU
n
l are transformed ‘‘angular

momentum’’ generators Jlk which commute with the

Hamiltonian (1) and generate the unitary group.
Assuming that the last term in the Hamiltonian (10) may
be ignored, an assumption to be justified later on, the

2One might say that we approximate fundamentally random
physics by more tractable Hamiltonian dynamics. The other
point of view would be to attribute the success of RMT to the
underlying Hamiltonian dynamics.
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eigenstates of the Hamiltonian (10) can be written as3:

j ~�i ¼ ~�ðx1; . . . ; xn; y1; . . . ; yN�nÞdy1 � � �dyn j0if; (12)

where coordinates xi, i ¼ 1; . . . ; n correspond to occupied
levels, while coordinates yj ¼ xnþj, j ¼ 1; . . . ; N � n cor-

respond to unoccupied levels. In the following, we require

that function ~� is antisymmetric under the exchange of two
indices of the occupied levels and separately under the
exchange of two indices of the unoccupied levels.
Therefore, the proper state of the system is obtained by
antisymmetrising the state (12) with respect to exchange of
indices of occupied and unoccupied levels. The action of
the Hamiltonian (10), without the last term, on the state
(12) reduces to the action of the Hamiltonian ~Hred on the

wave function ~�, with ~Hred given as

~H red¼�1

2

X

k

@2

@~x2k
þ!2

2

X

k

~x2k�
1

2

X

k

@2

@~y2k
þ!2

2

X

k

~y2k; (13)

where ~xi ¼ xi þ g=2!2, ~yi ¼ yi � g=2!2. The properly
symmetrized ground state of the Hamiltonian ~Hred is

~�gs �
Y

i�j

ð~xi � ~xjÞ1=2
Y

i�j

ð~yi � ~yjÞ1=2

� e
�ð!=2ÞP

i

~x2i
e
�ð!=2ÞP

j

~y2j
: (14)

Suppose now that we have exact ground state j�exacti.
Because of singularity for xi � yj of the last term in the

Hamiltonian (10), the exact ground state contains the
prefactor

Q
i;jðxi � yjÞ with the suitable power, as is usual

in the Calogero-like models [8]. In the leading order in g
the introduction of this prefactor into the state (14) results
in multiplication of the state by a constant, and formally
the appearance of this prefactor is out of the scope of
present approximation. However, the important effect of
this prefactor is that the contribution to the expectation
value of the last term in the Hamiltonian (10) in the exact
ground state reduces to the principal value integral avoid-
ing singularity. Using the principal value prescription we
can expand the integrand into powers of g, showing that
this contribution in the state (14) is of order g�2 relative to
the other terms in the Hamiltonian. This justifies our
assumption that the last term of the Hamiltonian (10)
may be ignored and the bosonic part of the ground state
separates into the product of the part depending solely on
the occupied levels and the part depending on the unoccu-
pied levels. Using the usual methods from random matrix
theory [9], evaluation of the densities (7) in approximate
ground state gives

h�occðxÞi ¼ e�!ðxþg=2!2Þ2 X
n

i¼1

H2
i ð

ffiffiffiffi
!

p ðxþ g
2!2ÞÞ

2ii!
ffiffiffiffi
�

p ;

h�unoccðxÞi ¼ e�!ðx�g=2!2Þ2 XN�n

i¼1

H2
i ð

ffiffiffiffi
!

p ðx� g
2!2ÞÞ

2ii!
ffiffiffiffi
�

p ; (15)

where HnðxÞ is the Hermite polynomial of order n.
In the limit N � n, n ! 1, densities (15) reduce to

Wigner’s semicircle laws, as indicated in Fig. 1, with
centers separated by g=!2 in accordance with the two-
cut solution previously found [3]. This result shows that in
the strong coupling limit we still have well-separated
densities of occupied and unoccupied levels, although the
probability nature of the levels dynamics allows mixing of
levels. Furthermore, Eq. (15) shows that in the case of finite
number of levels and finite number of fermions there exist
states in the previously found homolumo gap [3]. Note that
in precisely this regime, i.e., in the limit of strong interac-
tion, the model defined by (1) was used as a toy model for
QCD in the analysis of the spectrum of mesons and bary-
ons [5].
In the case of weak interaction, up to first order in g we

can write the Hamiltonian (1) as

H ¼ eiHfbHBe
�iHfb ; (16)

where

Hfb ¼ g

2!2

X

l;k

ðfyl fk � fkfyl ÞPl
k: (17)

