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Correlation classes on the landscape:
To what extent is string theory predictive?
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In light of recent discussions of the string landscape, it is essential to understand the degree to which
string theory is predictive. We argue that it is unlikely that the landscape as a whole will exhibit unique
correlations amongst low-energy observables, but rather that different regions of the landscape will exhibit
different overlapping sets of correlations. We then provide a statistical method for quantifying this degree
of predictivity, and for extracting statistical information concerning the relative sizes and overlaps of the
regions corresponding to these different correlation classes. Our method is robust and requires no prior
knowledge of landscape properties, and can be applied to the landscape as a whole as well as to any

relevant subset.
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Over the past few years, the existence and implications
of a vast string theory “landscape’ have attracted consid-
erable attention [1]. Indeed, research in this area has
spanned a considerable range of topics and followed a
number of different approaches [2—16]; for recent reviews,
see Ref. [17]. However, because the specific low-energy
phenomenology that can be expected to emerge from string
theory depends critically on the particular choice of vac-
uum state within the landscape, and because the space of
possible string vacua is extremely large (with some esti-
mates putting the number of phenomenologically interest-
ing vacua at 10°® or more [2]), the question which
naturally arises is a critical one. To what extent can we
say that string theory is predictive? In what sense can we
say that certain low-energy phenomenological features of
the observed universe are predicted by, or derivable from,
string theory?

In this paper, we shall begin with a short discussion
which outlines some of the recent ideas concerning general
notions of predictivity on the string landscape. We will
then argue that it is unlikely that the landscape as a whole
exhibits unique correlations amongst low-energy observ-
ables, but rather that different regions of the landscape will
exhibit different overlapping sets of correlations. Finally,
we will provide a statistical method for quantifying this
degree of predictivity, and for extracting statistical infor-
mation concerning the relative sizes and overlaps of the
regions corresponding to these different correlation
classes.

I. INTRODUCTION: PREDICTIVITY AND THE
STRING LANDSCAPE

The question of predictivity goes to the heart of what it
means to be doing science. As such, there can be no more
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critical question for string theory than this. Of course,
string theory is perhaps unique amongst most theories of
physics because of the fact that its characteristic energy
scales are essentially unreachable by present-day experi-
mental technology. As a result, many of the direct experi-
mental consequences of string theory lie at presently
inaccessible energy scales. However, it is not clear that
all experimental consequences of string theory will lie at
inaccessible energy scales. And even if all of the firm
experimental consequences of string theory were somehow
proven to lie at scales exceeding those reachable by current
accelerator technology, this would not free string theory
from its obligations to make predictions which are testable
at those higher energy scales—i.e., testable in principle, if
not in practice.

On the one hand, even accepting this standard, one
might argue that it is too much to ask that string theory
be predictive in and of itself. From this perspective, one
should rightly compare string theory not with a specific
quantum field-theoretic model such as the standard odel,
but with quantum field theory itself—indeed, both string
theory and quantum field theory can be viewed as lan-
guages or frameworks within which the subsequent act of
model building takes place. Just as the Lagrangian of the
standard model is just one out of many possible self-
consistent quantum field-theoretic Lagrangians, the correct
string model might be just one out of many possible self-
consistent string vacua. Thus, according to this argument,
string theory is just as predictive as quantum field theory:
neither becomes predictive until a particular model is con-
structed, and all predictions that ensue can be expected to
hold only within that model.

While this argument has some validity, one could just as
well argue that it misses a critical point. While quantum
field theory tolerates many free parameters, string theory
does not: generally, all free parameters in string theory
(such as gauge couplings, Yukawa couplings, and so forth)
are determined by the vacuum expectation values of scalar
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fields and are thus expected to have dynamical origins
within the theory itself. Moreover, while many architec-
tural details of a given model (such as the gauge group, the
number of generations, or even the degree of supersym-
metry) are uncorrelated within quantum field theory, string
theory has deeper underpinnings in terms of the geometric
properties and configurations of strings and branes. It
therefore becomes meaningful to ask more from string
theory than from quantum field theory. Of course, many
string models are plagued with flat directions. Such flat
directions could imply that not all continuous variables
will develop finite, dynamically fixed expectation values.
However, the hypothesized existence of the landscape al-
ready presupposes that such flat directions are ultimately
lifted, and that multiple stable string ground states exist
after moduli stabilization. Thus, in the remainder of this
paper, we shall assume that all flat directions have been
lifted.

Given the existence of the landscape, it is certainly too
much to demand that string theory gives rise to predictions
for such individual quantities as the number of particle
generations. Indeed, we already know that such individual
quantities can vary greatly from one string vacuum to the
next. However, it is perhaps not too much to ask that string
theory manifests its predictive power through the existence
of correlations between physical observables that would
otherwise be uncorrelated in quantum field theory. Such
correlations would be the spacetime phenomenological
manifestations of the deeper underlying geometric struc-
ture that ultimately defines string theory and distinguishes
it from a theory whose fundamental degrees of freedom are
based on point particles. Of course, it is logically possible
that string theory leads to sharp correlations amongst ob-
servables at high energy scales, but that the mathematical
form of the connections between these high-scale observ-
ables and experimentally accessible low-scale observables
completely washes these correlations away as far as a low-
energy physicist might be concerned. However, there is
no evidence that nature is so cruel for the low-energy
parameters of interest. Thus, our question concerning the
predictivity of string theory boils down to a single critical
question: to what extent are there correlations between
different physical observables on the string-theory
landscape?

II. CORRELATION CLASSES ON THE STRING
LANDSCAPE

Clearly, the existence of sharp correlations across the
string theory landscape would imply that string theory is
predictive, while the absence of such correlations would
suggest that it is not. Indeed, many recent discussions of
this issue have proceeded under the assumption that these
are the only two logical options.

