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We use the semiclassical approximation in perturbative scalar quantum electrodynamics to calculate the

quantum correction to the Larmor radiation formula to first order in Planck’s constant in the nonrelativistic

approximation, choosing the initial state of the charged particle to be a momentum eigenstate. We

calculate this correction in two cases: in the first case the charged particle is accelerated by a time-

dependent but space-independent vector potential whereas in the second case it is accelerated by a time-

independent vector potential which is a function of one spatial coordinate. We find that the corrections in

these two cases are different even for a charged particle with the same classical motion. The correction in

each case turns out to be nonlocal in time in contrast to the classical approximation.
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I. INTRODUCTION

A well-known result in classical electrodynamics, dis-
covered during the burst of activity in the late nineteenth
century, is that an accelerated charge emits radiation. In
particular, the formula which gives the amount of energy
radiated by the charge was found by Larmor in this period.
The relativistic generalization of this formula is

Eð0Þ
em ¼ � e2

6�c3

Z
dt

d2x�

d�2
d2x�

d�2
; (1.1)

where e is the charge of the particle and c is the speed of
light. Here and below the metric signature isþ��� and
� is the proper time along the world line of the particle,
x�ð�Þ, with x0 ¼ ct. (See Ref. [1], Sec. 14.2, for a deriva-
tion of this result.)

Since classical electrodynamics is an approximation to
quantum electrodynamics (QED), one expects that the
Larmor formula should be reproduced in the latter theory
in the limit @ ! 0 (at order e2). Indeed it has been shown
that this formula is recovered in QED for a scalar charged
particle moving on a straight line in the limit @ ! 0 [2].
Furthermore it has been shown [3,4] that the Lorentz-Dirac
radiation-reaction force [5–7] is obtained in the limit @ !
0 in QED for a charged scalar particle in three-dimensional
motion under the influence of a vector potential depending
only on one spacetime coordinate. (For other approaches
for studying the Lorentz-Dirac force in the context of QED,
see Refs. [8–12].) This work indirectly shows that the
Larmor formula is reproduced in the limit @ ! 0 for a
charged scalar particle in three-dimensional motion under
the conditions specified because the Lorentz-Dirac force
and energy-momentum conservation imply the Larmor
formula.

Although the Larmor formula correctly gives the
amount of energy emitted as radiation in the limit @ ! 0,

it is clearly not exact. For example, in Ref. [13] a model
with a charged scalar particle which is soluble to order e2

in QED was studied and the exact result for the energy
emitted was shown to differ from the Larmor formula. It
will be interesting, therefore, to estimate the correction of
order @ to the Larmor formula for general motion of the
charged particle. The purpose of this paper is to carry out
this task in the simple setting used in Refs. [2–4] where the
scalar particle is accelerated by a vector potential that
depends only on one spacetime coordinate under the addi-
tional condition that the initial state of the charged particle
is a momentum eigenstate.
One might hope that there would be a universal expres-

sion for this correction which depended only on the motion
of the corresponding classical particle, but we find that the
correction depends on how the particle is accelerated. For
this reason we calculate the quantum correction to the
Larmor formula at order @ in two cases: in the first case
the charged particle is accelerated by a time-dependent but
space-independent vector potential whereas in the second
case it is accelerated by a time-independent vector poten-
tial which is a function of one spatial coordinate. We also
use the nonrelativistic approximation because a fully rela-
tivistic calculation would be too complicated for the pur-
pose of this paper, which is to show how the quantum
correction to the Larmor formula can be found in simple
examples.
The rest of the paper is organized as follows. In Sec. II,

we show directly that the Larmor formula is reproduced in
scalar QED in the limit @ ! 0. We then proceed in Secs. III
and IV to calculate the correction to this formula at order @
in the two cases mentioned above. Finally, in Sec. V we
provide a summary and concluding remarks. Throughout
this paper we retain @ explicitly but let c ¼ 1 except where
it is convenient not to do so.

