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We consider scalar-tensor theories of gravity extended by pseudoscalar couplings to matter and gauge

fields and derive constraints on the CP-odd combinations of scalar and pseudoscalar couplings from

laboratory spin precession experiments and from the evolution of photon polarization over cosmological

distances. We show the complementary character of local and cosmological constraints, and derive novel

bounds on the pseudoscalar couplings to photons from the laboratory experiments. It is also shown that the

more accurate treatment of the spin content of nuclei used in the spin precession experiments allows us to

tighten bounds on Lorentz-violating backgrounds coupled to the proton spin.
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I. INTRODUCTION

The discovery of the apparent acceleration of the
Universe, most naturally attributed to the existence of
dark energy [1], instigated many developments in cosmol-
ogy and particle physics during the last decade. To date, all
observational data are consistent with the most economic
possibility: the dark energy is just a cosmological constant,
and as such does not evolve over the cosmological time
scales. On the other hand, it is intriguing to think about the
alternative explanations related to a drastic change of the
infrared physics. In parallel to the attempts of modifying
gravity on large scales [2], there is a renewed interest in the
cosmological scalar fields that are nearly massless and that
manifest themselves as a ‘‘dark energy’’ component over
large cosmological distances [3].

An interesting twist to the well-known story of cosmo-
logical scalars comes from the possibility of their interac-
tion with matter and gauge fields. (For purely cosmological
signatures of ‘‘interacting’’ quintessence, see e.g. [4].) In
fact, such theories exhibit a rich plethora of phenomena
that go beyond pure cosmological effects, which we would
like to illustrate with the following toy example. Let us
consider a Lagrangian for the scalar field � interacting
with a standard model (SM) fermion c (e.g. electron) and a
gauge field A� (e.g. photon),

L ¼ 1
2@��@��� Vð�Þ þ �c ðiD��

� �mÞc
� 1

4F��F
�� � cSc� �c c � cPc� �c i�5c

� cS��F��F
�� � cP��F��

~F��: (1.1)

Here cSi and cPi parametrize the strengths of the scalar and
pseudoscalar couplings to photons and fermions, while
F�� and ~F�� denote the usual and dual field strengths,

and D� is the covariant derivative. Written in flat space,

Lagrangian (1.1) can be trivially generalized to curved
backgrounds, and to nonlinear couplings to matter.
This is a low energy Lagrangian, and in a bigger particle

physics context, it can be embedded in an SUð2Þ �
Uð1Þ-symmetric theory where e.g. the chirality flipping
terms � �c c will be endowed with the Higgs field.
Starting from (1.1), one can immediately infer a number
of interesting consequences, a partial list of which is given
below.
(1) The existence of a new long-range force distinguish-

able from spin-two gravity. The scalar field contrib-
utes to the gravitational force, adding�c2s on top of
the familiar Newtonian constant mediated by grav-
itons. Such a force leaves distinguishable imprints
via relativistic corrections and/or composition de-
pendence (effective violation of the equivalence
principle).

(2) The existence of a preferred Lorentz frame associ-
ated with @t�. If � is a very light quintessencelike
field, then there is a preferred frame where, cosmo-

logically, @�� ¼ ð _�; 0; 0; 0Þ. For most of the mod-

els this frame coincides with the frame of the CMB,

and j _�j is limited by ð�d:e:ð1þ wÞÞ1=2, where w is
the dark energy equation-of-state parameter.

(3) Variation of masses and couplings in time and
space. Effective values of masses and coupling
constants vary in space and time, mphysðt;xÞ ¼ mþ
cSc�ðt;xÞ, following the � profile.

(4) Coupling of polarization to velocity relative to the
CMB frame. A particle moving relative to the CMB
frame acquires a helicity-dependent interaction,

Hint � ðSnÞ _�, where ðSnÞ is the projection of spin
on the direction of propagation n. This way, the
cP�-proportional interaction would result in the ro-

tation of polarization for photons propagating over
varying � backgrounds.

