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We construct a massive non-Abelian N ¼ 1 supersymmetric Yang-Mills theory on R3. This is

achieved by using a nonlocal gauge and a Poincare invariant mass term for gluons due to Nair. The

underlying supersymmetry algebra is shown to be a noncentral extension of the Poincare algebra by the

spacetime rotation group soð3Þ. The incorporation of Chern-Simons couplings in the formalism is also

presented. The dimensional reduction of the gauge theory and the supersymmetry algebra is related to a

massive N ¼ 2 matrix quantum mechanics based on Euclidean Clifford2ðRÞ.
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I. INTRODUCTION

Yang-Mills (YM) theories in three spacetime dimen-
sions ðYM2þ1Þ provide a fascinating testing ground for
ideas related to nonperturbative aspects of gauge theories.
For instance, pure Yang-Mills in D ¼ 2þ 1 is one of the
few nonsupersymmetric gauge theories that can be studied
in a manifestly gauge invariant Hamiltonian formalism.
Starting from first principles, the formalism due to Kim,
Karabali, and Nair (KKN) has led to an understanding of
many nonperturbative features of the purely gluonic theory
[1,2]. The successes of the KKN approach include an
understanding of the mechanism for the generation of a
mass gap in the spectrum of pure Yang-Mills theory as well
as a precise computation and prediction for its string
tension, which compares remarkably well with the latest
lattice data. More recently, progress has been achieved
towards extending the formalism to incorporate matter
fields and understand screening effects [3], adapting the
Hamiltonian analysis to include nontrivial spacial geome-
tries such as S2 [4] along with promising schemes for
precision computations of glueball masses [5] and strong
coupling corrections to the string tension [6]. Among other
impressive insights, and central to the concerns of the
present paper, this list of successes also explains how the
gluons of the three-dimensional gauge theory become
massive leading to a gapped spectrum.

In the purely gluonic theory, the mass gap is related to
the volume measure on the gauge invariant configuration
space of the gauge theory. In a gauge invariant formalism,
the gauge potentials can be replaced by a scalar
(Hermitian) matrix degree of freedom H. This can be
interpreted as the non-Abelian version of the standard
dualization prescription for three-dimensional electrody-
namics, where the photon can be replaced by a scalar. The
volume element on the space of gauge configurations A

modulo gauge transformations G: d�ðA=GÞ, can be
shown to be related to the Haar measure on the space of
H ðd�ðHÞÞ [2] as

d�ðA=GÞ ¼ 2cASwzwðHÞd�ðHÞ: (1.1)

SwzwðHÞ is the Wess-Zumino-Witten (WZW) action, while
cA is the quadratic adjoint Casimir for the gauge group.
SwzwðHÞ effectively cuts off the volume of the physical
configuration space resulting in a massive spectrum for the
gauge theory. The effect of the measure and the resulting
mass gap have been explored in depth by KKN [2] in a
Hamiltonian framework.
Though a covariant approach towards a nonperturbative

reformulation of three-dimensional pure Yang-Mills theory
remains to be developed, it is nonetheless possible to write
down a gauge and Poincare invariant mass term for YM2þ1

(which we subsequently denote by Sm) that is manifestly
suitable for a path-integral analysis. The mass term in
question, introduced by Alexanian and Nair [7,8] can be
interpreted as the magnetic mass for high temperature
QCD. Indeed, finite temperature considerations were
what led to its introduction in [8]. For related previous
analyses of the electric and magnetic sectors of finite
temperature QCD, we shall refer to [9].
Though the precise relation between the covariant mass

term suggested in [7,8] and the much more elaborate
Hamiltonian framework due to KKN is not completely
understood, there are several reasons to believe that Sm is
closely related to the volume measure on the gauge theory
configuration space. As a case in point, it was shown in [7]
that Sm is dynamically generated in the purely gluonic
theory. This analysis was performed by a self consistent
rearrangement of the perturbation series, and the resulting
(leading order) estimate for the mass gap is strikingly close
to the exact answer, which is now known from the
Hamiltonian KKN framework.1 Furthermore, an observa-
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tion, which is more compelling from the analytical point of
view, was made in [1]. In that paper, it was shown that a
particular covariantization of the mass term obtained in the
Hamiltonian framework from the volume measure led
directly to Sm. Though covariantization does not uniquely
lead to Sm, an alternate possibility was also discussed in
[7]; it has several welcome algebraic attributes. For in-
stance, it was shown in [10] that Sm is the unique cova-
riantization of the configuration space volume measure that
leads to standard Gaussian mass terms for the matrix
quantum mechanics obtained by the dimensional reduction
of the gauge theory. Furthermore, as we show in the present
paper, it admits a very natural supersymmetrization. Thus,
although the precise origins of Sm and its potential relation
to the measure on the gauge theory configuration space
remain partly obscure, it is clear that it deserves to be
investigated further. In the present paper, we shall simply
consider it as a potential gauge and Lorentz invariant mass
term that one can use to deform the gluonic theory and
make it manifestly massive. With this particular approach
in mind, we shall proceed to work out its generalization
that has N ¼ 1 supersymmetry.