II. THE LARMOR FORMULA IN QED

In this section we derive the Larmor formula from QED
for a charged scalar particle accelerated by a vector poten-
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tial V� which depends only on t. We follow Refs. [2,3]
closely. (The derivation for the case with a potential which
depends on one space coordinate will not be presented, but
it is very similar to the case treated here.) We assume that
the variation in V�ðtÞ occurs only over a bounded interval
½�T; T�, T > 0. (This assumption is needed to make the
transition amplitude in the QED calculation finite.) We let
V�ðtÞ ¼ 0 for t <�T without loss of generality and V�ðtÞ
for t > T be a constant which is not necessarily zero.1 We
also use a gauge transformation to impose the condition
V0ðtÞ ¼ 0 for all t.

The Lagrangian density of our model is

L ¼ ½ðD� þ ieA�Þ��y½ðD� þ ieA�Þ�� �m2

@
2
�y�

� 1

4
F��F

�� � 1

2
ð@�A�Þ2; (2.1)

where D� � @� þ i
@
V�. We have adopted the Feynman

gauge, in which the noninteracting field equation, i.e. the
field equation with e ¼ 0, for A� is @�@

�A� ¼ 0. We can

therefore expand it in terms of momentum modes,

A�ðxÞ ¼
Z d3k

2kð2�Þ3 ½a�ðkÞe
�ik�x þ a�

yðkÞeik�x�; (2.2)

where k ¼ jkj. The operators a�ðkÞ and a�
yðkÞ obey the

usual commutation relations,

½a�ðkÞ; a�yðk0Þ� ¼ �2@kð2�Þ3g���
3ðk� k0Þ: (2.3)

We can use the Fourier expansion for the scalar field as
well. Thus we write

�ðxÞ ¼ @

Z d3p

2p0ð2�@Þ3
½AðpÞ�pðxÞ þ ByðpÞ ���

pðxÞ�;
(2.4)

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijpj2 þm2

p
. The mode functions �pðxÞ are

different from the standard ‘‘free’’ mode functions,

e�ip�x=@. [We do not need to consider the antiparticle

modes ��pðxÞ though their relation to�pðxÞ is very simple.]

This is because the equation of motion for the scalar field
with e ¼ 0 is not the free field equation, but rather,

ð@2D�D
� þm2Þ�pðxÞ ¼ 0: (2.5)

Since the potential V�ðtÞ depends only on t, these mode

functions can be written in the following form:

�pðxÞ ¼ ffiffiffiffiffiffi
p0

p
�pðtÞ exp

�
i

@
p � x

�
: (2.6)

Since we are interested in the limit @ ! 0, we use theWKB
approximation, which gives

�pðtÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
�pðtÞ

q exp

�
� i

@

Z t

0
�pð�Þd�

�
c pðtÞ; (2.7)

where

�pðtÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp� VðtÞj2 þm2

q
(2.8)

is the kinetic energy of a scalar particle with momentum p.
The function c pðtÞ contains the corrections of higher order
in @, i.e.

c pðtÞ ¼ 1þ i@gpðtÞ þOð@2Þ: (2.9)

It can readily be shown that gpðtÞ is real. The nontrivial

commutation relations among annihilation and creation
operators are

½AðpÞ; Ayðp0Þ� ¼ ½BðpÞ; Byðp0Þ� ¼ 2p0ð2�@Þ3�3ðp� p0Þ:
(2.10)

The operators AyðpÞ and ByðpÞ create a particle and an
antiparticle, respectively.
The initial state with one charged scalar particle and no

photon can be given in general as

jii ¼
Z d3pffiffiffiffiffiffiffiffi

2p0

p ð2�@Þ3 fðpÞA
yðpÞj0i: (2.11)

This state is normalized so that hijii ¼ 1. This condition
implies

Z d3p

ð2�@Þ3 jfðpÞj
2 ¼ 1: (2.12)