(5) Photon-scalar conversion. In the presence of an
external electromagnetic field, a photon can ‘‘oscil-
late’’ to a quantum of the scalar field thereby, e.g.,
reducing the luminosity of distant objects or provid-
ing additional channels for star cooling.
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(6) Coupling of spin to the local gravitational force.
The scalar coupling cSc will lead to the local field

gradient r� generated by massive bodies, which is
closely parallel to the vector of local free-fall accel-
eration. The pseudoscalar couplings then create a
Zeeman-like splitting for the spin of c particles in
the direction of the local gravitational acceleration,
Hint � ðSgÞ.

It is remarkable that such a simple Lagrangian leads to a
number of quite different phenomena. Unfortunately, at
this stage the exciting phenomenology of ‘‘interacting
dark energy’’ lives in a pure theoretical realm: there is no
confirmed experimental evidence for any of the effects on
our list.1 Consequently, there are only upper limits on the
combinations of the couplings in Lagrangian (1.1) that can
be quoted. Nevertheless, many of the effects on our list
have found an extensive coverage in the theoretical works.
Most notably, the changing couplings were discussed, for
example, in Refs. [9–12], the photon-scalar conversion was
considered in Refs. [13], and the fixed frame effects versus
the cosmological evolution of the photon polarization were
addressed in a series of papers [7,8,14–16]. For the limits
on scalar-induced corrections to gravitational interactions,
we refer the reader to recent reviews [17] and references
therein. In contrast, the last item on our list, the spin
coupling to the local gradient of the scalar field, received
far less attention (see e.g. [18,19]). Reference [19] contains
very useful generic parametrization of long-range forces
induced by any spin carriers and analyzes constraints that
can be imposed on the combination of the pseudoscalar and
scalar couplings, and as such has strong overlap with some
of the analysis done in the present paper.

The purpose of this paper is to show that the pseudosca-
lar couplings of the Brans-Dicke-type scalar can indeed be
subjected to stringent laboratory constraints that are com-
plementary to the cosmological limits. The high-precision
spin precession experiments constrain pseudoscalar inter-
actions both in the fermion and photon sectors. In the rest
of this paper we present the setup for our model, briefly
review the effects created by the cosmological evolution of
�ðtÞ, investigate the local spin effects created by the gra-
dient of �, and set the limits on the admissible size of the
pseudoscalar couplings.

Before we delve into studying the physical effects in-
duced by the pseudoscalar couplings, we would like to add
a word of caution addressed to all models of ‘‘interacting
quintessence.’’ The models of light scalar fields represent a
formidable challenge at the quantum level, as there are no
fundamental reasons for a scalar to remain massless or
nearly massless. The scalar interaction of such a field

makes the whole problem even more difficult, if not im-
possible, from the point of view of ‘‘technical natural-
ness’’: the loops of SM fields tend to generate big
corrections to Vð�Þ even with a relatively small ultraviolet
cutoff parameter, which would be in conflict with require-
ments, m� �H [10,15,20]. There is no clear resolution to

this problem, which essentially prevents the fully consis-
tent study of� dynamics. Instead, one has to hope, perhaps
too optimistically, that the problem of near masslessness of
the scalar field could be cured by the same mechanisms
that make the cosmological constant small, and meanwhile
keep Vð�Þ fixed by hand. To finish this ‘‘disclaimer’’ on an
optimistic note, we would like to remark that the pseudo-
scalar couplings do not make this problem worse. Indeed,
in essence the pseudoscalar couplings give only derivative
interactions, and therefore do not affect the potential Vð�Þ
at the perturbative level.

II. ADDING SPIN COUPLINGS TO SCALAR-
TENSOR THEORIES

We would like to formulate our reference Lagrangian at
the normalization scale just below the QCD scale, so that
the effective matter degrees of freedom are electrons,
photons, nucleons, and neutrinos. Splitting the �-field
Lagrangian into the scalar and pseudoscalar parts,

L ¼ LS þLP; (2.1)

we choose the following parametrization,

L S ¼ 1

2
@��@��� Vð�Þ � X

j¼e;p;n

�

MSj

mj
�c jc j

� �

MS�

F��F
�� (2.2)

and

L P ¼ X
j¼e;p;n;�

@��

MPj

�c j���5c j � �

MP�

F��
~F��: (2.3)

