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In a recent paper [2] it was shown in examples that the covariant retarded Green’s functions in certain

gauges for electromagnetism and linearized gravity can be used to reproduce field configurations correctly

in spite of the spacelike nature of past infinity in de Sitter spacetime. In this paper we extend the work of

Ref. [2] concerning the electromagnetic field and show that the covariant retarded Green’s function with

an arbitrary value of the gauge parameter reproduces the electromagnetic field from two opposite charges

at antipodal points of de Sitter spacetime.
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It was claimed by some authors that the causal structure,
in particular, the spacelike nature of past infinity, of
de Sitter spacetime invalidates the covariant retarded
Green’s functions in electromagnetism and linearized
gravity in de Sitter spacetime (see, e.g. Ref. [1]). In elec-
tromagnetism, for example, they claimed that, since a
charge following a geodesic can influence only part of
the space, the field generated by the causal retarded
Green’s function violates Gauss’s law, and that, as a con-
sequence, the covariant retarded Green’s function is wrong.

Now, the classical initial value problem for electromag-
netism with a gauge-fixing term and a source term is
certainly well defined and causal in de Sitter spacetime,
and the causal retarded Green’s function is simply a mathe-
matical tool that gives the field in the future of the initial
surface for a given source term. Therefore, the claim
mentioned above is rather puzzling. As was pointed out
in Ref. [2], in a spacetime with spacelike past infinity, such
as de Sitter spacetime, one needs to take into account the
contribution from the initial data on past infinity, which are
necessarily nonzero if the charge density does not vanish
there [3,4], when calculating the field configuration using
the retarded Green’s function. This issue does not arise in
Minkowski spacetime, and that is why some authors con-
sider only the contribution from the charge and erroneously
conclude that the retarded Green’s function does not work
in de Sitter spacetime.

In Ref. [2] one example for showing how the retarded
Green’s function should be used in de Sitter spacetime was
the electromagnetic field produced by two charges with
opposite signs placed at antipodal points. This example
was studied in the Feynman gauge. The purpose of this
paper is to extend this example by using the covariant
gauge with an arbitrary value of the gauge parameter.

We consider the free electromagnetic field described by
the Lagrangian

L ¼ ffiffiffiffiffiffiffi�g
p �

� 1

4
FabF

ab � 1

2�
ðraA

aÞ2
�
; (1)

where g is the determinant of the background de Sitter
metric and where Fab ¼ raAb �rbAa. Let J

aðxÞ be a
current coupled to the electromagnetic potential AaðxÞ
and let � be a Cauchy surface. Then, as was explained in
Ref. [2], the field Aa in the future domain of dependence of
�, denoted Dþð�Þ, is given in terms of the retarded
Green’s function Gab0 ðx; x0Þ by

AaðxÞ ¼ AðSÞ
a ðxÞ þ AðIÞ

a ðxÞ; (2)

where

AðSÞ
a ðxÞ ¼

Z
Dþð�Þ

d4x0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�gðx0Þ

q
Gab0 ðx; x0ÞJb0 ðx0Þ; (3)

AðIÞ
a ðxÞ ¼

Z
�
d�a0 ½�a0b0 ðx0ÞGab0 ðx; x0Þ � Ab0 ðx0Þ

� ðL�GÞaa0b0 ðx; x0Þ�; (4)

with

�a0b0 ¼ 1ffiffiffiffiffiffiffi�g
p @L

@ðra0Ab0 Þ ¼ �Fa0b0 � ��1ga
0b0rc0A

c0 ; (5)

ðL�
~GÞaa0b0 ¼ �2r½a0 ~Gb0�

a � ��1ga
0b0rc0 ~Gac0 : (6)

As in Ref. [2] we call the fields AðSÞ
a ðxÞ and AðIÞ

a ðxÞ the
source field and initial field, respectively. In de Sitter
spacetime the initial field with past infinity adopted as �
is crucial in reproducing the field in terms of the retarded
Green’s function. This fact was overlooked in the errone-
ous claim that the retarded Green’s function in the cova-
riant gauge is invalid in de Sitter spacetime.
A metric of de Sitter spacetime that covers the whole

spacetime is

ds2 ¼ H�2sec2�ð�d�2 þ d�2 þ sin2�d�2Þ; (7)

where j�j<�=2 and 0 � � � �, and where d�2 is the
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metric on the unit 2-sphere (S2). The electromagnetic field
from charges q at the North Pole (� ¼ 0) and �q at the
South Pole (� ¼ �) can be

A� ¼ � q

4�

cos� cot�

cos�þ sin�
; (8)

A� ¼ � q

4�

sin�

cos�þ sin�
: (9)

In Ref. [2] this field was reproduced using Eq. (2) from the
initial data on past infinity and the current JaðxÞ corre-
sponding to the charges at the North and South Poles in the
Feynman gauge (� ¼ 1).