It is sufficient to assume that the function fðpÞ is peaked
about a given momentum with width of order @ to derive
the Larmor formula. However, this assumption will not be
sufficient when we come to consider its quantum correc-
tion. For this reason we assume that fðpÞ is sharply peaked
with an arbitrary accuracy and take the limit such that
jfðpÞj2 is proportional to a delta function at an appropriate
stage. This procedure amounts to the condition that the
initial state is a momentum eigenstate.
An initial state with one charged particle evolves in

general to order e2 as

AyðpÞj0i � ½1þ i@�1F ðpÞ�AyðpÞj0i

þ i

@

Z d3k

2kð2�Þ3 A
�ðp;kÞa�yðkÞAyðPÞj0i;

(2.13)

where P ¼ p� @k is the outgoing momentum of the
scalar particle when a photon is emitted, A�ðp;kÞ is the
amplitude for the emission of one photon, and F ðpÞ is the
forward-scattering amplitude, which plays no role in this
paper. Thus, the initial state jii evolves to

jfi ¼ jf0i þ jf1i; (2.14)
1In Refs. [2,3] the convention was slightly different in that V�

was chosen to satisfy V�ðtÞ ¼ 0 for positive t.
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where

jf0i ¼
Z d3pffiffiffiffiffiffiffiffi

2p0

p ð2�@Þ3 ½1þ i@�1F ðpÞ�fðpÞAyðpÞj0i;
(2.15)

jf1i ¼ i

@

Z d3pffiffiffiffiffiffiffiffi
2p0

p ð2�@Þ3

�
Z d3k

2kð2�Þ3 fðpÞA
�ðp;kÞa�yðkÞAyðPÞj0i:

(2.16)

The emission probability in the limit where fðpÞ is arbi-
trarily sharply peaked can be found using the commutation
relations (2.3) and (2.10) as

� ¼ hf1jf1i ¼ 1

@

Z d3k

2kð2�Þ3
P0

p0

��������@P@p
���������1jAðp;kÞj2;

(2.17)

where jAðp;kÞj2 � �A�
�ðp;kÞA�ðp;kÞ and where

@P

@p
� det

�
@Pi

@pj

�
(2.18)

is the Jacobian determinant. The momentum p is now the
peak value of the momentum distribution of the initial
state. The energy emitted is obtained by multiplying the
integrand in Eq. (2.17) by the photon energy, @k. We have
@P=@p ¼ 1 because P ¼ p� @k. Hence, the 4-
momentum of the radiation emitted is

P � ¼
Z d3k

16�3

P0

p0

n�jAðp;kÞj2; (2.19)

where n� � k�=k. It can be shown [3,4] that

A �ðp;kÞ ¼ �ie@
Z d3p0

2p0
0ð2�@Þ3

�
Z

d4xeik�x½��
p0 ðxÞD��pðxÞ

� ðD��p0 ðxÞÞ��pðxÞ�: (2.20)

Since �pðxÞ ¼ ffiffiffiffiffiffi
p0

p
�pðtÞeip�x=@, the exponential factors in

the integrand of Eq. (2.20) result in ð2�@Þ3�3ðp� @k�
p0Þ upon integration over x. Thus, we find

Aiðp;kÞ ¼ � e

2

ffiffiffiffiffiffi
p0

P0

s Z
dteikt��

PðtÞ�pðtÞ

� ½pi þ Pi � 2ViðtÞ�; (2.21)

A 0ðp;kÞ ¼ � ie@

2

ffiffiffiffiffiffi
p0

P0

s Z
dteikt

�
��

PðtÞ
d�pðtÞ
dt

� d��
PðtÞ
dt

�pðtÞ
�
: (2.22)

Now we use the WKB approximation (2.7) and find

��
PðtÞ�pðtÞ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�PðtÞ�pðtÞ
q
�exp

�
� i

@

Z t

0
½�pð�Þ��Pð�Þ�d�

�
c �

PðtÞc pðtÞ:
(2.23)

To lowest order in @ we have

� i

@

Z t

0
½�pð�Þ � �Pð�Þ�d� � �ik �

Z t

0

p� Vð�Þ
�pð�Þ d�;