Three-dimensional supersymmetric gauge theories are
also of considerable interest from the point of view of
gauge/gravity duality. For instance,N ¼ 8 supersymmet-
ric Yang-Mills (SYM), being related to the worldvolume
theory of D2 branes is of fundamental significance in
extending and testing the gauge/gravity duality in the
regime of nonconformal gauge theories. Though this par-
ticular gauge theory on R3 is massless, its spectrum can be
rendered massive by recasting it on R� S2.2 A string dual
for this massive sixteen supercharge theory has recently
been proposed in [11], and several analytical features
pertaining to its spectrum have also been extracted in the
same paper. Apart from super Yang-Mills theories, sixteen
and twelve supercharge super Chern-Simons theories have
also been investigated in great deal in the recent past in the
wake of the exciting proposals for their gravity duals and
M2 brane dynamics [12,13]. The two sets of developments
are not completely independent from the point of view of
the duality between D2 and M2 brane theories [14], as the
sixteen supercharge super Chern-Simons theory is indeed
expected to describe the IR dynamics of the corresponding
Yang-Mills theory. For recent evidence in this regard at the
Lagrangian level, see [15]. Interestingly, the super Chern-
Simons theories mentioned above admit explicit massive
deformation on R3, which have also been worked out in
[16].

Apart from the massive nature of the spectrum, a central
feature common to the supersymmetric gauge theories
mentioned above is that the underlying supersymmetry

algebra takes on the following schematic form:

½Q;Q�þ � PþmR; (1.2)

wherem is the characteristic mass scale, and R is a (flavor)
R-symmetry generator. Such mass-deformed algebras also
appear as the symmetry algebra of the scattering matrix of
the spin-chain/planar dilatation operator of N ¼ 4 SYM
and the dual world-sheet theory [17], as well as in the
closely related plane wave matrix model [18,19]. Their
appearance as the spacetime symmetry algebra of three-
dimensional gauge theories leads to remarkable conse-
quences. For instance, it is possible to use the algebra to
completely constrain all four particle scattering amplitudes
in the corresponding super Chern-Simons theories, to all
orders in perturbation theory up to a single undetermined
function [20]. This result parallels the previously known
results for the scattering matrix of the dilatation operator of
N ¼ 4 SYM and its world-sheet dual [17]. The noncen-
tral extensions of the supersymmetry algebras are a natural
consequence of the massive nature of the underlying theo-
ries in both the cases, and the severe constraining power of
the algebra so obtained is an extremely welcome feature.
A key point of departure for the theories we consider in

this paper from the examples cited above is that the theo-
ries in question do not have extended supersymmetry, and
hence they lack R symmetry. Nevertheless, the mass de-
formation ofN ¼ 1 SYM theory that we perform leads to
an algebraic structure of the form (1.2), where R stands for
the spacetime soð3Þ rotations. Our construction may also
be contrasted with the widely known method for rendering
Yang-Mills theories massive in three dimensions, namely,
the addition of Chern-Simons terms; see, for example [21].
An N ¼ 1 deformation of a super Yang-Mills theory by
Chern-Simons terms and massive Fermions does not lead
to a deformation of the underlying supersymmetry algebra,
while for the present case it does. Thus, from the point of
view of the underlying algebra, the massive gauge theories
constructed in this paper are closer in spirit to the theories
studied in [11,16], even though the Yang-Mills theories in
question are defined on R3 with minimal supersymmetry.
This is opposed to the case in [11], where the SYM has
extended supersymmetry (SUSY) and is defined onR� S2

or the examples studied in [16], where the gauge theories
do not have any Yang-Mills terms in their actions. It is also
worth noting that noncentral extensions of the type (1.2)
are very constrained, as a generic lie algebra R will lead to
a violation of the super Jacobi identity. However, as we
show later in the paper, the three-dimensional spacetime
rotations soð3Þ do lead to a consistent extension of the
super-Poincare algebra in three dimensions, which in turn,
makes the mass deformations of the N ¼ 1 theory of the
kind that we explore in the paper possible.
The results presented here are closely related to the

observations noted in [10], where mass deformations of
various supersymmetric three-dimensional Yang-Mills

2Recall that in three spacetime dimensions, Yang-Mills theo-
ries are generically not conformal. Thus there is no natural way
to map the results for the theory on R� S2 to those for the
theory defined on R3.
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theories were related to supersymmetric matrix models by
dimensional reduction. However, the issue of whether or
not the deformed Yang-Mills theories are supersymmetric
themselves was not answered in that paper. In this paper,
we address that question in the context of the minimally
supersymmetric SYM while deferring the issue of ex-
tended supersymmetry to a future publication.

The paper is organized as follows. We begin with a brief
review of the mass term introduced in [7,8] and its various
relevant algebraic properties. Following that, we proceed
to present the supersymmetrization of the mass-deformed
theory and extract the underlying supersymmetry algebra.
This construction is followed by a discussion of how
Chern-Simons terms may also be introduced within our
framework, and we work out the interplay between the
mass (m) used in deforming the algebra and Chern-Simons
level number. We end the paper with a discussion of how
the dimensional reduction of the mass-deformed theory
constructed in the paper can be related to massive N ¼
2matrix quantum mechanics, the unique example of which
was worked out in [22]. We also comment on the consistent
contraction of the supersymmetry algebra that results from
the dimensional reduction.