We first consider the source field due to a charge q at the
North Pole. The causal future of the North Pole, with the
condition � > �� �=2, can be covered by the coordinates
ð�; rÞ (and the angular coordinates on S2) given by

H� ¼ cos�

cos�þ sin�
; (10)

Hr ¼ sin�

cos�þ sin�
: (11)

The metric in these coordinates is

ds2 ¼ 1

H2�2
ð�d�2 þ dr2 þ r2d�2Þ: (12)

The conformal time � decreases toward the future from 1
to 0. The North Pole is at r ¼ 0. The electromagnetic
potential given by Eqs. (8) and (9) in this coordinate
system is

A� ¼ q

4�

�
1

r
� 1

�þ r

�
; (13)

Ar ¼ � q

4�ð�þ rÞ : (14)

Following Ref. [5], we define for spacelike points x and
x0 that can be connected by a spacelike geodesic

z � ½1þ cosH�ðx; x0Þ�=2; (15)

where �ðx; x0Þ is the geodesic distance between x and x0.
With the notation x ¼ ð�;xÞ, x0 ¼ ð�0;x0Þ we have (see,
e.g. Eq. (4.28) of Ref. [2])

cosH�ðx; x0Þ ¼ �2 þ �02 � kx� x0k2
2��0 : (16)

This formula allows one to extend the variable z to the
cases where x and x0 cannot be connected by a spacelike
geodesic.

One can readily find the Feynman propagator for the
electromagnetic potential using the method of Allen and
Jacobson [5] as

Qab0 ðx; x0Þ ¼ QFG
ab0 ðx; x0Þ þ ð� � 1Þrarb0

~�ðx; x0Þ; (17)

where

@

@z
~�ðx; x0Þ ¼ H2

16�2

�
1

1� zþ i�
� 1

3z

� 2zþ 1

3z2
logð1� zþ i�Þ

�
: (18)

(Sincera
~� ¼ raz@~�=@z, we only need the z derivative of

~�.) The retarded Green’s function is found as the disconti-
nuity across the cuts from z ¼ �1 to z ¼ �1 and from
z ¼ 1 to z ¼ 1 on the complex z plane (see, e.g. Eq. (4.10)
of Ref. [2]) as

Gab0 ðx; x0Þ ¼ GFG
ab0 ðx; x0Þ þ ð� � 1Þ ~Gab0 ðx; x0Þ; (19)

where GFG
ab0 ðx; x0Þ is the retarded Green’s function in the

Feynman gauge [2,5] and

~Gab0 ðx; x0Þ ¼ �ð�0 � �Þ½	ðzÞH2gab0 þ 4
ðzÞraz � rb0z�;
(20)

with

	ðzÞ ¼ 1

16�

�
�ð1� zÞ þ 2zþ 1

3z2
�ðz� 1Þ

�
; (21)


ðzÞ ¼ 1

16�

�
�ð1� zÞ � 1

2
�0ð1� zÞ � 1

6z3
�ðz� 1Þ

�
:

(22)

The bivector gab0 ðx; x0Þ [5] is expressed as [2]

gab0 ¼ 1

H2

�
@a@b0 cosH�� 1

2z
@a cosH� � @b0 cosH�

�
:

(23)

If points x and x0 can be connected by a spacelike geodesic,
then the bivector gab0 is the parallel propagator along the
geodesic between these points.
Now, we use the retarded Green’s function (19) to find

the source field AðSÞðxÞ given by Eq. (3) due the charge q at
the North Pole r ¼ 0. We let the charge be present only for
� < �0 and let �0 ! 1 at the end. The contribution from
GFG

ab0 ðx; x0Þ in Eq. (19) is given by Eqs. (4.34) and (4.35) of

Ref. [2]. Here, we calculate the contribution from the

second term in Eq. (19) denoted by ~AðSÞ
a ðxÞ. If we write

~Gab0 ¼ ~Gð�Þ
ab0�ð1� zÞ þ ~Gð�0Þ

ab0 �
0ð1� zÞ þ ~Gð�Þ

ab0�ðz� 1Þ;
(24)

we have

~AðSÞ
a ðxÞ ¼ �qð� � 1Þ�ð�0 � �� rÞ

�
�
2��0

r

�
~Gð�Þ
a�0 þ @

@�0

��
@z

@�0

��1
~Gð�0Þ
a�0

�����������0¼�þr

þ
Z 1

�þr
d�0 ~Gð�Þ

a�0

�
r0¼0

: (25)

We find that the only nonvanishing component is
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~A ðSÞ
� ¼ q

12��
ð� � 1Þ�ð�0 � �� rÞ: (26)

Next, we calculate the initial field using the coordinates
covering the causal past of the North Pole with the condi-
tion � < �=2� �. Note that its past boundary is past
infinity � ¼ ��=2. This part of the spacetime is covered

by the coordinates ð�̂; r̂Þ defined by

H�̂ ¼ cos�

cos�� sin�
¼ �

Hð�2 � r2Þ ; (27)

Hr̂ ¼ sin�

cos�� sin�
¼ r

Hð�2 � r2Þ : (28)