(2.24)

where the relation P ¼ p� @k has been used. If xðtÞ is the
position of a classical particle corresponding to the state
AyðpÞj0i, i.e. with momentum p under the influence of the
vector potential VðtÞ, then

m
dx

d�
¼ p� VðtÞ; (2.25)

m
dt

d�
¼ �pðtÞ: (2.26)

These relations imply ½p� VðtÞ�=�pðtÞ � dx=dt to lowest

order in @. Using this approximation in Eq. (2.24) and
substituting the result into Eq. (2.23) and requiring xð0Þ ¼
0, we find to lowest order in @ that

��
PðtÞ�pðtÞ � 1

�pðtÞ e
�ik�x: (2.27)

Also it can readily be shown that

i@
d�pðtÞ
dt

� �pðtÞ�pðtÞ: (2.28)

Substituting Eqs. (2.27) and (2.28) into Eqs. (2.21) and
(2.22), and using Eqs. (2.25) and (2.26), we find

A 0ðp;kÞ ¼ �e
Z

dteik�x; (2.29)

A iðp;kÞ ¼ �e
Z

dt
dxi

dt
eik�x; (2.30)

which can be combined as

A �ðp;kÞ ¼ �e
Z

d	
dx�

d	
eik	; (2.31)

where 	 � n � x.
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Equation (2.31) is ill-defined because dx�=d	 is finite
for arbitrarily large values of j	j. We therefore introduce a
compactly supported cutoff factor, 
ða	Þ, 0< a � 1,
which is 1 on a compact interval including the region
where the acceleration takes place, and smoothly varies
between 0 and 1. Then the emission amplitude becomes

A�ðp;kÞ ¼ �e
Z

d	
dx�

d	

ða	Þeik	 (2.32)

¼ � ie

k

Z
d	

�
d2x�

d	2

ða	Þ þ a

dx�

d	

0ða	Þ

�
eik	: (2.33)

By substituting this equation into Eq. (2.19) and taking the
limit a ! 0, we find the 4-momentum of the radiation
emitted to lowest order in @ and e as

P � ¼ � e2

16�2

Z
d�

Z
d	n�

d2x�

d	2

d2x�
d	2

; (2.34)

where d� is the solid-angle for the unit vector n ¼ k=k.
We convert the 	 derivative to the t derivative by using the
formula d	=dt ¼ n�dx

�=dt as

d2x�

d	2
¼

�
dt

d	

�
3
�
d	

dt

d2x�

dt2
� d2	

dt2
dx�

dt

�
: (2.35)

The result is

P� ¼ � e2

16�2

Z
dt

Z
d� _	�5n�n�n�

� ½ _x� _x� €x� €x� � 2 _x� €x� €x� _x� þ €x� €x� _x� _x��; (2.36)

where the dot indicates the t derivative. The integration
over the solid angle can be carried out by using (see
Ref. [3])Z

d� _	�5n�n�n� ¼ 4
3�½6�8 _x� _x� _x�

� �6ð��
� _x� þ _x�g�� þ �

�
� _x�Þ�;

(2.37)

where � � dt=d� ¼ ð _x� _x�Þ�1=2. Thus we obtain

P � ¼ � e2

6�

Z
dt _x�½�4 €x � €x� �6ð _x � €xÞ2�: (2.38)

By converting the t derivative to the � derivative, we find

P � ¼ � e2

6�c4

Z
d�

dx�

d�

d2x�

d�2
d2x�
d�2

; (2.39)

which is a well-known result in classical electrodynamics,
and the component P 0c gives the Larmor formula (1.1).