However, we believe that neither of these two options is
likely to represent the true nature of correlations on the
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string landscape. Rather, we believe that the true nature of
such correlations lies somewhere between these two ex-
tremes and is more likely to resemble that shown in Fig. 1.
In Fig. 1, some regions of the landscape exhibit certain
correlations and other regions of the landscape exhibit
other correlations. For example, we can imagine that one
region might principally correspond to perturbative heter-
otic strings (in which world sheet symmetries such as
conformal invariance and modular invariance play a deci-
sive role in producing correlations amongst low-energy
observables), while another region might principally cor-
respond to intersecting D-brane models (in which decisive
roles are instead played by tadpole anomaly constraints).
Of course, it is a naive expectation that different
correlation-class regions will correspond neatly to different
underlying string-construction methods, and more subtle
mappings between construction methodologies and corre-
lation regions will undoubtedly occur. For this reason, it is
important that such regions be defined according to their
low-energy phenomenological predictions and correla-
tions, not according to their construction methodologies.
Thus these regions need not be disjoint, and indeed non-
trivial overlaps will occur.

Region Il
(Y,2)

Region |
(X,Y)

Region Il
(W,2)

FIG. 1. A sketch of a landscape in which different regions
exhibit different correlations between phenomenological observ-
ables X, Y, Z, and W. As discussed in the text, the overlaps
between these regions can then exhibit correlations amongst
larger subsets of observables or multiple independent correla-
tions involving smaller subsets of observables. For example,
while each region separately exhibits a correlation amongst
two observables, the overlap between regions I and II exhibits
a single correlation between three observables, while the overlap
between regions I and III exhibits two independent correlations,
each involving only two observables. Many other generalizations
and geometric configurations are possible.
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It is, of course, impossible to speculate at this stage
concerning the number of such distinct correlation classes.
However, preliminary hints from concrete studies of large
sets of actual string models [6-9,11-13] suggest that the
number of distinct regions might actually be quite large.
Indeed, one feature that emerges from such studies is a
relative lack of strong correlations between the various
phenomenological quantities which have been examined.
It should be noted that the models typically examined in
such studies contain unstabilized moduli. However, the
relative absence of strong correlations in such models
suggests that a number of different correlation classes are
present, even over partial regions of the landscape. Given

this, there is no reason to believe that such regions are
|
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disjoint, and one can expect that many of these regions are
also likely to have nontrivial overlaps.

Given such a picture, the precise nature of correlations at
a given point on the landscape is likely to depend rather
sensitively on the location of that point relative to the
boundaries of all possible nearby regions. For example,
in Fig. 1, we observe that two phenomenological properties
X and Y are correlated in Region I, while Y and Z are
correlated in Region II and W and Z are correlated in
Region III. Even though each of these regions exhibits
only a single correlation involving two phenomenological
quantities, we see that the overlapping sections of these
regions nevertheless exhibit a number of different correla-
tion patterns:

overlapI & II: single three-quantity correlation (X, Y, Z)

overlap II & III: single three-quantity correlation (Y, Z, W)

2.1)

overlapl & III: two two-quantity correlations (X, Y) and (Z, W)

overlap I, I, & III: single four-quantity correlation (X, Y, Z, W).

Strictly speaking, such a situation fails to yield a single
correlation which holds across the landscape as a whole.
As such, this situation is one in which it might be claimed
that string theory as a whole is nonpredictive. However,
even in such a situation, we can still claim that string theory
is partially predictive if the sizes of these correlation-class
regions are relatively large compared with the landscape as
a whole. If there exist huge subregions of the landscape
across which correlations hold, then we can claim that
string theory is entirely predictive within each such do-
main. Of course, one can also restrict attention to portions
of the landscape that can give rise to realistic phenomen-
ologies. The relevant comparison for assessing potential
predictivity in this case is then the size of the restricted
landscape and the sizes of the subregions with different
correlations. At the opposite extreme, however, it may turn
out that the fundamental regions across which such corre-
lations hold are relatively small. For example, one
could imagine a situation in which each region is so small
that it contains no more than a single model. In such a case,
we would then claim that string theory is entirely
nonpredictive.

II1. QUANTIFYING THE STRUCTURE OF THE
STRING LANDSCAPE

In the remainder of this paper, we would like to attach a
quantitative measure to this notion of predictivity.
Specifically, we would like to develop a method for deter-
mining the extent to which a situation such as that sketched
in Fig. 1 emerges in an actual set of string models. Ideally,
such a method should be generally applicable and allow
one to determine the number of different correlation
classes.

I

While there are many ways to develop such a mathe-
matical model, we shall proceed in a general fashion as
follows. At a practical level, we can imagine that we have
sampled a certain number x >> 1 of models, randomly
selected across the landscape as a whole.! Let us assume
that we have analyzed the physical observables predicted
from these x models, and we have not observed any corre-
lations that hold across this set of models. Clearly, this
means that not all x of our models come from the same
correlation-class region; at least one model must originate
from a different region.

We can then ask for the probability that there exists a
partitioning of our data set into two groups of models such
that there exist correlations which hold across each group
separately. If no such two-way partitions exist, we could
then attempt to construct three-way partitions which have
the same property, and so forth. In general, we can seek to
derive the probability P,(n) that we can partition our x
models into n distinct classes, each of which individually
exhibits correlations across the class as a whole. This
question is sketched schematically in Fig. 2.

