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We construct exact two-dimensional conformal field theories, corresponding to closed string tachyon

and metric profiles invariant under shifts in a null coordinate, which can be constructed from any two-

dimensional renormalization group flow. These solutions satisfy first order equations of motion in the

conjugate null coordinate. The direction along which the tachyon varies is identified precisely with the

world sheet scale, and the tachyon equations of motion are the renormalization group flow equations.
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I. INTRODUCTION

It is an old idea that renormalization group (RG) flows in
two-dimensional quantum field theories can be lifted to
time-dependent solutions of string theory. When the RG
flow describes the evolution of couplings to relevant op-
erators, the string theory background corresponds to a
nontrivial tachyon profile. This identification is precisely
true in the limit of large dilaton slope [1–4]. Away from
this limit, the map between RG flows and real tachyon
profiles is modified: in particular, spacetime equations of
motion are second order in time and space, while the RG
flow equations are first order in scale [4,5].1 One may
construct the full spacetime profile in a derivative expan-
sion for slowly varying tachyons or in conformal perturba-
tion theory for small tachyon expectation values [2,4].

In this work we pursue a modification of these argu-
ments for closed string tachyons in a background with a
null shift symmetry. It was pointed out in [6–8] that for
sigma models with such a symmetry, the equations of
motion would be first order in the null directions and
look more like renormalization group flows. A wide class
of exact conformal field theories (CFTs) of this kind, with a
timelike linear dilaton, has been worked out in [9–15] (see
also [16–19] for related studies). Because of the null shift
symmetry and the relatively simple tachyon profile, the
beta functions receive no corrections beyond one-loop in
�0 (much as the beta functions for the plane wave back-
grounds of [20] are one-loop exact). We generalize this
work to describe null tachyon profiles with a null isometry
and a timelike dilaton given any renormalization group
flow. In these flows, the direction along which the tachyon
varies is mapped precisely to the world sheet scale by a
Lagrange multiplier constraint, and the profile satisfies first
order equations equivalent to the RG equations.

Note that these backgrounds will be exact in �0, but not
necessarily in gs. In particular, we expect the dilaton to run
to strong coupling in the past or future of these solutions.
As usual, however, we can adjust the constant mode of the

dilaton to push this strong coupling region as far into the
past or future as we wish.

II. WORLD SHEET DESCRIPTION OF NULL
TACHYONS

In constructing our string theory background, we begin
with the tensor product of a two-dimensional target space
and a conformal field theory C. Assume this conformal
theory has a set of local primary operatorsOa. Let us write
the two-dimensional target space with the metric

ds2 ¼ �2dXþdX�: (2.1)

We now couple these theories by:
(i) Deforming C by couplings

R
d2�uaðXþÞOa depend-

ing only on Xþ.
(ii) Turning on a dilaton of the form �ðXþ; X�Þ ¼

�X� þ ~�ðXþÞ. The coefficient � is arbitrary, and
can be shifted by rescaling X� ! �X�, Xþ !
Xþ=�; � has mass dimension 1 if X� has length
dimension 1.

As in [10–13,16–18], the dilaton is linear in X�. The Xþ
dependence of the tachyon will be nonlinear, as the slope
must shift between Xþ ¼ �1 to make up for the change in
the central charge associated with the sector C [4,16].
The full world sheet action is2

Spert ¼ SCFT þ 1

4��0
Z

d2z
ffiffiffi
g

p ½�2g��@�X
þ@�X�

þ �0ð�X� þ ~�ðXþÞÞRð2Þ þ uaðXþÞOa�: (2.2)

Note that Oa will generally include the identity operator.
Here SCFT is the action for C. However, our discussion will

1That is, ½R;G� � 0.

2In Refs. [10–13,16–18], there is also a term ð@XþÞ2 in the
action corresponding to a metric Gþþ which is induced at large
Xþ. This does not appear in our calculation. We believe this
amounts in part to a choice of scheme. A term GþþðXþÞð@XþÞ2
can be removed by a field redefinition X� ! X� þ fðXþÞ,
where @þf ¼ Gþþ, without otherwise changing the form of
the action. We would like to thank A. Frey for asking about
this point.
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work just as well if C has no Lagrangian description. In this
latter case, the presence of SCFT merely denotes that for
fixed Xþ, X�, the theory is the conformal field theory C
perturbed by

R
d2�uaðXþÞOa.