Lagrangian (2.3) includes all possible pseudoscalar inter-
actions at the mass dimension-five level. Notice that the
pseudoscalar interactions can be chosen in a slightly differ-
ent form, �c�5c , as in (1.1). This does not mean, however,
that our set of operators should be enlarged. The two type
of operators, pseudoscalar and axial vector, are related on
the equations of motion. These equations are, in general,
anomalous, but since we include the interaction with F ~F
explicitly, we can assert that Lagrangian (2.3) is indeed
complete in a given dimension of the operators.
The scalar part of the Lagrangian (2.2) leads to new

contributions to the gravitational force, and to a change
of masses and couplings. Since in this paper our main
interest is in spin effects, we are going to make sim-
plifying assumptions of approximate universality of the
�-mediated attractive force,

1A tantalizing hint on the redshift evolution of the fine-
structure constant was reported in Ref. [5], which so far has
not been corroborated by other searches [6]. Also, an earlier
claim of the nonzero pseudoscalar-induced anisotropy in the
polarization signal [7] was disputed in the literature [8].

FLAMBAUM, LAMBERT, AND POSPELOV PHYSICAL REVIEW D 80, 105021 (2009)

105021-2



MSe ¼ MSp ¼ MSn � MS and MS� � MS: (2.4)

At distances shorter than the Compton wavelength of �
quanta, the Newtonian constant receives contributions
from both spin-two and spin-zero exchanges,

GN ¼ G0
N

�
1þ 2M2

Pl

M2
S

�
; (2.5)

where G0
N is the unperturbed Newtonian constant due to

graviton exchange, and the Planck mass is defined as

MPl ¼ ð8�G0
NÞ�1=2 ¼ 2:4� 1018 GeV.

If needed, the pseudoscalar couplings could be ‘‘lifted’’
from the nucleon level to the level of individual quarks.
Using the experimental results for the spin content of the
nucleon combined with SUð3Þ-flavor relations [21], one
gets

M�1
Pp ’ 0:8M�1

Pu � 0:4M�1
Pd � 0:1M�1

Ps ;

M�1
Pn ’ 0:8M�1

Pd � 0:4M�1
Pu � 0:1M�1

Ps ;
(2.6)

where the light quark couplings are normalized at the scale
of 1 GeV.

Using the appropriate field content, one can determine
the renormalization group evolution of the pseudoscalar
couplings. In general, the equations governing this evolu-
tion take the following form,

dM�1
Pi

d logð�=�Þ ¼ aijM
�1
Pj þ bi�M

�1
P�;

dM�1
P�

d logð�=�Þ ¼ c�iM
�1
Pi þ d��M

�1
P�;

(2.7)

where the logarithm is taken between the ultraviolet scale
� and the infrared scale �, Latin indices indicate fermi-
onic fields, and Greek indices indicate the gauge bosons of
the SM group. The renormalization group coefficients aij,

bi�, c�i, and d�� depend on charge assignments and cou-

pling constants of the field running inside the loops. The
precise form of these coefficients is not of immediate
interest to us, but wewould like to emphasize the following
important observation: at any loop level the derivative
couplings to fermions do not generate couplings to
F��

~F��. In other words,

c�i � 0: (2.8)

Whatever size of the pseudoscalar couplings between pho-
tons and � is generated by some (perhaps anomalous)
ultraviolet scale physics at energies order�, it is preserved
by the subsequent evolution to the lower scales. In fact, this
refers both to the logarithmic running and to the threshold
corrections. This observation delineates two important
classes of models: those in which both fermion and photon
pseudoscalar couplings are present in the Lagrangian, and
those in which only couplings to fermions are present. The
models in which � couples only to gauge bosons would

necessarily be fine-tuned, as quantum effects in (2.7) would
definitely generate induced couplings to fermions.
Existing constraints on the model can be divided into

pseudoscalar and scalar constraints. The constraints on the
universal scalar coupling MS can be derived from the
constraint imposed by the Cassini satellite data on the
post-Newtonian parameter �� [22],

j ��j< 4� 10�5 ) MS > 400MPl: (2.9)

The constraints on the nonuniversal part of the scalar
coupling are several orders of magnitude stronger. The
scalar coupling to photons is constrained via the limits
on the time variation of the coupling constant and, less
directly, via the composition-dependent contribution to
local acceleration. Typically, one has MS� > 103MPl. In

contrast, the pseudoscalar couplings are far less con-
strained. The leading sources of constraints are the energy
loss mechanisms in stars [23], and for electrons, photons,
and nucleons, all constraints are in the ballpark of

jMPj * ð1010–1012Þ GeV� ð10�8–10�6ÞMPl: (2.10)

In the next section, we are going to show that if both
pseudoscalar and scalar couplings are present, some con-
straints on MP can be significantly improved.