III. QUANTUM CORRECTION WITH TIME-
DEPENDENT VECTOR POTENTIAL

In this section we calculate the correction to the Larmor
formula at order @ to lowest order in the nonrelativistic

approximation in the case where the charged scalar particle
is accelerated by a time-dependent but space-independent
vector potential.
From Eq. (2.19) we find the energy emitted as

Eem ¼ �
Z d3k

16�3

P0

p0

A�
�ðp;kÞA�ðp;kÞ; (3.1)

whereAiðp;kÞ andA0ðp;kÞ are given by Eqs. (2.21) and
(2.22), respectively. By substituting the WKB expression
for �pðtÞ given by Eq. (2.7) into these equations we find

A0ðp;kÞ ¼ � ec

2

ffiffiffiffiffiffi
p0

P0

s Z
dtei!t 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�pðtÞ�PðtÞ
q

�
�
�pðtÞ þ �PðtÞ þ i@c

�
�0

PðtÞ
2�PðtÞ �

�0
pðtÞ

2�pðtÞ

þ c 0
pðtÞ

c pðtÞ �
c �0

P ðtÞ
c �

PðtÞ
��

exp

�
� ic

@

Z t

0
ð�pð�Þ

� �Pð�ÞÞd�
�
c �

PðtÞc pðtÞ; (3.2)

Aiðp;kÞ¼�ec

2

ffiffiffiffiffiffi
p0

P0

s Z
dtei!t 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�pðtÞ�PðtÞ
q

�½pi�ViðtÞþPi�ViðtÞ�
�exp

�
� ic

@

Z t

0
½�pð�Þ��Pð�Þ�d�

�
c �

PðtÞc pðtÞ;
(3.3)

where �p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijp� Vj2 þm2c2
p

and ! ¼ kc. We have

restored factors of c by dimensional analysis, anticipating
the use of the nonrelativistic approximation. It is straight-
forward to calculate the amplitude to order @ using P ¼
p� @k. The result is

A0ðp;kÞ ¼ �ec

ffiffiffiffiffiffi
p0

P0

s Z
dtei!t�ik�x

� exp

�
i
@c

2

Z t

0

�
k2

�pðtÞ �
ðk � _xÞ2
�pðtÞc2

�
d�

�
; (3.4)

Aiðp;kÞ ¼ �ec

ffiffiffiffiffiffi
p0

P0

s Z
dtei!t�ik�x

�
_xi

c
� @

2�pðtÞ

�
�
ki � _xiðk � _xÞ

c2

��
exp

�
i
@c

2

Z t

0

�
k2

�pð�Þ

� ðk � _xð�ÞÞ2
�pð�Þc2

�
d�

�
: (3.5)

Note, in particular, that there is no contribution from the
factor c �

PðtÞc pðtÞ � 1þ i@ðgpðtÞ � gPðtÞÞ at order @.
One could write down a formal expression for the ex-

pected amount of energy emitted to order @ by substituting
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these formulas into Eq. (3.1). Instead of doing so, we use
the nonrelativistic approximation in order to find an ex-
pression in terms of the classical trajectory of the particle
in closed form. We calculate the correction from the ex-
ponential factor common to bothAi and A0 and that from
the additional term in Ai separately and add them up.

Denoting the correction due to the exponential factor by
�E1, we have

�E1 ¼ ie2@

32�3c3

Z
d�

Z 1

0
d!!4

Z
dtdt0

� ei!ðt�t0Þ�i!n�½xðtÞ�xðt0Þ�=c½ _xðtÞ � _xðt0Þ � c2�

�
Z t

t0

�
1

�pð�Þc�
ðn � _xð�ÞÞ2
�pð�Þc3

�
d�: (3.6)

We use the nonrelativistic approximation to order c�5.

Thus, we expand the factor e�i!n�½xðt0Þ�xðtÞ�=c with respect
to !=c to order c�2. [Notice that �pðtÞ � mc to lowest

order in c�1.] Then we integrate over !, regularizing the

integral by changing ei!ðt�t0Þ to ei!ðt�t0þi"Þ and using the
formulaZ 1

0
!nei!ðt�t0þi"Þd! ¼ inþ1 @n

@t0n
1

t� t0 þ i"
: (3.7)

Thus, we obtain

�E1 ¼ � e2@

32�3c3

Z
d�

Z
dtdt0

�
4!