The equalities relating ð�̂; r̂Þ and ð�; rÞ are valid only in the
overlapping region with �� �=2< �< �=2� �. The

metric in coordinates ð�̂; r̂Þ is given by Eq. (12) with �

and r replaced by �̂ and r̂, respectively. (The North Pole is

again at r̂ ¼ 0.) The conformal time �̂ increases from 0 to

1, and the surface �̂ ¼ 0 is past infinity. In finding the

initial field, we let the initial surface � be the �̂ ¼ �̂0 ( ¼
const) surface and let �̂0 ! 0 at the end. The field given by

Eqs. (8) and (9) is expressed in coordinates ð�̂; r̂Þ on the

initial surface �̂ ¼ �̂0 (with r̂ ¼ r̂0) as

A�̂0 ¼ � q

4�

�
1

r̂0
� 1

r̂0 þ �̂0

�
; (29)

Ar̂0 ¼ q

4�

1

r̂0 þ �̂0 ; (30)

with the angular components vanishing (see Eqs. (4.39)
and (4.40) in Ref. [2]).

Now, it can be shown that r½a0 ~Ga
b0� ¼ 0, and rc0GFG

ac0 ¼
rc0 ~Gac0 . (That is, the retarded Green’s function is
divergence-free in the Landau gauge � ¼ 0.) This equality
can be used to show that

ðL�GÞaa0b0 ¼ ðL�G
FGÞaa0b0 j�¼1: (31)

Thus, the second term in Eq. (4) is � independent. This
implies that the additional contribution to the initial field is

~A ðIÞ
a ðxÞ ¼ ð� � 1Þ

Z
�
d�a0�

a0b0 ðx0Þ ~Gab0 ðx; x0Þ: (32)

The field �a0b0 ðx0Þ is defined by Eq. (5). The additional
contribution to the initial field in the causal past of the
North Pole thus obtained is

~A ðIÞ
�̂

¼ q

12�
ð� � 1Þ

�
1

�̂þ r̂
þ 1

�̂� r̂
� 1

�̂

�
�ð�̂� �̂0 � r̂Þ;

(33)

~A ðIÞ
r̂ ¼ q

12�
ð� � 1Þ

�
1

�̂þ r̂
� 1

�̂� r̂

�
�ð�̂� �̂0 � r̂Þ;

(34)

and all other components vanish. Notice that ~AðIÞ
a ¼ 0 if

�̂� r̂ < �̂0, i.e. if the point is not in the causal future of the
charge at the North Pole. Note also that the region covered

by the coordinates ð�̂; r̂Þ does not intersect the causal future
of the South Pole, and hence that in this region the source
field from the charge at the South Pole vanishes.
Let us present the source and initial fields by adding

together those in the Feynman gauge found in Ref. [2] and
the additional contributions due to the change in the gauge
parameter found in this paper. The source field is

AðSÞ
� ¼ q

4�

�
1

r
� 1

�þ r
þ �

3�

�
; (35)

AðSÞ
r ¼ � q

4�ð�þ rÞ ; (36)

where we have let �0 ! 1. The initial field is

AðIÞ
�̂

¼ � q

4�

�
1

r̂
� 1

r̂þ �̂

�
�ðr̂� �̂Þ

� q�

12�

�
1

�̂
� 1

�̂þ r̂
� 1

�̂� r̂

�
�ð�̂� r̂Þ; (37)

AðIÞ
r̂ ¼ q

4�ðr̂þ �̂Þ�ðr̂� �̂Þ

þ q�

12�

�
1

�̂þ r̂
� 1

�̂� r̂

�
�ð�̂� r̂Þ; (38)

where we have let �̂0 ! 0. The initial field in the over-
lapping region can be written in coordinates ð�; rÞ, using
Eqs. (27) and (28), as

~A ðIÞ
� j�̂>r̂ ¼ � q�

12��
; (39)

~A ðIÞ
r j�̂>r̂ ¼ 0: (40)

Thus, the sum AðSÞ
a þ AðIÞ

a is � independent and reproduces
the field configuration given by Eqs. (8) and (9) in the
region with � < �=2� �, i.e. in the causal past of the
North Pole. It is clear that this conclusion holds for the
causal past of the South Pole with � < �� �=2. Hence,
we can conclude that Eq. (2) reproduces the correct field
configuration for � < 0. Then by using the uniqueness of
the solution to the field equations for the electromagnetic
potential for given initial data on the Cauchy surface � ¼
��=4, say, we conclude that Eq. (2) reproduces the correct
field over the whole spacetime for any � , extending the
result for � ¼ 1 in Ref. [2].
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[4] J. Bičák and P. Krtouš, Phys. Rev. D 64, 124020 (2001).
[5] B. Allen and T. Jacobson, Commun. Math. Phys. 103, 669

(1986).

BRIEF REPORTS PHYSICAL REVIEW D 80, 107502 (2009)

107502-4