III. COSMOLOGICAL CONSTRAINTS ON THE
MODEL

To derive cosmological constraints on pseudoscalar cou-
plings, we remind the reader that the presence of a time-
evolving scalar field with a pseudoscalar coupling to pho-
tons leads to a rotation of polarization for photons. The
resulting angular change in the linear polarization for a
photon propagating from point 1 to point 2 is simply
related to the change of � between the two points,

�	 ¼ 2��

MP�

: (3.1)

Following the work of Carroll [15] and the original analy-
sis of Ref. [24], we use the limit on the extra rotation of
polarization from a distant source (3C 9) at redshift z ¼
2:012 as j�	j< 6�,

j�ðz ¼ 2Þ ��ðz ¼ 0Þj
MP�

< 0:052: (3.2)

Even more distant sources of polarization are available
in the studies of the cosmic microwave background. The
E-mode polarization map of the sky has been produced
[25], and it agrees well with the expectation based on the
temperature map. This constrains the amount of extra
rotation of polarization introduced by the �F ~F interaction
between the surface of the last scattering and z ¼ 0. Recent
numerical analyses of the CMB data provide a constraint
on the amount of extra rotation at the level of j�	j< 6�
[16] (the same limit of 6� is purely coincidental), which
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allows us to extend (3.2) to the redshifts of photon decou-
pling, zdec ’ 1100,

j�ðzdecÞ ��ðz ¼ 0Þj
MP�

< 0:052: (3.3)

Finally, we would like to point out that the CMB polar-
ization signal is generated in the narrow window of red-
shifts that correspond to the ‘‘last scattering’’ surface, and
therefore the existing measurements constrain the amount
of extra rotation within the thickness of this surface,

2

MP�
j��ðzdec � �zdec=2Þj<Oð1Þ; (3.4)

where �zdec ’ 200 corresponds to the thickness of the last
scattering surface. The violation of this bound would sup-
press the strength of the polarization signal, which is well
measured.

With these bounds at hand, we are ready to translate
them into the constraints on the parameters of our model.
However, the cosmological constraints depend very sensi-
tively on what we assume about the scalar couplings of �
to dark matter and even more so on the choice of the
potential Vð�Þ. Since the number of options is infinite,
we would like to consider in detail two well-motivated
cases.

Case 1. The simplest case is when the potential for � is
nearly flat and the evolution of � is slow. In this case one
can linearize Vð�Þ,

Vð�Þ ’ ��

�
1þ �

M�

�
; (3.5)

where �� is approximately equal to the measured value of
dark energy density, and M� is a new parameter on the
order of the Planck scale and/or MS. In the limit when the
backreaction of �� on Friedmann’s equations is neglected,

one can find an analytic expression for the evolution of �
in the flat Universe [10]. In this approximation the time
evolution of the scale factor can be expressed via the scale
factor and the Hubble parameter today (tnow � t0): H0 ¼
Hðt ¼ t0Þ ¼ _a=ajt¼t0 and aðt ¼ t0Þ � a0, as well as the

current energy densities of matter and the cosmological
constant relative to the critical density, �m ¼ �m=�c and
�� ¼ ��=�c:

aðtÞ3 ¼ a30
�m

��

�
sinh

�
3

2
�1=2

� H0t

��
2
: (3.6)

The equation of motion for the scalar field receives forcing
terms directly related to dark energy and matter densities:

€�þ 3H _� ¼ � �m

MS

� ��

M�

¼ ��c

�
�m

MS

�
a0
a

�
3 þ��

M�

�
;