The tachyon and metric couplings in (2.2) have a sym-
metry under shifts of X�. This appears to be broken by the
term in the dilaton linear in X�. However, note that a shift
in X� simply adds a total derivative (the Euler character of
the world sheet) to the action. Thus, this action respects an
overall shift symmetry in X�, which will be reflected in the
world sheet beta functions. Note, however, that the string
genus expansion will not respect this shift symmetry, so
one must treat the strong coupling region with caution.

We will assume that we know, in advance, complete
information about SCFT perturbed by arbitrary couplings
which might depend on the world sheet coordinates. In
particular, this means that we assume knowledge of the full
set of beta functions �q for C perturbed by the termsR
d2� �uaOa, where �u are constant (c-number) couplings.

This includes the beta functions for the identity and for the
dilaton. The dilaton beta function is proportional to the
Zamolodchikov c-function for the perturbed CFT, as we
will discuss below.

The beta functions are also dependent on the contribu-
tion of the degrees of freedom of the perturbed theory
SCFT þ 1

4��0
R
d2zuaðXþÞOa to the beta function for the

operator ð@XþÞ2 (e.g., for the spacetime metric Gþþ).
Even so, as we will argue below, this beta function is
determined completely by the above information.

Finally, we will consider (2.2) fixed to conformal gauge:
namely, the world sheet metric is

g�� ¼ e2�ĝ��: (2.3)

The partition function is given by

Z ¼
Z

d� �Z;

�Z ¼
Z

DXþDX�DYDbDc e�SpertðXþ;X�;YÞ�SFP :

(2.4)

Here b, c are the conformal ghosts, and SFP is their action.
Y stands for the degrees of freedom on C. (Again, this is for
ease of exposition: the central arguments of this work do
not require that C have a Lagrangian description.) For a
good string background, �Z must be independent of �.

III. INTEGRATING OUT X�

In the action (2.2), X� appears as a Lagrange multiplier.
By analytically continuing the theory to Lorentzian signa-
ture to do this integral, we find that

�Z ¼
Z

DXþ þDbDcDY

� �ð ffiffiffi
g

p
@2Xþ � ��0

2

ffiffiffi
g

p
RÞe�~S�SFP ; (3.1)

where

~S ¼
Z

d2�
ffiffiffi
g

p �
1

4�
~�ðXþÞRð2Þ þ uaðXþÞOa

�
: (3.2)

In conformal gauge, we have

ffiffiffi
g

p
R ¼ ffiffiffî

g
p ðR̂� 2@̂2�Þ; (3.3)

where R̂ is the two-dimensional curvature for the fiducial

metric ĝ, and @̂2 is the associated Laplacian. In two dimen-

sions,
ffiffiffi
g

p
@2 ¼ ffiffiffî

g
p

@̂2. We can therefore write the delta

function in (3.1) as

1

detð ffiffiffi
g

p
@2Þ�ðX

þ þ ��0�þQÞ; (3.4)

where Q depends only on the fiducial metric. Note that
while

ffiffiffi
g

p
@2 is Weyl invariant, the determinant requires a

regulator and thus contributes to the Weyl anomaly.
The main lesson of this section is that for the action at

hand, Xþ is identified precisely with world sheet scale.
This is the physical basis of the observation below that, for
good string backgrounds, uaðXþÞ will satisfy the first order
RG equations, with Xþ functioning as the renormalization
group scale.

IV. BETA FUNCTIONS

We wish to find the conditions under which �
��ð�Þ �Z ¼ 0:

�

��ðxÞ
�Z ¼

Z
DXþDYDbDcð½��ðxÞ � ð��ðxÞ ~SÞ�

� �ðXþ þ ��0��QÞÞ 1

det@2
e�~S�SFP

þ �ðqÞ
�ðxÞ �Z ¼ 0: (4.1)

Here �ðqÞ
�ðxÞ denotes the part of the variation induced by

quantum effects3:

�ðqÞ
�ðxÞ �Z ¼ 1

8�
�q;�½u; ~�; �� ffiffiffi

g
p

Rð2Þ þ 1

8��0

� �q
þþ½u; ~�; �� ffiffiffi

g
p ð@XþÞ2 þ 1

2
�q;a½u� ffiffiffi

g
p

Oa:

(4.2)

The quantum contribution �q;� to the dilaton beta function
comes from the determinant in (3.4), and from the pertur-
bations to C. It can thus be written as