II. MASSIVE BOSONIC YM2þ1: A BRIEF REVIEW

The action for pure Yang-Mills with the mass term
included can be written as

SYM ¼
Z

d3x
1

4g2
Fa
��F

a
�� þ 1

g2
Sm: (2.1)

Sm [7] is the mass term introduced in [7]. As explained
below and elaborated upon in the Appendix, many of the
features of this term are best elucidated by expressing it in
terms of seemingly two-dimensional gauge potentials A�.
It is important to stress that the apparently two-
dimensional quantities A� etc. are generated from A� by

contracting them with a set of auxiliary three-dimensional
null vectors n, �n, and this apparent two dimensionality is
not to be confused with the actual dimensionality of the
spacetime. The null vectors are in turn taken to depend on
the coordinates of an associated S2, which we refer to as�.
The spherical coordinates have nothing to do with the
three-dimensional spacetime, and for all practical purposes
they can be regarded as a bookkeeping device.
Nevertheless, this pseudo–two-dimensional formalism is
extremely useful for many of the computations carried out
later, and it is utilized heavily throughout the paper. The
details about the conventions regarding the null vectors and
the definitions of A� can be found in the Appendix. Sm can
be expressed in explicit detail as

Sm ¼ m2
Z

dx0d�KðAþ; A�Þ; (2.2)

where the kernel K is given by

KðAþ; A�Þ ¼ � 1

�

Z
1
ðtrðAþð1ÞA�ð1ÞÞ þ i�IðAþð1ÞÞ

þ i�IðA�ð1ÞÞÞ; (2.3)

while

IðAð1ÞÞ ¼ i
X
n

ð�1Þn
n

Z
2���n

trðAð1Þ � � �AðnÞÞ
�z12 �z23 � � � �zn1

� d2x1
�

� � � d
2xn
�

: (2.4)

The arguments of A refer to the different ‘‘spacial’’ points.
The transverse coordinate x0 is the same for all of the A’s in
the above expression for I. Alternatively, the mass term can
also be formally expressed as

KðAþ; A�Þ ¼ �tr

�
AþA�
�

þ lnðDþÞ þ lnðD�Þ
�
; (2.5)

where D� ¼ @� þ A�. The trace in the above expression
stands for the trace over the color indices as well as the
integration over the transverse coordinates.
If A� had really been the components of a two-

dimensional gauge potential, then the formal expression
above would have related K to a gauged WZW model, a
fact that is well known from studies of QCD in two
dimensions [23]. What we have above is a three-
dimensional version of the WZW functional, where the
D ¼ 2þ 1 gauge potentials are organized in terms of two-
dimensional quantities; A� is a somewhat twistorial
fashion.
Although Sm is obviously nonlocal, as might be ex-

pected for a mass term for gluons, it has a perfectly well-
defined expansion in powers of the gauge potential, making
it suitable for the standard perturbative (loop) expansion.
For instance, the first three terms in the expansion of the
kernel K can be expressed as [7]

Z
dx0d�KðAþ; A�Þ ¼ K2 þ K3 þ K4 þ � � � ; (2.6)

K2 ¼ 1

2

Z
k
Aa
�ðkÞ

�
��� �

k�k�

k2

�
Aa
�ð�kÞ;

K3 ¼
Z
ki;�

i

12�
trðAðk1Þ:n½Aðk2Þ:n; Aðk3Þ:n�Þ

�
�

1

k1:n

�
k2: �n

k2:n
� k3: �n

k3:n

��
;

K4 ¼ � 1

8�

Z
ki;�

trðA:nðk1Þ � � �A:nðk4ÞÞ
k3:nþ k4:n

�
�

1

k2:n

�
k3: �n

k3:n
� k4: �n

k4:n

�
� 1

k1:n

�
k3: �n

k3:n
� k4: �n

k4:n

��
:

(2.7)

Overall conservation of momenta is implied in the above
formulae for the vertices.
The contributions to these vertices to the gluon self-

energy were computed in [7].
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In what is to follow, it would be convenient to regard the
action described above as being obtained from a
‘‘Lagrangian’’ on S2. The dynamical degrees of freedom
of the theory have no dependence on S2, which, as men-
tioned before, is only used as a bookkeeping device.
However, it would be useful to relegate the S2 integral to
the very end. The S2 valued functional which we shall
investigate is

S ¼
Z

d3x
3

2�g2
Faþ�Fa�þ þ 1

g2
Sm: (2.8)

It is implied Sm is the mass term given above with the �
integrals left unevaluated. One can easily verify that

Z
�
S ¼ SYM: (2.9)

The equations of motion, without integrating over � in-
tegration, can be written as

3

�
ðD�F�þÞa þm2Ja� ¼ 0;

3

�
ðDþFþ�Þa þm2Jaþ ¼ 0:

(2.10)

The currents

Ja� ¼ 1

�
trð�ita½A� � A��Þ (2.11)

involve the auxiliary gauge fields A�, which satisfy an
associated Chern-Simons equation of motion, namely,

DþA� ¼ @�Aþ; D�Aþ ¼ @þA�: (2.12)

The Chern-Simons equations obviously originate from the
variation of the kernel K used in defining Sm (2.2). As
pointed out in [8], K, or more precisely I (2.4), thus has a
natural interpretation as the eikonal of an associated
Chern-Simons theory.

The equations for A�, in turn, imply

D�Ja� ¼ 1

2�
Fa��: (2.13)

Thus, though the current J is highly nonlocal, it enjoys the
special property of being related to the field strength
through the action of the covariant derivative. This par-
ticular feature may be contrasted with the case one would
have encountered if a Chern-Simons term, instead of Sm
was chosen as the mass term. In the Chern-Simons case,
the corresponding current ~J� (in the R3 notation) i.e. the

variation of the Chern-Simons term would itself have been
proportional to F�� i.e ~J� � ����F��. However, in the

present case, it is the covariant derivative of the current,
and not the current itself, that is related to the field strength.
This fact is crucial to the ensuing supersymmetrization that
we present in the following section, which, unlike the case
of the supersymmetric Yang-Mills–Chern-Simons theory

[21], requires the underlying super-Poincare algebra to be
mass deformed as well.