We can immediately make a number of statements con-
cerning P,(n). First, P,(n) will clearly grow monotonically
as a function of n. This follows from the observation that if
a given set of x models can be successfully partitioned into

'In stating that these models are selected randomly, we are
disregarding the critical issue that arises due to the fact that our
sampling techniques will inevitably introduce biases that distort
the apparent space of models in nontrivial ways. Methods of
overcoming these difficulties were developed in Ref. [10], and
we shall assume in the remainder of this paper that such methods
have already been utilized and all such distortions have been
eliminated as far as possible.
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Data from "black box" output:
X different correlation correlation
string models finder exists?
Given: — N > No
Want probabilities:
—_—— . —— > Yes!
P(n=2) — . — > Yes!
—_— . —— > Yes!
P(n=3) —_— . ———— > Yes!
—> || ——— VYes!
—_— . — = Yes!
—_— . —— > Yes!
P(n=4)
e . ——— > Yes!
—_— . —— >  Yes!
etc.

FIG. 2. Schematic illustration of the fundamental problem.
Suppose data from x string models does not exhibit any corre-
lations amongst low-energy physical observables which hold
across all x models. What is the probability P,(n) that we can
partition our x models into n distinct classes, each of which
individually exhibits correlations across the class as a whole?
Clearly P,(n) grows as a function of n, ultimately reaching
P.(n) =1 for n = x (i.e., the case in which each class is no
larger than a single model). The behavior of P,(n) as a function
of n for 1 < n < x determines the extent to which the landscape
sketched in Fig. 1 is predictive, with larger P, (n) for small n
indicating a larger degree of predictivity.

n correlation classes, then it can necessarily be success-
fully partitioned into any greater number of sets within
which correlations hold. Second, we observe that P (n)
should ultimately reach P,(n) = 1 for n = x. This corre-
sponds to the case in which each correlation class is no
larger than a single model—although completely nonpre-
dictive, such a partition is indeed guaranteed to be suc-
cessful. Finally, we are intrinsically assuming that
P.(1) = 0. This essentially serves as an initial condition.

What interests us, however, is the behavior of P.(n) as a
function of n for 1 < n < x, as this determines the extent to
which the landscape sketched in Fig. 1 is predictive.
Indeed, larger values of P,.(n) for small n can be associated
with a greater degree of predictivity for the landscape as a
whole, in the sense that our correlation classes on the
landscape are larger rather than smaller. Ultimately, we
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are interested in identifying behaviors of P,(n) which are
stable as x increases. Such signatures could then provide a
handle through which one could potentially extract the
number and distribution of correlation classes on the land-
scape as a whole.

It is important to reiterate that we are defining our
correlation classes of models in terms of their spacetime
phenomenological predictions rather than their underlying
world sheet or D-brane constructions. Needless to say, it is
only in this manner that we can declare two different
models to be phenomenologically distinct. But at a deeper
level, we observe that this method of defining our correla-
tion classes overcomes whatever theoretical prejudices we
might have concerning which phenomenological proper-
ties are associated with which model-construction tech-
niques. Indeed, one might argue that the very notion of
string theory being predictive rests on the existence of
correlation classes which transcend the somewhat artificial
boundaries associated with different underlying model-
construction methods.

We also stress that in this paper, we shall not be con-
cerned with the inner workings of the “correlation finder”
sketched in Fig. 2. Likewise, we shall not be concerned
with the question of how to partition our x models into the
n test classes which are then each individually tested for
internal correlations. Needless to say, these are very im-
portant questions—the former is critical for data analysis
in general, and the latter might potentially be addressed
through direct enumeration of different partitioning possi-
bilities or on the basis of other external physical informa-
tion. However, our purpose in this paper is to study the
mathematical extent to which we can learn about the
properties of the underlying landscape, assuming that
such data-analysis tools are at our disposal.

We shall now calculate the probabilities P, (n). In order
to do so, we shall first need to quantify the sizes and
overlaps between the correlation regions sketched in
Fig. 1. Let us therefore assume that a given randomly
selected string model has a probability p; of being a
member of the ith correlation class. In some sense, the p;
quantify the normalized “sizes” of the individual
correlation-class regions across the string landscape. We
shall also need to quantify the sizes of two-region overlaps,
three-region overlaps, and so forth. Towards this end, we
shall let p;; denote the probability that a randomly selected
string model is simultaneously a member of both the ith
and jth correlation classes (where i # j), p;j denote the
probability that such a string model is simultaneously a
member of the ith, jth, and kth correlation classes (where i,
J, and k are all unequal), and so forth.

In general, these quantities p, ;. can vary significantly
as functions of their indices across the landscape. However,
for the purposes of calculating the overall probabilities
P.(n), what really concern us are the “average” values
of these quantities. We shall therefore assume a uniform
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average distribution in which

Piiy,...iy = AND» 3.1

where p is an overall arbitrary probability, and where the
a-coefficients satisfy the constraints

3.2)

OS...SG4S(135612§1,

with a; = 1. There is also another constraint on the
a-coefficients which will be explained shortly.

In order to understand these assumptions, it will help to
consider an abstract geometric picture of the landscape in
which each string model occupies a volume of arbitrary
dimensionality but fixed, uniform magnitude. For example,
we may imagine that each string model is represented by a
square of unit area, or by a cube of unit volume. We can
also freely reposition these squares or cubes so that models
in the same correlation class are adjacent to each other,
filling out contiguous regions as in Fig. 1. We shall refer to
the entire space of models arranged this way as the ““cor-
relation space”. Note that the correlation space is not the
usual geometric picture of the landscape in which the
different directions might be parametrized by different
low-energy observables, or alternatively by different
string-construction parameters (e.g., fluxes). Indeed, in
such a picture, models which are in the same correlation
classes can be scattered across the landscape and need not
occupy contiguous regions. By contrast, in the correlation
space, each model occupies an equal volume of arbitrary
(irrelevant) dimensionality, and models can be freely re-
positioned so that models in the same correlation class
(according to their low-energy observables) occupy neigh-
boring contiguous regions, as in Fig. 1.