(3.7)

where we made an assumption of the universal strength of
� coupling to matter, including dark matter. This equation

can be integrated out explicitly [10] to give

�ðtÞ ¼ 4

3
M2

Pl

��
1

2M�

� 1

MS

�
ðbt0 cothðbt0Þ � bt cothðbtÞÞ

� 1

MS

ln
sinhðbtÞ
sinhðbt0Þ

�
; (3.8)

where the following notation has been introduced:

b ¼ 3
2�

1=2
� H0: (3.9)

This solution implies boundary conditions _�jt!0� not too
large and �ðt0Þ ¼ 0. The first condition is automatically
satisfied as � does not evolve rapidly during the radiation
domination, and the second condition is simply a choice,
possible since� enters linearly in the Lagrangian. It is easy
to see that in the limit of t � t0 the dependence of� on the
redshift is logarithmic,

�ðaÞ ’ const� 2M2
Pl

MS

lnða=a0Þ at teq � t � t0:

(3.10)

Now we can use the evolution (3.8) to impose limits on
the combination of MP and MSð�Þ parameters using the

observational constraint (3.2). We do this for three separate
representative cases: for equal couplings to matter and dark
energy densities, and for couplings to dark energy and
matter only:

M� ¼ MS; jMP�MSj> 36M2
Pl; (3.11)

jM�j ! 1; jMP�MSj> 30M2
Pl; (3.12)

jMSj ! 1; jMP�M�j> 6:1M2
Pl: (3.13)

These limits generalize the analysis of Ref. [15] where
only the Vð�Þ-induced optical rotation was considered. We
also notice that both (3.11) and (3.12) are about 1 order of
magnitude stronger than (3.13), which is a consequence of
ða0=aÞ3 � 8 enhancement of matter density over the cos-
mological constant at redshifts �2.
Because of the logarithmic dependence on redshifts at

t � t0 (3.10), there is about 1 order of magnitude gain in
the strength of the constraint when using the CMB limit
(3.3) for the case of finite MS,

M� ¼ MS or jM�j ! 1 ) jMP�MSj> 255M2
Pl:

(3.14)

In order to see the maximal sensitivity to MP, we can
saturate the constraint onMS (2.9), which results inMP� *

OðMPlÞ at maximally allowed MS.
Case 2. Going away from the linearized case, we con-

sider the cosmological evolution of the� field approaching
some local minimum of Vð�Þ,
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Vð�Þ ¼ �� þm2
�

2
ð���0Þ2: (3.15)

If the mass of the field is well above the current Hubble
parameter, m� � H0, then the evolution of � starts long

before the present epoch. Well-known solutions for � in
this case are the oscillations around the minimum with the

amplitude that redshifts as a�3=2. If the initial deviation of
� from equilibrium was �in at the time tin when oscilla-
tions began, HðtinÞ �m�, then the subsequent evolution in

the radiation domination will be given by

�ðtÞ ’ �0 þ�in

�
ain
aðtÞ

�
3=2

cos½m�ðt� tinÞ þ �	; (3.16)

where � is some phase factor. Because of the redshifted
amplitude in (3.16), the constraints provided by the CMB
are clearly more advantageous than the low z constraints.
However, the oscillations of � (3.16) make it difficult to
define �ðzdecÞ; consequently, the analyses of [16] with the
limits (3.3) are not directly applicable, and instead one
should resort to the limits (3.4). Still, if the initial deviation
of the� field from its minimum is on the order or less than
the pseudoscalar coupling MP�, and oscillations begin

earlier than the decoupling, then the cosmological evolu-
tion of polarization provides no constraints on the size of
the pseudoscalar coupling,

j�inj< jMP�j; tin � tdec ) no constraints onMP�:

(3.17)

This is an important observation, since the first condition
j�inj< jMP�j is quite natural if the � field has a phaselike

origin similar to e.g. the QCD axion, and tin � tdec is
satisfied for all masses of � in excess of 10�28 eV.

IV. LOCAL SPIN PRECESSION CONSTRAINTS

As we have shown in the two previous sections, the
cosmological constraints on pseudoscalar couplings apply
only toMP�, and not to fermionic couplings. Moreover, all

cosmological constraints will be eliminated if the field
starts oscillating much earlier than the decoupling of the
CMB photons (3.17). This leaves a large domain of pa-
rameter space where only the local experiments are going
to be sensitive to the pseudoscalar couplings. We wish to
consider them in this section. Before we do that, we would
like to note that the couplings of spins to the local gravi-
tational (spin-two) field have been extensively studied in
the literature [26–28]. Our main interest is the conclusion
reached in these works that the g 
 S coupling does not
arise in general relativity. Therefore, if detected, it can be
thought of as a distinct signature of the scalar exchange.