III. N ¼ 1 SYM AND ITS MASS DEFORMATION

The action for standard massless N ¼ 1, D ¼ 3 eucli-
dian SYM is given by

S ¼ 1

g2

Z
R3

�
1

4
Fa
��F

a
�� þ 1

2
��a��D��

a

�

¼ 1

g2

Z
R3;�

�
3

2�
Faþ�Fa�þ þ 3

8�
��ahMNDM�N�

a

�
:

(3.1)

h is a ‘‘world-sheet’’ metric

h ¼ 0 þ
þ 0

� �
: (3.2)

The massless N ¼ 1 action is invariant under the trans-
formations

�	A
a
� ¼ �	���

a; �	�
a ¼ � i

2
"���F

a
����	;

�	A
a� ¼ �	���a; �	�

a ¼ ð6½�þ; ���Fþ�Þ	:
(3.3)

The two ways of expressing the supersymmetry transfor-
mations are related, as the second form implies the former
upon an S2 integration of both sides of the equation. In the
second form, the auxiliary S2 coordinates are not integrated
out, and working with it will simplify the task of construct-
ing the mass deformation of the N ¼ 1 transformations.
Notice that in the two-dimensional formalism, the fermi-
ons do not depend on the S2 coordinates, even though the
gauge fields A� do.

The fermions obey a majorana condition �� ¼ �t�,
where the charge conjugation matrix � ¼ �i�2 satisfies
�t

�� ¼ ����.

For the mass-deformed case, we make the following
ansatz for the action S ¼ 1

g2

R
� S, and the supersymmetry

transformations:

S ¼
Z
R3

�
3

2�
Faþ�Fa�þ þ Sm þ 3

8�
��ahMNDM�N�

a

þ!m

8�
��a�a

�
; (3.4)

�	A
a� ¼ �	���a;

�	�
a ¼ ð�0

	 þ �1
	Þ�a

¼ ð6½�þ; ���Fþ� þ 
mðhAB�AJBÞÞ	
¼ ð3½�A;�B�FCDhADhBC þ 
mðhAB�AJBÞÞ	:

(3.5)

! and 
 are numerical factors that are to be determined
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from the condition �	S ¼ 0. �0 and �1 generate the terms
of Oð1Þ, OðmÞ on the right-hand side (r.h.s.) respectively.

Since the action as well as the supersymmetry trans-
formations reduce to the standard N ¼ 1 case in the
massless limit, it follows that

�	Sjm¼0 ¼ 0: (3.6)

To examine theOðmÞ terms in the supersymmetry variation
of the action, we note that

�1
	

Z 3

8�
��ahIJDI�J�

a

¼ 3m


8�

Z
hABhIJ½DIJB�½ ��ð½�J;�A�þ þ ½�J; �A�Þ	�:

(3.7)

Using hABDAJB ¼ 0 and (2.13), we have

�1
	

Z 3

8�
��ahIJDI�J�

a

¼ � 3

8�

2m


2�

Z
ð ��a½�þ; ���	ÞFaþ�: (3.8)

In the calculations leading up to this, we have suppressed
the color superscripts, to avoid confusion with the spinor
indices.

We also note that

!m

8�
�0
	

Z
��� ¼ 2

6!m

8�
ð ��a½�þ; ���	ÞFaþ�: (3.9)

From (3.8) and (3.9), we hence get

@�	S
@m

��������m¼0
¼ 0 ) 
 ¼ 4�!: (3.10)

To analyze the Oðm2Þ terms, we note that

�	Sm ¼ m2
Z

hABJAð �	�B�Þ;

�1
	

�
!m

8�

Z
���

�
¼ �
!m2

4�

Z
hABJAð �	�B�Þ:

(3.11)

Thus

@2�	S

@m2

��������m¼0
¼ 0 ) 
! ¼ 4�: (3.12)

Thus a consistent solution for the mass-deformed ansatz is
given by

! ¼ 1; 
 ¼ 4�: (3.13)

For this value of the parameters, the action (3.4) is invariant
under the supersymmetry transformations (3.5).

Having obtained the supersymmetry transformations in
the two-dimensional notation, it is also instructive to depict
their form in the explicit R3 form. Integrating both sides of
the supersymmetry transformations (3.5) over S2, we can
express them as follows:

�	A
a
� ¼ �	���

a;

�	�
a ¼ ð�0

	 þ �1
	Þ�a ¼ � i

2
"���F

a
����	þmJa���	;

(3.14)

where

Ja� ¼ 1

2

Z
�
ðJaþ �n� þ Ja�n�Þ: (3.15)

We also note that, in the Abelian case,

J� ¼
�
A� � @�

1

@2
ð@�A�Þ

�
;

�	� ¼ � i

2
"���F����	þm

�
A� � @�

1

@2
ð@�A�Þ

�
��	:

(3.16)

As a further consistency check, the Abelian action ex-
pressed in manifestly R3 notation as

S ¼ 1

g2

Z
R3

�
1

4
F��F�� þm2

2
A�

�
��� � @�

1

@2
@�

�
A�

þ 1

2
��ð��@� þmÞ�

�
(3.17)

is readily checked to be invariant under the R3 form of the
SUSY transformations (3.14).
To verify the invariance of the non-Abelian action under

(3.14), one needs the R3 version of the relation (2.13),
namely,

D½�Ja�� ¼ Fa
��: (3.18)

This relation is crucial for the OðmÞ terms to vanish in the
SUSY variation of the action. It is trivially verified in the
Abelian case using the explicit form of the current J� given

above. In the non-Abelian case, starting from Eq. (2.13)
and taking the difference, we get (we suppress the color
indices in what follows)