ðt� t0 þ i"Þ5

þ 6!fn � ½xðt0Þ � xðtÞ�g2
2ðt� t0 þ i"Þ7c2

�
½ _xðtÞ � _xðt0Þ � c2�

�
Z t

t0

�
1

�pð�Þc�
ðn � _xð�ÞÞ2

mc4

�
d�: (3.8)

This integral is ill-defined since the integrand remains
finite if we let jtþ t0j be arbitrarily large while keeping t�
t0 finite. For this reason we insert a cutoff factor

ðatÞ
ðat0Þ, 0< a � 1, such that 
ðatÞ is smooth and
compactly supported, and that 
ðatÞ ¼ 1 for t 2
½�T; T�, i.e. while V�ðtÞ is not constant. Then, we find

that this integral is the sum of terms of the form Að1Þ
1 and

Að3Þ
1 as defined in Eq. (A1). Therefore, as is shown in

Appendix A, we can formally integrate by parts with
respect to t and t0 to reduce the power of t0 � tþ i" in
the denominator.2 Then we find

�c2
Z
dtdt0

4!

ðt� t0 þ i"Þ5
Z t

t0

�
1

�pð�Þc�
ðn � _xð�ÞÞ2

mc4

�
d�¼0

(3.9)

by integrating by parts with respect to t and t0. This means

that, to find �E1 to order c�5, we can let

Z t

t0

�
1

�pð�Þc�
ðn � _xð�ÞÞ2

mc4

�
d� � 1

mc2
ðt� t0Þ: (3.10)

Hence we have

�E1 ¼ � e2@

8�3mc5

Z
d�

Z
dtdt0

�
3! _xðtÞ � _xðt0Þ
ðt� t0 þ i"Þ4

� 3 � 5!fn � ½xðt0Þ � xðtÞ�g2
4ðt� t0 þ i"Þ6

�
: (3.11)

Integrating the second term by parts with respect to t and t0
and carrying out the n integration, we find

�E1 ¼ � e2@

4�2mc5

Z
dtdt0

3! _xðtÞ � _xðt0Þ
ðt� t0 þ i"Þ4

¼ � e2@

8�2mc5

Z
dtdt0 _xðtÞ � _xðt0Þ

�
@3

@t2@t0
� @3

@t02@t

�

� 1

t� t0 þ i"
: (3.12)

By integrating by parts, we find

�E1 ¼ e2@

8�2mc5

Z
dtdt0

�
d3x

dt3
� d

2x0

dt02
� d2x

dt2
� d

3x0

dt03

�
1

t� t0
;

(3.13)

where we have defined xi � xiðtÞ and x0i � xiðt0Þ.
We move now to the correction which comes from the

other multiplicative factor inAiðp;kÞ. Since we only need
this quantity to order c�2, we find from Eq. (3.5)

A iðp;kÞjnonex ��e

ffiffiffiffiffiffi
p0

P0

s Z
dtei!t�i!n�x=c

�
_xiðtÞ� @!ni

2mc

�
;

(3.14)

where we have dropped the correction to the exponential
factor. We find the corresponding correction in the Larmor
formula by substituting this formula in Eq. (3.1) as

�E2 ¼ � e2@

32�3mc4

Z
d�

Z 1

0
d!!3

�
Z

dtdt0ei!ðt�t0Þ�i!n�ðx�x0Þ=cn � ð _x0 þ _xÞ: (3.15)

By expanding the factor e�i!n�ðx�x0Þ=c to first order in !=c
and integrating over n and ! we find

�E2 ¼ e2@

24�2mc5

Z
dtdt0

4!ðx0 � xÞ � ð _xþ _x0Þ
ðt� t0 þ i"Þ5

� 
ðatÞ
ðat0Þ:
(3.16)

This integral is of the form Að1Þ
1 in Eq. (A1). Therefore one

can integrate by parts, twice with respect to t and twice
with respect to t0, neglecting the cutoff factor 
ðatÞ
ðat0Þ.
Then, we find