The eigenstate of the Hamiltonian (16) is j�i ¼ eiHfb j�i,
where j�i is an eigenstate of HB. The density of occupied
eigenvalues in this state is

h�occðxÞi ¼ h�jX
i

dyi di�ðx� xiÞj�i

¼ X

i

h�je�iHfbdyi di�ðx� xiÞeiHfb j�i: (18)

Expanding in g up to first order we obtain

h�occðxÞi ¼ h�occ
0 ðxÞi þ g

2!2
@xh�occ

0 ðxÞi; (19)

x

x

FIG. 1 (color online). Smoothing out the densities (15); on the
upper graph is plotted �occðn ¼ 20Þ and �unoccðN � n ¼ 15Þ,
and on the lower graph is plotted �occðn ¼ 100Þ and �unoccðN �
n ¼ 80Þ, with g=2!2 ¼ 15.

3The condition that the eigenstate of the Hamiltonian H is
antisymmetric with respect to exchange of two fermions implies
that state transformed by aforementioned similarity transforma-
tion is symmetric with respect to this exchange. By this trans-
formation the matrix degrees of freedom are effectively
described as fermions.
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where h�occ
0 ðxÞi is the density of occupied levels for g ¼ 0.

Analogously we find

h�unoccðxÞi ¼ h�unocc
0 ðxÞi � g

2!2
@xh�unocc

0 ðxÞi: (20)

The case of weak interaction shows that starting with the
system of bosons determined by the Hamiltonian HB,
introduction of boson-fermion interaction results in the
displacement of the occupied levels by �g=2!2 and un-
occupied levels by g=2!2, whatever these densities are in
the case g ¼ 0.

Moreover, one can show that even to the second order
the boson-fermion interaction results only in the displace-
ment of the of occupied levels by�g=2!2 and unoccupied
levels by g=2!2. As this is exactly the result of the strong
coupling approximation, one might speculate that this
would be also true for the intermediate g. In that case, in
the transition region where densities, although displaced,
still overlap, as in Fig. 2, the total density of levels in the
large N limit (the sum of two semicircle distributions)
would display two (ignoring the end points) homolumo
‘‘kinks.’’

The appearance of the gap in our picture depends on the
frequency !, the interaction strength g, the number of
levels N, and number of fermions n. The control over these
parameters effectively controls the size of the gap. A
possible disappearance of the gap, observed in reality,
can be also interpreted within our picture as a consequence
of the existence of the several subsystems whose gaps are
arranged in appropriate way. Namely, one could introduce
different frequencies !i in a bosonic part of the model,
which would result in a different gap for each subsystem,
and these could be arranged to overlap. This could provide
a simple model for exploring the insertion of a single level
into the gap.

Furthermore, the Hamiltonian (1) looks exactly as the
Hamiltonian used to derive the linear Jahn-Teller effect [1],

which says that due to the degeneracy of orbital fermion
levels the symmetry of the molecule is broken in the
ground state. Although in description of this effect the
Hamiltonian (1) is defined in configuration rather than in
momentum/energy space, the homolumo gap we observe
can be interpreted as a manifestation of breaking of gauge
symmetry, representing a generalization of the Jahn-Teller
effect.
In our approach, the crucial point was the use of suitable

unitary transformation that enabled us to diagonalize the
model in both the strong and weak coupling approxima-
tions. On the other hand, using the conserved ‘‘angular
momentum’’ generators and appropriate spectrum gener-
ating algebra, one should attempt to construct exact eigen-
states of the system. We hope to report on the related
results in future publications.
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FIG. 2 (color online). We sketched development of the gap in
the weak coupling limit for N � n, n ! 1.
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