D�ðJ�n� � Jþ �n�Þ ¼ i

2�
�	�
F	�x
: (3.19)

Multiplying this equation by x� and integrating over �

gives

2i

3
�	��F	� ¼ D�

Z
�
ðJ�n� � Jþ �n�Þx�

¼ 4i

3
����@�

�
A� � @�

1

@2
ð@�A�Þ

�
þ � � � :

(3.20)

The second line gives the terms linear in the gauge poten-
tial A, which agrees with the Abelian limit. Since the
integrand on the left-hand side involves the non-Abelian
completion of J, we can argue based on general gauge
covariance that
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D�

Z
�
ðJ�n� � Jþ �n�Þx� ¼ 4i

3
����D�J�

) D½�Ja�� ¼ Fa
��: (3.21)

To phrase the argument slightly differently, the gauge
covariance of the left-and right-hand sides of the first line
in (3.20) allow us to make the ansatz

D�

Z
�
ðJ�n� � Jþ �n�Þx� ¼ �����D�J�; (3.22)

where � is to be determined. The form of the r.h.s. above is
validated by taking the Abelian limits of both sides of the
equation above. Once the form is fixed, the undetermined
constant can also be determined by evaluating the left-hand
side explicitly in the Abelian limit.

Thus to summarize the main results derived above, we
have found a mass deformation of N ¼ 1 SYM theory in
three dimensions (3.4) which is invariant under the super-
symmetry transformations (3.5) [or equivalently (3.14)].

A. Determination of the algebra

In this section, we shall try to derive the superalgebra
underlying the supersymmetrization carried out above by
computing the commutator of SUSY variations on the
gauge potential. For the purposes of extracting the algebra
from the closure on A�, it suffices to consider the Abelian

limit, where matters simplify significantly.
We start the analysis with the Abelian case in the R3

notation. It is easily seen that

�½��!�A� ¼ � i

2
�	�
F	�ð �!½��;�
��Þ

þmJ�ðð �!½��;����Þ
¼ 2½�F��ð �!���Þ þ im����ð �!���ÞJ��
¼ @�ð�2 ~A:ð �! ~��Þ þ 2ð �! ~��Þ: ~@A�

þ 2im����ð �!���ÞA�

� 2im����ð �!���Þ
�
@�

1

@2
~@: ~A

�
: (3.23)

The first term in the last line is a gauge transformation. The
second and third terms are translations and rotations of the
gauge potential, while the last term is a gauge transforma-
tion followed by a rotation. It is worth noting that the gauge

parameter in the last term is a nonlocal quantity, 1
@2

~@: ~A,

which is a manifestation of the nonlocal nature of the mass
term. Thus, discarding the terms involving gauge trans-
formations, we have

�½��!�A� ¼ 2ð �! ~��Þ: ~@A� þ 2im����ð �!���ÞA�

¼ 2ð �!���ÞðiP�A� � im����A�Þ: (3.24)

We see that the supersymmetry algebra underlying the
mass-deformedN ¼ 1 theory corresponds to a noncentral
extension of the N ¼ 1 algebra. The anticommutator of

supercharges closes on translations and soð3Þ spacetime
rotations

½ ��Q; �	Q� ¼ 2iðPa �mRaÞ; ~a ¼ �	 ~��: (3.25)

It is understood that

½PaA�� ¼ ~a: ~pA�; ½RaA�� ¼ ����a�A�;

½Ra��b ¼ ð ~a: ~�Þbm�m:
(3.26)

It is also important to verify that the Jacobi identity

½ �
Q; ½ ��Q; �	Q�� þ ½ ��Q; ½ �	Q; �
Q��
þ ½ �	Q; ½ �
Q; ��Q�� ¼ 0 (3.27)

is satisfied. The nontrivial part of the identity involves the
commutators of R with Q, which translates into the
requirement that

ð �� ~�	Þ:ð �
 ~�QÞ þ ð �	 ~�
Þ:ð �� ~�QÞ
þ ð �
 ~��Þ:ð �	 ~�QÞ ¼ 0: (3.28)

A straightforward computation can be used to verify that
this is indeed satisfied for arbitrary spinors 	, �, and 
.
Thus the N ¼ 1 algebra underlying the mass-deformed
model is nothing but a noncentral extension of ospð1j2Þ.
The extension in question is brought about by the space-
time rotation group soð3Þ.
As noted in [20], the appearance of the mass in the

algebra itself implies that it plays the role of a structure
constant. Consequently, it is protected against ‘‘running’’
in the renormalization group sense. Thus m can be re-
garded as a parameter, even though it is obviously a
dimension-full quantity.
It is also instructive to analyze the commutator of SUSY

variations in the two-dimensional notation, without inte-
grating out the S2 dependence. For example, it is easily
shown in the non-Abelian case that

�½�;	�Aaþ ¼ �12ð �	�B�ÞFa
þAhBA

þ 4�mð �	½�þ; �A��ÞJaBhAB: (3.29)

Projecting out the R3 components of the above equation
would once again yield a linear combination of rotation,
translations, gauge transformation, and gauge transforma-
tions followed by rotations. However, the specific numeri-
cal factors multiplying these transformations obtained by
projecting the above equation would differ from the action
of the double commutator of (3.14) on A�. For instance,

even in the massless case, it is seen that

3

16�

Z
�
ð�½�;	�ÞAaþ �n� ¼ � i

2

3

2
ð �	½��;�
��Þ���
F

a
��;

(3.30)

which differs from the expected answer by a factor of 3=2.
The discrepancy has to do with the fact that the S2

integration is to be thought of as averaging over all
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Lorentz transformations [8], and the average of the product
of two SUSY variations is obviously not the same as the
product of the average. In other words, the average of the
commutator yields a different linear combination of the
supercharges than the one obtained by evaluating the com-
mutator of (3.14). However, the fact that the r.h.s. of (3.29)
would close on translations and rotations (modulo gauge
transformation) is guaranteed as we have already checked
the action (in the R3 notation) to be explicitly invariant
under the transformations (3.14), which are implied by
(3.5). Furthermore, we have shown the massive SUSY
variations to generate the algebra (3.25), which can be
extracted from the Abelian limit of the theory.