In terms of the correlation space, our probability distri-
butions can be understood geometrically as follows. If we
imagine the entire correlation space to occupy a normal-
ized volume V = 1, then p; is nothing but the volume of
the ith correlation region, p;; is nothing but the volume of
the (i, j) overlap region, and so forth. Likewise, our as-
sumptions in Egs. (3.1) and (3.2) indicate that p is the
average volume of each correlation class, individually,
while a,p is the average volume of each overlap region
between n different correlation classes.

Note that the volume of each overlap region must scale
linearly with p (the volume of each individual region). This
is the case because any two different correlation-class
regions of a given dimensionality must have an overlap
region which also shares that dimensionality. This in turn
follows from the fact that each model occupies the same
dimensionality in correlation space, and that all of our
regions (whether disjoint or overlapping) are quantized in
terms of models. (In other words, any overlap region must
still be composed of individual squares or cubes, and thus
must have the same dimensionality as the correlation
classes themselves.) Indeed, this is the major advantage
of working with the correlation space rather than the usual
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geometric visualization of the landscape in which models
are placed along axes parametrized by low-energy observ-
ables. In the usual visualization, we would easily expect
situations in which our different correlation classes have
overlapping regions of reduced dimensionalities. By con-
trast, all such situations are automatically incorporated
within the correlation space without any required changes
in dimensionality.

Likewise, the constraint in Eq. (3.2) merely assures that
the volume of the average overlap region between n differ-
ent correlation classes in the correlation space cannot
exceed the volume of the average overlap region between
(n — 1) different correlation classes. This, too, makes in-
tuitive sense since the n-overlap region is by definition
more restrictive than the (n — 1)-overlap region. Note that
the limiting case with a, = 0 corresponds to the situation
in which all correlation regions are necessarily disjoint,
while the case with a, = 1 represents a null limit in which
all correlation regions overlap completely. This implies
that a3 = a, = ... =1 as well, which in turn implies
that there is really only one correlation region. This implies
that p = 1.

Given the distributions in Egs. (3.1) and (3.2), the next
step is to calculate the probability ¢, that a randomly
selected string model is a member of any of n previously
selected correlation classes. For example, the probability
¢ that a given model is a member of a single previously
specified correlation class i is nothing but

b1 =pi=0p (3.3)

while the probability ¢, that a given model is a member of
at least one of two previously specified correlation classes
(i, j) is given by

by=pit+tp;—pij=2p—ap=Q2—a)p (34

and the probability ¢5 that a given model is a member of at
least one of three previously specified correlation classes
(i, j, k) is given by

b3 =pi T p;j+ P = Pij— Pjx — Pix T Pijk

=3p —3ayp + azp = (3 —3a, + a3)p. 3.5)

Note that in the correlation space, each of these results has
a natural geometric interpretation: ¢; is the volume of a
single correlation region; ¢, is the combined volume of
two correlation regions [which is the sum of the volume of
each region minus the (double-counted) volume of their
overlap]; and so forth. In general, for €, previously speci-

fied correlation classes (i, j, k, r, ..., s), we have
b= Zpi - Zpij + Zpijk - Zpijkr t oot Pijkrs
; ij ik ijkr

£ 0!
[ s (3.6)

m=1

where the summations in the first line of Eq. (3.6) are
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over all unequal choices from amongst the classes

(i, jkr...s).
Of course, logical consistency requires that ¢; = ¢, =
¢3 = .... This, in turn, places an additional constraint on

the a-coefficients in Eq. (3.1). Thus, while Eq. (3.2) in-
dicates that each a; cannot exceed a;_;, we now see that
each a; also cannot be too much smaller than a;_;. This
new constraint merely reflects the mathematical fact that if
all two-region overlaps are large, there is no way to prevent
three-region overlaps from also being fairly large, and so
forth. For example, while we have a; = a,, the require-
ment that ¢3; = ¢, also requires that a3 = 2a, — 1.
Indeed, we have already noted the limiting case of this
phenomenon: if a, = 1, then a,, = 1 for all n = 2.

Given the result for ¢, in Eq. (3.6), we now have all of
the ingredients necessary to calculate P, (n). Let us begin
by calculating the exclusive probabilities P (n) and see
how they evolve as we examine more and more models
in the landscape. Unlike the general probabilities P, (n)
that x models can be successfully partitioned into at most n
correlated sets of models and thereby exhibit at most n
distinct correlation classes, the exclusive probabilities
P (n) represent the probabilities that x models will exhibit
exactly n correlation classes and can, thereby, be success-
fully partitioned into a minimum of n correlated sets.

When x = 1, there is only one model and consequently
only one correlation class needed. We therefore have
P,(1) =1 and P,(n) = 0 for all n > 1. Next, when we
select our second model, there are two possibilities: either
it is in the same correlation class as our first model (which
happens with probability ¢), or it is not. We thus find
that P,(1) = ¢, = p, while P,2Q)=1—¢, =1— p.
Proceeding to the third model, we again have the same
situation: it may be in the same correlation classes as we
have already seen, or it may not. Tallying the possibilities
in each case, we then find P;(1) = ¢} = p?, while
Py(2) =dil—¢)+ (1= 1) =0—a)p - p?)
and P33)=(1—¢ )1 —¢)=1-0CB—a)p+(2—
a)p*.