Since most of the experiments deal with nonrelativistic
atoms and nuclei, it is convenient to use the nonrelativistic
Hamiltonian,

Hint ¼ � X
j¼n;p;e

ð
j 
 r�Þ
MPj

þ
Z

d3x
4ðE 
 BÞ�

MP�

; (4.1)

where ~
 ¼ S=jSj ¼ 2S. The local gradient of � is one-to-
one related to the gravitational acceleration,

r� ¼ g
2M2

Pl

MS

; (4.2)

so that the strength of the interaction of each spin to the
gravitational field is given by g� 2M2

Pl=ðMSMPjÞ.
Gravitational acceleration has dimension of energy in
particle physics units of c ¼ @ ¼ 1, and corresponds to
the frequency splitting of spin-up and spin-down states
�g ¼ 2� 9:8 102 cm=s2=ð2�� 31010 cm=sÞ ¼ 10:4 nHz.

Unlike most problems in quantum mechanics where ‘‘up’’
and ‘‘down’’ are usually a matter of convention, in this
theory these words should be used literally. Only a handful
of spin precession experiments ever reached a sensitivity
lower than 10 nHz; among them are experiments searching
for the permanent electric dipole moments of diamagnetic
atoms [29], where the statistical sensitivity is comparable
to or better than 10 nHz. Unfortunately, this sensitivity is
related to the energy difference of spins in parallel and
antiparallel electric and magnetic fields and does not trans-
late into the limits on spin interaction with the vertical
direction.
A dedicated search for the g 
 S interaction was pursued

in [30] (and earlier in [31]), where a ��Hz accuracy was
achieved. In particular, Ref. [30] compared the precession
frequencies of two mercury isotope spins, 199Hg and 201Hg,
for different orientations of the magnetic field, and set a
limit of 2:2� 10�30 GeV for the spin-dependent compo-
nent of gravitational energy. Other measurements that can
be used to limit the pseudoscalar couplings are the spin
precession experiments that searched for the effects of
Lorentz violation [32,33] and the experiment with a spin-
polarized pendulum [34]. The absence of sidereal modu-
lation of spin precession, confirmed by these experiments,
sets the limit on the coupling of spins to any direction in
space that does not change as the Earth rotates around its
axis. Besides useful limits on Lorentz-violating theories
[35], such effects will constrain the pseudoscalar cou-
plings, in combination with r�, created by astronomical
bodies other than the Earth. The solar contribution tor� is
smaller than r�Earth by a factor of �6� 10�4, thereby
reducing the strength of the constraints extracted from
sidereal variations by the same amount. Putting different
results together, and assuming that the range of the force is
comparable to or larger than the solar system, we arrive at
the following set of constraints,

jMPnMSj> 1:5� 10�2M2
Pl; Ref: ½30	; (4.3)

jMPnMSj> 1� 10�4M2
Pl; Refs: ½32; 33	; (4.4)
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jMPeMSj> 2� 10�6M2
Pl; Ref: ½34	: (4.5)

Bounds (4.3) and (4.4) are derived from the assumption of
Ref. [36] that the spin of the nucleus is given by the angular
momentum of the outside nucleon, which happens to be a
neutron for all nuclei used in the most sensitive searches
(3He, 129Xe, 199Hg, 201Hg). Consequently, the limits are
formulated on the pseudoscalar coupling to neutrons, as it
is also the case for the limits on the external Lorentz-
violating axial-vector backgrounds [36]. These limits are
in broad agreement with a similar analysis done in
Ref. [19].