IV. CHERN-SIMONS TERMS

One can add Chern-Simon terms to the mass-deformed
N ¼ 1 SYM. In R3 notation, the action

g2S ¼
Z
R3

1

4
Fa
��F

a
�� þ S ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðkg24�þmÞ
q � ikg2

4�
����

�
Z
R3

�
Fa
��A

a
� � 1

3
fabcAa

�A
a
�A

a
�

�

þ 1

2

Z
R3

��a

�
�:Dþ

�
kg2

4�
þm

��
�a (4.1)

can be verified to be invariant under (3.14).
S ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mðkg24�þmÞ
q stands for the nonlocal gluonic mass term,

with the coefficient mðkg24� þmÞ instead of m2. Namely,

while the fermionic massmf is shifted by the level number

of the Chern-Simons term, the bosonic mass mb is a
geometric mean of m: the parameter that appears in the
SUSY algebra and mf. As in the k ¼ 0 case, m ¼ m2

b=mf

is the quantity that is effectively protected against renor-
malization, as it plays the role of a structure constant.

It is important to note that the addition of Chern-Simons
terms is particularly relevant from the point of view of the
m ! 0 limit. Although sufficient for our formal purposes
of understandingN ¼ 1 SUSY, the massless theory, with-
out the Chern-Simons terms, suffers from the well-known
problem of a parity anomaly [21]. Lattice data pointing to a
trivial partition function for this pathological model has
also been presented in [24]. However, the N ¼ 1 Yang-
Mills–Chern-Simons system is a perfectly well-defined
theory. Thus, for the present purposes, it is imperative
that the mass deformation that we consider should be
compatible with the addition of Chern-Simons terms so
that we have a consistent quantum field theory. Fortunately,
as we show above, this is eminently possible.

We also note in passing that the addition of the Chern-
Simons terms could have been carried out in the S2 nota-
tion as well. For that purpose, it is useful to note that

ik

4�
����

�
Fa
��A

a
� � 1

3
fabcAa

�A
a
�A

a
�

�

¼ k

16�2

Z
�

�
Faþ�Aa � 1

3
fabcAaþAa�Aa

�
; (4.2)

which allows one to recast the Chern-Simons terms in an
S2 notation. It is implied that A ¼ A�x�, which is the

contraction of the Hodge dual of A� with n and �n.

A. Generality of the mass deformation

It is natural to ask how general the prescription for the
N ¼ 1mass deformation constructed in the present paper
is. To address that issue, we can present the construction in
a slightly different way. One could ask for the general

constraints on a potential mass term ~S that may be imposed
by the requirements of N ¼ 1 SUSY. Starting from the
generic action

g2S ¼
Z
R3

�
1

4
Fa
��F

a
�� þ ~S

þ 1

2
��a

�
�:Dþ

�
kg2

4�
þm1

��
�a

�
; (4.3)

where the mass term for the fermions is the minimal one,

and ~S is an as-yet-undetermined functional, requiring that
the action be invariant under the transformations (3.14)

results in the following equations for J and ~S:

Z
R3

�
i����

�
mD�J

a
� �m1

2
Fa
��

�
�mm1J

a
�

þ �~S

�Aa
�

�
ð �	���

aÞ ¼ 0: (4.4)

The current Ja� is also left unspecified at this point.

Defining m1 ¼ kg2

4� þm, we see that the above equation

is solved by

~S ¼ � ikg2

4�
����

Z
R3

�
Fa
��A

a
� � 1

3
fabcAa

�A
a
�A

a
�

�
þ ~~S;

(4.5)

where

�~~S

�Aa
�

¼ mm1J
a
�; ����

�
D�J

a
� � 1

2
Fa
��

�
¼ 0: (4.6)

Obviously, ~~S ¼ S ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðkg24�þmÞ

q is a solution to the above equa-

tions, which leads to leads to the action (4.1). The point of
the above exercise to make it clear that Eq. (3.18) satisfied
by the mass term used in this paper is a generic require-
ment for the term to have N ¼ 1 SUSY. Any other
candidate mass term would also have to satisfy the same

equations as ~~S, assuming that the mass term for the fermi-
ons is allowed to remain the minimal (Gaussian) one. For
instance, a somewhat similar term, based on a gauged
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sigma model in three dimensions has been used the render
the gluonic theory massive in the past literature [25]. One
can also note that, apart from the mass term used here, a
second mass term was also constructed in [1] using a
covariantization of the volume measure on the configura-
tion space of the purely gluonic theory. Whether or not
such mass terms can be similarly supersymmetrized can be
answered by checking if they solve (4.4) and (4.6) on a case
by case basis. While we cannot comprehensively say that
the mass term introduced by Alexanian and Nair is the
unique solution to (4.6), we do show that its relation to the
eikonal of an associated Chern-Simons theory is a natural
solution to the constraints that stem from the requirements
of supersymmetry.