This process continues as we select more and more
models. Ultimately, all of our exclusive probabilities
P (n) can be generated through the recursion relation

Po(k) = Peoy()y + Peoy(k= DI = ¢41] - 3.7
with the initial condition P,(1) = 1. This recursion rela-
tion merely says that there are only two possible ways of
finding exactly k correlation classes after £ models have
been examined: either there were already k classes found
from amongst the previous € — 1 models (and the {th
model must be in one of these k classes), or there were
only & — 1 classes found from amongst the previous € — 1
models (and the €th model is not in one of those classes).
These possibilities then give rise to the first and second
terms on the right side of Eq. (3.7).
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Given the recursion relation in Eq. (3.7), we immedi-
ately see that (1) = ¢% = p*, which is the probability
that x models are all in the same correlation class.
Likewise, we see that P (x) = (1 — ¢;), which is
the probability that each successive model is outside the
correlation classes determined by the previous models.

Finally, given the exclusive probabilities P, (n), we can
easily calculate the general probabilities P, (n):

Py(n) =Y P(m). (3.8)
m=1

It then follows, for example, that while P, (1) = P (1) =
p*, we have P,(x) = 1, as required.

Using Egs. (3.6), (3.7), and (3.8), it is straightforward to
evaluate P,(n) as a function of n in the range 1 = n < x
for any {p, a,, as, .. .}. Note that specific choices for the a;
coefficients are needed only insofar as they enable us to
determine closed-form expressions for the ¢,. However,
the relation between the probabilities P,(n) and volumes
¢, is completely general.

Our results are shown in Fig. 3 for the case with p =
1/30 and a; = 0 for all i = 2, corresponding to a situation
in which there are 30 disjoint correlation classes. Already,

0.8

0.6

P.(n)

0.4 (d)

0.2

NTT
N

FIG. 3. The probabilities P,(n), plotted (solid lines) as func-
tions of n in the range 1 = n = x for (a) x = 15, (b) x = 29,
(c) x = 100, and (d) x = 200. In each case, we have chosen p =
1/30 and a; = 0 for all i = 2, so that our correlation classes are
all nonoverlapping (disjoint). The dashed line shows ¢, as a
function of n. For x < 1/p, we see that P.(n) reaches 1 when
n = x; by contrast, for x > 1/p, we see that P,(n) reaches 1
near n = 1/p. As x — oo, the curve P,(n) asymptotes to a sharp
step function at n = 1/p. Thus, as the number of models
examined increases beyond 1/p, measuring P,.(n) can yield an
extremely precise measure for the average value of p; on the
string landscape.
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we can observe certain general features. For x < 1/p, we
see that P (n) reaches 1 when n = x, as required. However,
for x > 1/p, we see that P,(n) reaches 1 near n = 1/p.
This, too, makes sense since we expect to achieve a suc-
cessful partition of our data set when the number of parti-
tions is approximately equal to 1/ p, the number of disjoint
correlation classes. Finally, we observe that as x — oo, the
curve P, (n) asymptotes to a sharp step function at n = n,,
where n, = [1/p] + 1, i.e., where n, is the smallest inte-
ger exceeding 1/p. This sharpening into a step function
also makes intuitive sense since n. is merely the total
number of different correlation classes present on the land-
scape. As we examine more and more models, it becomes
more and more unlikely that we have missed finding at
least one representative model from any correlation class.
Thus, we are guaranteed to achieve successful partitionings
only when the number of partitions equals the number of
correlation classes.

This last result provides us with a clear “experimental”
way of determining the average value of p; on the string
landscape. Indeed, as the number of models increases
beyond 1/ p [which can be determined from the increasing
sharpness of the rise of P,(n)], the location of this rise in
P.(n) will be given by n,, the smallest integer exceeding
1/p.

These results are valid for the situation in which all
correlation classes are disjoint. However, this general situ-
ation persists even when the a-coefficients are nonzero and
overlaps between regions become significant. Indeed, with
nonzero overlap regions, the volumes ¢, will no longer
grow linearly with n; these volumes will accrue more
slowly as a function of n because only part of the volume
corresponding to each new correlation class leads to new
territory not previously covered. Nevertheless, the previous
behavior for P.(n) persists, provided we more generally
identify n, (the number of distinct correlation classes
present on the landscape) as the smallest integer n for
which ¢, = 1. Indeed, just as in the disjoint-region case,
we find that P,(n) reaches 1 when n = x for x < n,, while
P.(n) reaches 1 near n = n, for x > n,. Indeed, as x —
oo, the curve P (n) continues to asymptote to a sharp step
function at n = n,.

This situation is illustrated in Fig. 4. For this figure, we
have taken a; = 1 and a,, = "', where r is a predeter-
mined scale factor; note that such a-coefficients satisfy all
of the self-consistency constraints previously discussed.
Also, note that even though ¢, is growing only very slowly
as a function of n, the probabilities P, (n) still make a
relatively sharp transition from O to 1, even for x = n,. A
similar situation emerges for any r < p.

Thus, even when there are significant overlaps between
correlation regions on the landscape, we see that we can
continue to extract sharp experimental data about 7, on the
landscape merely by taking a sufficiently large value of
x > n, and examining the location of the probability step
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FIG. 4. The probabilities P,(n), plotted as functions of n in the
range 1 =n =x for (a) x =30, (b) x =100, (c) x = 200,
(d) x = 500, and (e) x = 1000. In each case, we have chosen
p = 1/30. However, unlike the plot in Fig. 3, we have taken
a, = "' with » =3/100 for all n = 2, reflecting nonzero
overlaps between correlation-class regions. The dashed line
shows ¢, as a function of n, reaching ¢, = 1 at n, = 76. We
see that P,(n) behaves similarly to the case in Fig. 3, with the
primary difference that significantly larger values of x are
required in order to “‘saturate” the probability function and
trigger the transition to a step function. Despite these differences,
however, we see that measuring P,(n) for x > n, continues to
yield an extremely precise measure for n, on the string land-
scape.

function which emerges. Indeed, the only difference rela-
tive to the disjoint-region case is that the relationship
between n, and 1/p has been modified. We are therefore
now extracting information about 7. alone, but not neces-
sarily about 1/ p. Of course, the emergence of approximate
step-function behavior itself provides experimental verifi-
cation that x is sufficiently large; as a result, no prior
knowledge of n. is required.