In fact, one can refine these bounds and impose separate
constraints on the strength of the pseudoscalar coupling for
protons and neutrons. Although most of the nuclei in atoms
used in experiments [30–33] have a valence neutron out-
side of closed shells, one can use the information on the
magnetic moments of these nuclei, together with a simple
theoretical model of nuclear structure, to deduce the proton
contribution to the total nuclear spin. To be specific, we
shall assume that the magnetic moment of the nucleus is
composed entirely from the spin magnetic moment of the
valence neutron and the spin magnetism of the polarized
nuclear core,

� ¼ �nh
ðnÞ
z i þ�ph
ðpÞ

z i; h
ðnÞ
z i þ h
ðpÞ

z i ¼ h
ð0Þ
z i:
(4.6)

In these equations,�,�p,�n are the magnetic moments of

the nucleus, proton, and neutron. Numerical estimates
show that the orbital contribution to the magnetic moment
� in the nuclei of interest is less important than the spin
contribution since the neutron orbital contribution is zero
and the proton orbital contribution is small in comparison
with the proton spin contribution. The latter is enhanced by
the large value of the proton magnetic moment �p ¼ 2:8,

which justifies the neglection of the proton orbital magne-
tism for low l orbitals. Neglection of the spin-orbit inter-
action makes the total spin conserved and its total value
equal to the average spin of the neutron above the unpo-

larized core, h
ð0Þ
z i. The latter is equal to 1 for j ¼ lþ 1=2

and�j=ðjþ 1Þ for j ¼ l� 1=2, where j is the value of the
nuclear angular momentum, and l is the orbital quantum
number of the valence neutron. Using these simple formu-

las (4.6), we determine h
ðnÞ
z i and h
ðpÞ

z i for observationally
relevant cases of 199Hg, 201Hg, 129Xe, and 3He as shown in
Table I.

One can see that the contribution of the proton spin to
the total spin of these nuclei, especially 129Xe and 201Hg,
can be as high as 30%, and therefore the proton pseudo-
scalar coupling is also limited in these experiments. For
example, Ref. [30] limits the following combination of the
proton and neutron couplings:

jMPeffMSj> 1:5� 10�2M2
Pl;

where M�1
Peff ¼ 0:6M�1

Pn � 0:4M�1
Pp :

(4.7)

The relative enhancement of the proton contribution is due
to a rather close cancellation of the neutron contribution to
the differential frequency of spin precession for 199Hg and
201Hg.
As a by-product of our analysis, we can improve the

bounds on the Lorentz-violating axial-vector couplings in
the Colladay-Kostelecky parametrization [35]. Indeed, the
spatial components of the axial-vector background to pro-
tons, b�, is constrained in the same experiments,

Refs. [32,33], in particular, because of the substantial
contribution of the proton spin to the spin of 129Xe. For
example, the interpretation of the null result of the most
sensitive experiment [33] with the use of the analysis [36]

that assumes h
ðnÞ
z i ¼ h
ð0Þ

z i, h
ðpÞ
z i,

2��LV ¼ 2bðnÞi

�
1��He

�Xe

�
¼ �3:5bðnÞi ; Ref:½36	;

(4.8)

leads to the conclusion that there is no experimental sensi-
tivity to the proton spin content. In contrast, we find that

2��LV ¼ 2

�
0:76bðnÞi þ 0:24bðpÞi

��He

�Xe

ð1:04bðnÞi � 0:04bðpÞi Þ
�

¼ �4:2bðnÞi þ 0:7bðpÞi ; (4.9)

where �LV ¼ 53� 45 nHz is the experimentally
measured (consistent with zero) Lorentz-violating fre-
quency shift [33]. Obviously, the contribution of proton

bðpÞi to �LV is non-negligible, and implies that jbðpÞi j<
few�Oð10�31Þ GeV, which is far better than the results
of the dedicated searches of Lorentz violation in the proton
sector with e.g. a hydrogen maser [37].
Besides the constraints on nucleon and electron cou-

plings, the same clock comparison experiments allow us
to set limits onMP�. For example, for an atom (or nucleus)

with the total angular momentum J, the matrix element of
the �F ~F interaction is not zero,

hJj
Z

d3x
4ðE 
BÞ�

MP�

jJi ¼ �

MP�

�
J

jJj 
 r�
�
; (4.10)

TABLE I. Composition of the nuclear spin.