We also note that as an alternative to the addition of
nonlocal gauge invariant gluonic mass terms, one may also
contemplate making the gauge theory massive by using a
Higgs mechanism as in [26]. In a supersymmetric context,
one could presumably start from an N ¼ 2 theory, with
scalar matter fields included. The introduction of an ap-
propriate superpotential to initiate a Higgs mechanism and
break SUSY down toN ¼ 1 can turn the resulting physi-
cal spectrum massive. However, in contradistinction to our
case, such a mechanism would require the introduction of
additional matter fields beyond the minimalN ¼ 1matter
content. Moreover, the supersymmetry algebra, which
should remain the standard N ¼ 2 algebra broken down
to N ¼ 1, would perhaps be different from the case
considered here which involves a noncentral extension of
the algebra.

V. DIMENSIONAL REDUCTION AND MATRIX
MODELS

In this final section, we relate the dimensional reduction
of the massive N ¼ 1 SYM theory constructed in this
paper to the only known example of N ¼ 2 massive
matrix quantum mechanics, which was reported in [22].
The dimensional reduction of pure Yang-Mills theory with
the mass term added was worked out in a previous paper
[10]. The important insight was to notice that the defining
equations for the auxiliary fieldsA� can be readily solved
upon the truncation of the theory toD ¼ 1. The solution to
(2.12) can be written for the dimensionally reduced theory
as

Aþ ¼ n0
�n0
A�; A� ¼ �n0

n0
Aþ: (5.1)

Using this expression, we have

ðSmÞ0þ1 ¼ �m2
Z

d3xd�tr

�
AþA�
�

� 1

2�

k: �n

k:n
trðAþAþÞ

� 1

2�

k:n

k: �n
trðA�A�Þ

�
; (5.2)

where the ‘‘momentum’’ k ¼ ð1; 0; 0Þ. After evaluating the
angular integrals, one has

ðSmÞ0þ1 ¼ �m2VM2

2

Z
dx0 tr

�
Aj

�
�jl �

kjkl

k2

�
Al

�

¼ �m2VM2

2

Z
dx0 tr

� X
l¼1;2

AlAl

�
; (5.3)

where VM2=2 is the volume of T2 on which the spacial
compactification is carried out. Thus as far as the pure
‘‘glue’’ part of the theory is concerned,

Z
d3x

1

4g2
Fa
��F

a
�� þ 1

g2
Sm

!0þ1
Z

dx0
1

g2M
tr

�
1

2
ðDt
iDt
i þm2
i
iÞ � 1

4
½
i;
j�2

�
:

(5.4)

The matrix model coupling

g2M ¼ g2

VM2

; (5.5)

while the Hermitian matrix degrees of freedom


 l ¼ iAl; l ¼ 1; 2: (5.6)

Thus the dimensional reduction of the mass-deformed
gauge theory is nothing but the standard mass deformation
of a gauged matrix quantum mechanics of two Hermitian
matrices.
In an analogous fashion, the dimensional reduction of

the mass-deformed N ¼ 1 theory produces the following

matrix model action ~S:

~S ¼
Z

dx0
1

g2M
tr

�
1

2
ðDt
iDt
i þm2
i
iÞ � 1

4
½
i;
j�2

þ 1

2
��ðD0 þmÞ�� i

2
���i½
i;��

�
: (5.7)

It also follows that the current J� is proportional to

(0; 
1; 
2) upon the dimensional reduction. Importantly,
the resultant matrix model is not invariant under the di-
mensional reduction of the supersymmetry transformations
(3.14). The supersymmetry transformations on R3 fail to
remain a symmetry of the dimensionally reduced model as
dimensional reduction on T2 breaks the Poincare invari-
ance of the gauge theory. Thus relations such as D½�J�� ¼
F��, which were crucial in establishing the supersymmetry

of the gauge theory on R3, fail to hold upon dimensional
reduction. However, the lack of Poincare invariance can be
compensated for by introducing an asymmetry between the
bosonic and fermionic masses and making the supersym-
metry transformation time dependent. The resulting super-
symmetric N ¼ 2 matrix model action is given by
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~S ¼
Z

dx0
1

g2M
tr

�
1

2
ðDt
iDt
i þm2
i
iÞ � 1

4
½
i;
j�2

þ 1

2
��

�
D0 þ 3

2
m

�
�� i

2
���i½
i;��

�
: (5.8)

This action is invariant under

�
i ¼ �	ðtÞ�i�;

�� ¼ ð��tiDt
i þ i½
i;
2��12 þm�i
iÞ	ðtÞ;
	ðtÞ ¼ eð1=2Þm�0t	0; (5.9)

where 	0 is a constant spinor.
The mass of the supersymmetric matrix model (5.8)

differs from that of the dimensional reduction of theN ¼
1 gauge theory (5.7). Thus the supersymmetric matrix
model can be thought of as the reduction of the N ¼ 1
theory followed by a time dependent field redefinition of
the fermions. At the same time, the asymmetry introduced
between the three spacetime dimensions by compactifying
two of them has to be compensated for by making the
supersymmetry transformation time dependent.