�q;� ¼ c½u� � 24

6
; (4.3)

where c½u� is the Zamolodchikov c-function for the theory
C; perturbed by the operators uaOa; the factor of 24 comes
from the Fadeev-Popov ghosts and from the determinant

3We are using the conventions found in [4,21].
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factor in (3.4) and (4.1), that arose from integrating out X�.
The beta function �q

þþ comes from the contribution of this
perturbed CFT to the beta function for the operator ð@XþÞ2.
Finally, �q;a are the contributions to the beta functions for
the couplings ua, coming from this perturbed CFT. These

are believed to be gradients of c, but to date there is no
proof of that beyond leading order in conformal perturba-
tion theory [22].4

We can exchange the � derivative of the delta function
in (4.1) for an Xþ derivative and integrate by parts:

Z
DXþDYDbDc��ðxÞ�ðXþ þ ��0��QÞ 1

det@2
e�~S�SFP

¼ ��0 Z DXþDYDbDc�Xþ�ðXþ þ ��0��QÞ 1

det@2
e�~S�SFP

¼
Z

DXþDYDbDc�ðXþ þ ��0��QÞ 1

det@2
e�~S�SFP��0

�
1

4�
_~�ðXþð�ÞÞ ffiffiffi

g
p

Rþ _uaðXþÞOað�Þ
�
; (4.4)

where the dots denote derivatives with respect to Xþ. Next,
the classical variation of ~S with respect to � is

��ðxÞ ~S ¼ � 1

2�

ffiffiffi
g

p
@2 ~�

¼ � 1

2�

ffiffiffi
g

p ð €~�ðXþÞð@XþÞ2 þ _~�@2XþÞ; (4.5)

where we have used (3.3) in the first line. This expression
will multiply the delta function in (4.1). As applied to
Eq. (4.1), the second term in (4.5) can therefore be replaced
by

��0

4�

_~�
ffiffiffi
g

p
R; (4.6)

i.e., by a contribution to the dilaton beta function.
Collecting all of the terms in (4.1), we find that the

variation of �Z vanishes if

2��0 _uaðXþÞ þ �q;a ¼ 0;

4��0 _~�þ �q; ~� ¼ 0;

�4�0 €~�ðXþÞ þ �þþ ¼ 0:

(4.7)

The left-hand sides are the beta functions for the full theory
(2.2). The first line is the full beta function for O, the
second line is the dilaton beta function, and the final line
is the beta function for ð@XþÞ2.

We claim that the �q arise entirely from the divergences
in the perturbed CFT due to singular operator products of
the Oa, so that as functions of u, �q are the same as for
constant couplings. This is true if there are no additional
divergences arising from contractions of Xþ. (If Xþ was
instead timelike, for example, such divergences would
appear [4].) If the beta functions are computed perturba-
tively, this should be the result of the diagrammatic argu-
ments given in [9–13]. We have two additional arguments.

One is to note that there are no XþXþ correlators by the
following argument. The delta function in (3.1) equates Xþ
to the scale factor, �, plus a constant. But when the beta
functions vanish, the integrand �Z is completely indepen-
dent of �, and so the two-point function hXþð�ÞXþð�0Þi is
independent of�,�0 (the factorQ can be absorbed into�).
While the beta functions are computed away from the
conformal point, this means that any divergences from
contractions of Xþ must vanish at the conformal point,
and do not yield independent terms in the beta function
equations.
Another argument is as follows. It would appear that the

path integral (3.1), together with (3.2), allows for non-
vanishing operator product expansions (OPEs) of Xþ,
since the delta function makes the dilaton coupling equiva-
lent (after integrating by parts) to a standard kinetic term
for Xþ,

Skin;� /
Z

d2� _~�ð@XþÞ2: (4.8)

Near the RG fixed points at Xþ ¼ �1, such a term is also
induced from integrating out the degrees of freedom in C
(see for example [12]), which cancels the dilaton contri-
bution. As one flows in Xþ, the second line of (4.7)
indicates that the additional contributions to Gþþ from C
are canceled by the dilaton contribution. Again, one should
be careful since the beta functions are computed away from
the conformal point. As above, however, the additional
divergences from XþXþ correlators should not give any
additional contributions to the beta function equations
describing the conformal point itself.
We should also make sure that the arguments in this

section and in Sec. III hold for correlation functions—that
is, that the beta functions which we compute hold for the
Callan-Symanzik equation for correlation functions of
local operators.5 The essential point is that for local corre-
lators [string scattering amplitudes are finite-dimensional
integrals of local correlators; recall also that three such4Note that this proof breaks down at higher orders [4].