Nucleus � j, l h
ð0Þ
z i h
ðnÞ

z i h
ðpÞ
z i

3He �2:13 1=2, 0 1 1.04 �0:04
129Xe �0:78 1=2, 0 1 0.76 0.24
199Hg 0.50 1=2, 1 �1=3 �0:31 �0:03
201Hg �0:56 3=2, 1 1 0.71 0.29
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where � is a dimensionless matrix element that can be
calculated explicitly. For the ground state of the hydrogen
atom, � is given by

� ¼ 8e�B

3a0
¼ 4�2

3
; (4.11)

where a0 and �B are the Bohr radius and magneton, and �
is the fine-structure constant. This calculation takes into
account the magnetic field generated by the electron mag-
netic moment, and the electric field of the proton. If we
consider bothE andB created by the electron, we discover
that the result has a logarithmic divergence in the ultravio-
let regime that has the interpretation of 1=MPe being
generated by 1=MP�. Even with a modestly low choice

of the cutoff, the coefficient is going to be on the order of
�=��Oð10�3Þ and thus parametrically larger than (4.11).

What happens if instead of an atomic electron we con-
sider a nucleus where the electric field is considerably
stronger? To understand the scaling of the effect with Z,
we consider a simplified case of a single s-wave neutron
above the closed nuclear shells with a ‘‘uniform’’ distribu-
tion of its wave function inside the nucleus, which also has
a uniform charge distribution within a sphere of radius

RN ’ 1:2 fmðAÞ1=3. The resulting � can be expressed in
terms of the neutron magnetic moment,

� ¼ 8

5

2�nZe

RN

¼ 4

5

gnZ�

mpRN

¼ 0:05–0:07 for Z� 80;

(4.12)

where the overall numerical coefficient follows from the
approximation of the radial matrix element, hr2=ð2R2

NÞ �
3=2ir<RN

¼ �6=5. Although an overall numerical coeffi-

cient in estimate (4.12) cannot be taken very seriously, the
parametric dependence on Z, �n, and RN is certainly
expected to hold for large nuclei. For mercury this effect
is larger than the loop-induced admixture of the photon
coupling into the nucleon coupling. Thus we can deduce
the sensitivity of spin precession experiments to the pseu-
doscalar couplings to photons at the 5% level from the
coupling to neutrons:

jMP�MSj * Oð10�4ÞM2
Pl; Ref: ½29	: (4.13)

One can see that the combined bounds from the clock
comparison experiments are comparable to or better than
the product of separate bounds (2.9) and (2.10).
Unfortunately, these bounds do not allow us to probe the

pseudoscalar coupling to fermions all the way to the
‘‘natural’’ scale MP �MPl.

V. CONCLUSIONS

Our paper considers the constraints on the combination
of scalar and pseudoscalar couplings in the scalar-tensor
theories of gravity. The strongest constraints come from
the considerations of the cosmological evolution of polar-
ized light, and in the best case scenario of the maximal
scalar coupling, consistent with constraints on Brans-
Dicke theories, the sensitivity to the pseudoscalar coupling
to photons can be as large as the Planck scale. However, the
cosmological constraints are not sensitive to the derivative
pseudoscalar couplings to fermions, as they do not induce
corresponding photon couplings even at the loop level. We
also point out that for a wide range of pseudoscalar masses,
one can avoid cosmological constraints due to the red-
shifting of � oscillations. Therefore, the laboratory con-
straints on spin precession from locally generated gradients
of � are complementary to cosmological bounds. We
revisited lab bounds to find that the most sensitive experi-
ments are still a few orders of magnitude below the sensi-
tivity to Planck-scale-suppressed couplings. We also note
that the local spin precession experiments provide sensi-
tivity to the pseudoscalar coupling to photons, through the
relatively large matrix element of the �B 
 E interaction
inside atomic nuclei. As a separate remark, we have shown
that the nuclei of atoms used in the high-precision clock
comparison experiments have significant proton contribu-
tion to their spins. This allows us to set separate constraints
on pseudoscalar couplings to neutrons and protons, and
improve the limit on Lorentz-violating axial-vector back-
grounds in the proton sector. Further progress in experi-
ments searching for a preferred Lorentz frame would also
provide better sensitivity to the scalar-tensor theories ex-
tended by pseudoscalar couplings.
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