Evaluating the double commutators on 
i, we have

�½��	�
i ¼ 2ð �	�0�Þð@t
i � im�ij
jÞ: (5.10)

In other words

½ ��Q; �	Q� ¼ 2ið �	�0�ÞðH �mR12Þ;
where ½R12
�i ¼ �ij
j:

(5.11)

Comparing with (3.25) shows that the SUSYalgebra under-
lying the matrix quantum mechanics is the contraction of
(3.25) to the case where there is only one spacial direction
and soð3Þ spacetime rotations are contracted to a soð2Þ
rotation between the two matrices. The super algebra is
thus contracted from a noncentral extension of ospð1j2Þ to
Euclidean Clifford2ðRÞ.

As a final note, we point out that the low lying spectrum
of the N ¼ 2 matrix model can be computed in the large
N limit by mapping its one-loop effective Hamiltonian to a
XXZ quantum spin chain [27]. This naturally begs the
question if there is a deeper connection between the mas-
sive gauge theory and quantum integrable systems.

VI. SUMMARYAND OUTLOOK

In the present paper, we have constructed a mass defor-
mation of N ¼ 1 SYM (with or without Chern-Simons
couplings) based on a concentral extension of the three-
dimensional super-Poincare algebra by the spacetime ro-
tation group soð3Þ. Furthermore, a consistent dimensional
reduction of the gauge theory, as well as the underlying
supersymmetry algebra, has been shown to be related to the
unique example of massive N ¼ 2 matrix quantum me-
chanics, which was obtained independently in [22] by a
mass deformation of the dimensional reduction of standard
N ¼ 1 SYM in three dimensions. The construction pre-

sented in the paper opens up the possibility of several
intriguing lines of investigation, which we briefly discuss
below.
The mechanism for mass deformation presented here

can obviously be used in conjunction with or as an alter-
native to, the better known mechanism for making three-
dimensional gauge theories massive, i.e the addition of
Chern-Simons terms. A plethora of extremely important
results related to spontaneous supersymmetry breaking and
associated physical effects have already been obtained for
the N ¼ 1 Yang-Mills–Chern-Simons system in [21].
However, we expect the physical manifestations of Sm to
be fundamentally different from those of Chern-Simons
couplings. For instance, in the case of pure Yang-Mills
theory in three dimensions, which is known to confine, the
addition of Chern-Simons couplings dramatically alters the
IR behavior of the theory, leading to screening rather than
confinement [28]. On the other hand, Sm considered in the
paper is a covariantization of the volume measure on the
configuration space of pure Yang-Mills [1], which has been
shown to provide a first principles explanation for confine-
ment and spontaneous mass generation for the purely
gluonic theory [2]. Thus it is very conceivable that the
massiveN ¼ 1 theory presented here would have various
new features which would doubtless be interesting to in-
vestigate along the lines specified in [21].
It may be possible to use the constraining power of the

mass-deformed supersymmetry algebra to gain insight into
various physical process of interest. For instance, follow-
ing the way mass-deformed algebras of the suð2j2Þ were
employed in [20] to constrain all four particle scattering
processes in a large class of mass-deformed supersymmet-
ric Chern-Simons theories up to a single undetermined
function, it is conceivable that the underlying algebra can
be utilized to constrain the form of physical quantities,
such as scattering amplitudes and glueball spectra, for the
massive N ¼ 1 SYM theory discussed here.
As mentioned before, tell-tale signs of a potential con-

nection between Sm and the volume measure on the gauge
invariant configuration space of pure Yang-Mills theory is
already known to exist [1,7]. It would of course be of great
interest if the supersymmetrization of Sm presented here
can be utilized to shed some light on the nature of the
configuration space for supersymmetric Yang-Mills theo-
ries in three dimensions. On a related note, we point out
that, although a gauge invariant Hamiltonian framework
for coupling matter fields to Yang-Mills theories in three
dimensions already exists [3], the contribution of the mat-
ter fields to the configuration space volume remains to be
understood. Perhaps understanding how the supersymmet-
rization of Sm relates to the relevant volume element can
give a controlled way of broaching this interesting open
issue.
Other than the issues discussed above, most of which

relate to N ¼ 1 theories, it would be extremely interest-
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ing to analyze whether three-dimensional Yang-Mills theo-
ries with extended supersymmetries can be mass deformed
in a way that is analogous to the one discussed in this paper.
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APPENDIX

Wework in three-dimensional Euclidean spacetime. The
vectors and integrals associated with the auxiliary S2 are
chosen to obey the following conventions.

The S2 valued complex null vectors are taken to be

n� ¼ ð� cosð�Þ cosð�Þ � i sinð�Þ;� cosð�Þ sinð�Þ
þ i cosð�Þ; sinð�ÞÞ; (A1)

n2 ¼ �n2 ¼ 0; n: �n ¼ 2; ����n� �n� ¼ 2ix�;

(A2)

where

x1 ¼ sin� cos�; x2 ¼ sin� sin�; x3 ¼ cos�:

(A3)

On the sphere � of volume 4�

Z
�
n� �n� ¼ 8�

3
���;

Z
�

k: �n

k:n
n�n� ¼ 8�

3

�
3

2

k�k�

k2
� 1

2
���

�
;

Z
�
x�x� ¼ 4�

3
���;

(A4)

Aþ ¼ 1

2
A:n; A� ¼ 1

2
A: �n; Dþ ¼ 1

2D:n;

D� ¼ 1
2D: �n; �þ ¼ 1

2�:n; �� ¼ 1
2�: �n:

(A5)

The sigma matrices satisfy the following relations:

�2þ ¼ �2� ¼ 0; ½�þ; ���þ ¼ 1;

½��; �þ� ¼ x���:
(A6)

The skew-Hermitian gauge potentials A� ¼ �itaAa
� are

normalized so that trðtatbÞ ¼ 1
2�

ab.
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