Furthermore, in at least one case it is likely that the beta
functions are not gradients of any function of the relevant and
marginal couplings alone [23].

5We would like to thank Joe Polchinski for reminding us of
this issue.
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operators are used to fix the SLð2;CÞ invariance of the
world sheet CFT], the delta function constraint (3.4) should
only be modified at the point of the operator insertions. For
example, if the world sheet was regulated with a lattice
cutoff, one would integrate over all values of X� point by
point. Therefore, the delta function (3.4) is only modified at
the operator insertion points. In the Callan-Symanzik equa-
tions, modifications of the scale transformations which
occur at the points of operator insertions give contributions
to the anomalous dimensions of operators, rather than to
the beta functions.6

Finally, Eqs. (4.7) appear to have more equations than
unknowns. This is typical of the beta function equations in
string theory. In fact, the left-hand side of the second
equation in (4.7) is conserved as a consequence of the first
and third equations: the vanishing of the beta functions on a
flat two-dimensional world sheet is sufficient to ensure that
the theory is a CFT. One may then set it to zero by adjusting

the linear term in ~�. This fact has been checked at one-
loop for sigma models in [22], and for tachyons in [4].
Furthermore, one can compute �q

þþ to leading order in Xþ
derivatives following the discussion in [4]. Combined with
the leading order result [24]

@ac½u� ¼ 24�2gab�
b½u�; (4.9)

one can show that the third line in (4.7) follows from the
first two lines, specifically by taking the derivative of the
second line. More generally, one can argue that the vanish-
ing of the first two equations in (4.7) implies the vanishing
of the last equation, as follows. The Wess-Zumino condi-
tion implies that the derivative of the second term with
respect to Xþ is proportional to a linear combination of the
beta functions of the theory. Indeed, it should be a linear
combination of all of the beta functions of the theory; if
any one relevant or marginally relevant coupling is turned
on, the theory will flow, and �q;� will cease to be constant.
Thus, if one sets the beta function for all Gþþ to zero, the
derivative of the dilaton beta function will be proportional
to Gþþ.

It is worth noting that the beta function �q
þþ is deter-

mined by consistency of (4.7): taking the derivative of the
second equation, and using the first equation together with
(4.3), we find that

�q
þþ ¼ 1

12�2�0 �
q;a; @ac: (4.10)

It would be interesting to prove this directly. The � depen-
dence arises from the relationship between Xþ and the
scale factor �, induced by integrating out X�.

The final result is that the spacetime evolution generated
by a null tachyon profile is completely determined by the
first order equations of the associated RG flow, with the
dependence of the tachyon on Xþ identical to that of the
renormalized coupling on the RG scale � ¼ Xþ=ð��0Þ.

V. CONCLUSIONS

We have shown that any RG flow arising from the
perturbation of a CFT by a relevant operator also defines
an exact CFT describing the spacetime evolution of a null
tachyon condensate, and that the resulting tachyon and
dilaton profiles satisfy first order equations determining
their evolution along the null direction. This generalizes
the work of [9–19]. As pointed out in [12], these are stringy
‘‘bubbles of nothing’’ (when the coupling to the identity
operator in C flows)7—analogs of [25]—in which dimen-
sions of spacetime are destroyed by an expanding domain
of tachyon condensate satisfying first order equations of
motion. It would be interesting to study further examples,
such as the null tachyon generated from the RG flow of the
CPn model.8 In this example, the Kähler class is known to
flow precisely logarithmically with RG scale [26,27], and it
will therefore evolve linearly in Xþ. This flow goes from a
c ¼ 2n sigma model in the ultraviolet to a trivial c ¼ 0
Landau-Ginzburg theory in the infrared [27].
We should note that there often exists a scheme in which

the tachyon beta functions can be linearized, unless the
tachyons mix nontrivially under the OPEs, and are mar-
ginally relevant or satisfy some kind of resonance condi-
tion (see [4] for a review and discussion). When the beta
functions can be linearized, the Xþ dependence of the
tachyon will be a simple exponential. Furthermore, unlike
the timelike examples in [4],Xþ is identified precisely with
the RG scale so that the infrared fixed point will be reached
only at null infinity. In this scheme there is less to be lost.
When there are universal higher-order terms in the beta
function, the Xþ dependence will of course be more
complicated.
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