Moreover, once n., is determined, the rate at which P, (n)
freezes into a step function gives information about the
relative sizes of the overlaps between correlation-class
regions. Indeed, we see from comparisons between
Figs. 3 and 4 that when overlaps are sizable, considerably
more models are required (i.e., x must be considerably
larger) before P,(n) develops step-function behavior as a
function of n. Thus, through experimental statistical ex-
aminations of P,(n), we see that it is possible to determine
not only the number of correlation classes on the landscape
but also their relative overlap sizes.

There is only one finely-tuned situation in which this
method of measuring P,(n) fails to yield clear information
about the underlying landscape: this occurs if n. is infinite.
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At first glance, it may seem that one cannot ever physically
realize a situation in which n. is infinite. However, it is
possible for ¢, to approach 1 as an asymptote rather than
actually hit 1 for finite n. Again considering the case with
a, = r"~! for all n = 2, it turns out that we can mathe-
matically realize such a situation by taking » = p. Such a
situation is illustrated in Fig. 5, where we see that our
probability function P,(n) fails to reach a fixed shape no
matter how large x becomes.

Physically, taking r = p corresponds to a situation in
which each new correlation class adds an incrementally
smaller amount of new volume, so that an infinite number
of correlation classes are required to saturate the full
correlation space. Clearly, such a situation is highly fine-
tuned, requiring a landscape exhibiting both an infinite
number of models and an infinite number of correlation
classes. String theory would have absolutely no predictive
power in such a situation. However, there exist general
arguments [5] suggesting that the number of string models
in the landscape is actually finite. If so, then such a situ-
ation cannot arise.

—~
o
~

0.8

0.6

P (n)

0.4

0.2

=T

50 100

FIG. 5. The probabilities P, (), plotted as functions of n in the
range 1 =n =x for (a) x =30, (b) x =100, (c) x = 200,
(d) x =500, and (e) x = 1000. This plot is the same as in
Fig. 4 except that we have now taken r = 1/30 rather than r =
3/100. As is evident, this change in the value of r (adjusting its
value by a mere few parts in a thousand) has changed the
behavior of P.(n) significantly, shifting n, — co and entirely
eliminating the asymptotic step-function behavior for P, (n) no
matter how large x becomes. As argued in the text, this repre-
sents a highly fine-tuned situation in which the landscape con-
sists of an infinite number of models and an infinite number of
correlation classes. In such a case, string theory would have no
predictive power.
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Likewise, for mathematical completeness, we remark
that a similar situation with infinite n, can also arise in
our example by taking r > p. In such cases, as n — oo, the
function ¢, asymptotes to a value less than 1, once again
implying that n, is infinite. However, this situation is also
clearly unphysical since it corresponds to the self-
contradictory claim that there exist nonvanishing regions
of the landscape which are not populated by any string
models.

IV. THREE EXAMPLES

We now provide three toy-model examples designed to
illustrate these techniques.

A. A birthday example

Our first example is a simple one. Let us suppose that we
enter a classroom of schoolchildren, randomly select x of
them, and ask each selected child to state the date of the
month when he/she was born. The responses in principle
could range from 1 through 30 (where we shall ignore 31
and other special months). Children with the same number
will be defined to be in the same correlation class. We can
then use the methods of this paper to determine how many
correlation classes exist amongst the children in this class-
room. Specifically, by repeatedly sampling different ran-
domly chosen groups of x students, and repeating this
procedure for different values of x, we can generate proba-
bility distributions P,(n). According to the above results,
we know that for x >> 30, we expect to find that P,(n)
should take the form of a step function located at n = n,, =
30. Indeed, because the correlation classes in this example
are disjoint, this is exactly the situation which is plotted in
Fig. 3, and, indeed, we find that n,. = 30.

However, it is possible that the methods discussed above
might yield a probability distribution function P,(n) which
freezes onto a step function located at a smaller value of n.,
even though x >> 30. For example, without our knowledge,
the children in the classroom might have been preselected
in such a manner that the classroom contains only children
with even birth dates (while children with odd birth dates
were placed elsewhere); in such a case, we would find n,, =
15. The emergence of such a smaller value of n. would
then reveal the existence of a hidden preselection or corre-
lation, and would be completely analogous to an extra
prediction of string theory that transcends our pre-existing
(e.g., field-theoretic) expectations.

Despite its simplicity, this example already illustrates
certain unexpected features. For example, we may ask for
the probability that we will find n different birth dates if 29
children are polled. Consulting Fig. 3(b), we see that this
probability is essentially zero for n =< 15, but rises rather
dramatically and reaches values very close to 1 for all
values n = 22. Thus, even though this probability will
only hit 1 exactly for n = x = 29, we see that this proba-
bility is already effectively equal to 1 for values as small as
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n = 22. This is somewhat surprising, since we might not
have expected to be able to predict that a landscape of 29
randomly selected schoolchildren will share only 22 birth
dates with such a high degree of certainty.

Of course, this “birthday example” may seem some-
what trivial. However, this is only because we already
know that there are only 30 possible birth dates which
are logically possible. We must remember, however, that
this information is a priori completely unknown to the
physicist who has no information regarding the layout of
the calendar (i.e., who has no prior knowledge of the
structure of the string landscape). Moreover, the method
we have developed in this paper—relying on an experi-
mental construction of the function P,(n)—enables us to
extract n, with great precision and confidence, and without
any prior knowledge of either the calendar or the collection
of children in the classroom. The x-dependence of the rate
at which P,(n) develops into a step function might then
also experimentally suggest that these correlation classes
are relatively disjoint.

B. The heterotic landscape: shatter

We shall now give an example drawn from the actual
landscape associated with perturbative four-dimensional
heterotic string models which are realizable using free-
field constructions (such as those based on free world sheet
bosons or fermions). In several recent papers [9,11], we
conducted a random exploration of the landscape associ-
ated with such models. These studies resulted in a data set
of approximately 107 distinct self-consistent four-
dimensional heterotic string models, each of which is
tachyon-free and hence stable at tree level; in particular,
models with all levels of supersymmetry (ranging from
N =0 to N =4) were included. To the best of our
knowledge, this is the largest set of distinct heterotic string
models ever constructed. Although these string models do
not have fully stabilized moduli, they represent the current
state-of-the-art in heterotic string model-building and are
as stable as many of the classes of heterotic and Type I
string models which have been considered in other random
statistical studies [6-8,12,14] of the landscape. Further
details concerning this data set of string models can be
found in Refs. [9,11].

For the purpose of this example, we shall concentrate on
a quantity called ““shatter” [9]. For any given string model,
we shall define the corresponding shatter f as the number
of distinct irreducible factors which comprise the corre-
sponding gauge group. Note that for this purpose, we shall
define any gauge-group factor of SO(4) ~ SU(2) X SU(2)
as contributing two units to f. Thus, if a gauge group is
broken (or “shattered””) from SO(10) to SU(3) X SU(2) X
U(1)?, we may state that its shatter f has been increased
from f =1 to f =3 even though the total rank of the
gauge group is unchanged. Roughly speaking, the shatter f
can be viewed as a measure of the degree of complexity
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needed for the construction of the string model, with
increasingly smaller individual gauge-group factors tend-
ing to require increasingly many nonoverlapping sequen-
ces of orbifold twists and nontrivial Wilson lines.

Given this definition of shatter, we may then ask how
many different values of shatter might be present in the
corresponding string landscape. Equivalently, defining any
two models to populate the same correlation class if they
share the same shatter value, we may ask how many
correlation classes are present in the landscape of such
models.

To answer this question following the procedures out-
lined in this paper, we randomly chose x models from
amongst our data set of models and examined how many
different shatter values were found. We then repeated this
process 5000 times in order to generate probabilities P, (n),
and repeated this process for several different values of x.
Our results are shown in Fig. 6. As we see from Fig. 6, step-
function behavior emerges rather quickly, yielding the
value n, = 22. This value, of course, makes complete
sense, since we are dealing with the landscape of pertur-
bative four-dimensional heterotic string models over which
the gauge group can range from SO(44) (with a shatter f =
1) to U(1)*? (with a shatter of f = 22). Moreover, we see
that this value for n, emerges for relatively small values of
x (compared with the size of our landscape as a whole).

We emphasize that in this landscape, not all values of
shatter emerge with equal probability. Indeed, as discussed
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FIG. 6. Probabilities P,(n), plotted as functions of n, the
number of shatter correlation classes found for (a) x = 20,
(b) x =50, (¢) x =100, and (d) x = 1000, where x indicates
the number of string models selected in each run. It is clear that
step-function behavior at n, = 22 emerges rather quickly, and
for relatively small values of x compared with the size of our
landscape as a whole.
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more fully in Refs. [9,11], a random search through the
space of such models reveals large hierarchies in the
relative probabilities of finding models with different lev-
els of shatter. Nevertheless, our method for determining n.
continues to work even in such cases, with the probability
distribution P,(n) smoothly transitioning to a step
function.

Moreover, we emphasize that the sampling techniques
that were used for this study introduce a large degree of
unavoidable bias which distort the apparent space of mod-
els in nontrivial ways. Methods of overcoming these diffi-
culties were developed in Ref. [10]. However, in order to
generate the curves in Fig. 6, we employed a simpler
method in which we introduced a compensating bias
such that each correlation class had equal statistical repre-
sentation in our random selection of models.

C. The heterotic landscape: gauge-group correlations

Finally, we shall give a third example of our techniques.
For this example, we shall not adjust for sampling biases;
we shall, nevertheless, find that our methods continue to
function without difficulty. Moreover, we shall obtain a
result which is, a priori, unexpected from a field-theory
perspective.

Working within the same data set of heterotic string
models discussed above, we shall now consider a new
quantity g, defined as

g = (#U(1) factors) — Z (#SU(n) factors). 4.1)

nEZ>5

In other words, g counts how many U(1) factors in the
gauge group of a given string model cannot be associated
with factors SU(n) for n = 3 or n = 5. In general, from a
string perspective, we might naively expect that g can
never be negative; indeed, this result would follow from
the expectation that each SU(n) gauge-group factor in a
perturbative heterotic string model can only arise from a
larger U(n) factor via the decomposition U(n) — SU(n) X
U(1). The quantity g can thus indicate the extent to which
this expectation is actually realized in the string landscape.
[Note that the special case with n = 4 is somewhat differ-
ent since SU(4) is also simultaneously an SO group,
namely, SO(6) for which such expectations would not
apply.]

In principle, the quantity g can range from a maximum
of g = 22 [corresponding to the total gauge group U(1)**]
down to a minimum of g = —11 [corresponding to the
total gauge group SU(3)'']. There are thus 34 different
possible values of g. Equivalently, defining models to be in
the same correlation class if they have the same values of g,
we may expect as many as 34 different correlation classes
in the landscape of such models. Note that all 34 values of
g are equally likely to emerge on the basis of any low-
energy effective field theory description of these models. In
particular, gauge groups ranging all the way from SU(3)'!
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to U(1)?? satisfy the constraints appropriate for perturba-
tive four-dimensional heterotic string models, with total
ranks 22 and total left-moving world sheet central charges
¢ = 22 at affine level k = 1.

In order to test whether all 34 possible g-values are
actually realized in this string mini-landscape, we again
followed the procedures developed in this paper and ran-
domly chose x models from amongst our data set of
models. We then examined how many different g-values
were found in this sample, and repeated this process 5000
times in order to generate probabilities P, (n). This proce-
dure was then followed for several different values of x,
and our results are shown in Fig. 7.

Unlike the case in the previous example, we did not
choose to correct for the sampling biases which are inher-
ent in any random probabilistic study of this sort.
Moreover, it turns out that there are huge hierarchies in
the probabilities with which models with different g-values
appear in any random sampling of models; indeed, models
with g = 0 are found [9] to constitute more than 99% of
the landscape as a whole (thereby confirming the general
expectations discussed above). Nevertheless, we again see
that our methods yield probabilities P,(n) which asymp-
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FIG. 7. Probabilities P,(n), plotted as functions of the number
n of different g-value correlation classes found. The curves (left
to right) correspond to values x = 50, 100, 300, 1000, 3 X 10%,
5% 10%, 10°, and 2 X 10° respectively, where x is the number of
string models selected in each run. Despite our naive field-
theoretic expectation that there should be 34 correlation classes
on this landscape, we see that these curves asymptote to a step
function with n, = 29. Given the fact that the g = 0 models
constitute more than 99% of the landscape, the emergence of
such a step function indicates that our method yields meaningful
results even when the correlation classes are hierarchically
different in size and even when significant sampling biases exist.
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tote to a step function for sufficiently large values of x.
Moreover, somewhat surprisingly, we find that the corre-
sponding value of 7. is not 34, but is only 29. We thus learn
that negative values of g are indeed possible, but not all of
them: indeed, the remaining g-values (which in this case
turn out to correspond to g-values smaller than —6) belong
to the “‘swampland” [18] rather than to the landscape of
these models.

It is clear from Fig. 7 that the values of x which are
required in order to observe asymptotic step-function be-
havior for P.(n) are significantly greater than they are if
sampling biases are corrected at an earlier stage of the
analysis. Thus, the utility of the method we have developed
in this paper depends on the extent to which we can address
the sampling bias issues discussed in Ref. [10]. Ultimately,
these issues are best dealt with on a case-by-case basis.
Nevertheless, we see that our method is capable, in prin-
ciple, of yielding sharp results, even in the presence of
significant sampling biases. Indeed, we stress that the
curves in Fig. 7—just like those in Fig. 6—are not theo-
retical calculations, but instead represent the results of
actual statistical samplings from the data set of heterotic
string models generated in Refs. [9,11].

V. CONCLUSIONS

We see, then, that measuring P,(n) provides a robust
practical method of extracting information concerning the
average behavior of the different correlation classes across
the string landscape. This, in turn, provides a direct and
compelling way of quantifying the extent to which string
theory is predictive. Perhaps the primary virtue of this
method is that it can readily be applied for situations in
which only a relatively small number of string models are
examined, provided these models are randomly selected
from across the entire landscape as a whole. Indeed, all that
is required is that x, the number of models examined,
exceed n, by perhaps 1 or 2 orders of magnitude, a prop-
osition which can be verified (without a priori knowledge
of n,) by measuring P,(n) for increasing values of x and
observing if and when this function saturates into step-
function behavior.

Needless to say, the calculations in this paper may be
easily generalized to more complex landscape distributions
and correlation-region overlap patterns. Indeed, the only
effect of such a generalization would be the modification of
the expression for ¢, given in Eq. (3.6). However, the
central point of this paper is general and remains appli-
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cable regardless of such possible generalizations: there will
always be a value n, at which ¢, = 1, and this value,
which represents the number of correlation classes on the
landscape, can be ‘“‘experimentally” extracted with great
statistical certainty through the methods we have de-
scribed. Indeed, we have shown this explicitly for land-
scape distributions at both extremes: distributions in which
our correlation-class regions are entirely disjoint, and dis-
tributions in which significant overlaps occur.

Note that even our notion of ‘““correlation class” can be
generalized without altering the main results of this paper.
In this paper, we have implicitly assumed that within a
single correlation class, there exists a tight mathematical
relation between specific low-energy observables.
However, this requirement may also be relaxed: mean-
ingful correlation classes may also exist in which one
might be able to say nothing more than that a certain range
of values for one specific low-energy observable tends to
be statistically correlated with a certain range of values for
a different low-energy observable. Indeed, evidence that
such types of correlation classes exist has recently been
presented in Ref. [15]. Nevertheless, the methods we have
developed in this paper are applicable to these types of
generalized correlation classes as well.

Of course, our method of examining P,(n) can also be
used to examine the properties of any subset of the land-
scape. For example, one might restrict to a class of models
which share a common underlying construction methodol-
ogy. In such cases, the resulting information for 7, then
applies to the correlation regions appropriate for that sub-
set. Our method is therefore suitable for examinations of
arbitrary subsets of the landscape, without requiring
knowledge of the string landscape as a whole.
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