2In some cases formal integration by parts leads to the wrong
results [14]. Therefore one needs to justify it by introducing the
cutoff factor as we do here.
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�E2 ¼ 1
3�E1; (3.17)

where�E1 is given by Eq. (3.13). By adding�E1 and�E2,
we find the total correction to the Larmor formula at order
e2@ to be

�E ¼ e2@

6�2mc5

Z
dtdt0

�
d3x

dt3
� d

2x0

dt02
� d2x

dt2
� d

3x0

dt03

�
1

t� t0
:

(3.18)

Let us estimate the size of this correction in a simple
situation where the acceleration is linear and given by
aðtÞ ¼ a0ð1� t2=t20Þ for jtj � t0 and aðtÞ ¼ 0 otherwise.

We find

�E ¼ � 4e2@a20
3�2mc5

: (3.19)

On the other hand, the energy of radiation emitted accord-
ing to the Larmor formula can be found from Eq. (1.1) as

Eð0Þ
em ¼ 8a20t0=45�c

3. Hence we have

j�Ej
Eð0Þ
em

¼ 15@

2�mc2t0
: (3.20)

Therefore, the Larmor formula is expected to be a good
approximation as long as t0 	 @=mc2, which is the time
for a light ray to traverse a Compton wavelength of the
charged scalar particle. Since the probability distribution
for the frequency of the photon emitted is given by the
square of the Fourier transform of aðtÞ, the typical energy
of the photon emitted will be of order @=t0 (though the
probability of emission can be made small by letting a0 be
small). This energy will be comparable to mc2 if t0 

@=mc2. Then the scattered charged scalar particle will be
relativistic, and it is not surprising that the nonrelativistic
approximation will break down. It is interesting that the
classical (nonrelativistic) Larmor formula seems to remain
a good approximation as long as the scattered state remains
nonrelativistic even if its momentum may be much differ-
ent from that of the initial state, in the case where the
particle is accelerated by a time-dependent but space-
independent vector potential.

IV. QUANTUM CORRECTION WITH SPACE-
DEPENDENT VECTOR POTENTIAL

In this section we treat the case in which the potential
varies in a space coordinate, taken to be z, but is indepen-
dent of t. As in the previous section we assume further that
the external vector potential V�ðzÞ is constant except in the
interval ½�Z; Z�, Z > 0, with V�ðzÞ ¼ 0 for z <�Z. We

do not assume the constant value of V�ðzÞ for z > Z to be 0.

We further let VzðzÞ ¼ 0 by a gauge transformation.
The mode functions for the scalar particle can be chosen

to be proportional to exp½ð�ip0tþ ip? � x?Þ=@� with
x? ¼ ðx; yÞ and p? ¼ ðpx; pyÞ, where px and py are the

x and y components of the contraviariant vector p. (Below

we also write the z component of a contravariant vector b
as bz in general.) We use the WKB approximation for the
ordinary differential equation which determines the z de-
pendence of the mode functions. The particle (as opposed
to antiparticle) solution to the field equation thus obtained
that is moving in the positive z direction is

�pðt;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
p

pðzÞ
s

exp

�
i

@

Z z

0
pð�Þd�

�

� exp

�
i

@
ðp? � x? � p0tÞ

�
; (4.1)

where the function analogous to the varying energy �pðtÞ
in the time-dependent case is now a varying z component
of the momentum,

pðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0 � V0ðzÞ�2 � jp? � V?ðzÞj2 �m2

q
; (4.2)

and where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0

2 � jp?j2 �m2
q

. [We assume that

pðzÞ is real for all z.] As in the case with a time-dependent

vector potential, it can be shown that higher-order correc-
tions to Eq. (4.1) do not contribute to the energy emitted at
order @.
The Jacobian determinant defined by Eq. (2.18) is

@P

@p
¼ dP

dp
; (4.3)

where the derivative of P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P0

2 � jP?j2 �m2
q

, with

P0 ¼ p0 � @k, P? ¼ p? � @k?, is taken with p? and k
fixed. Hence, the energy emitted is given, in the limit
where the momentum distribution is arbitrarily sharply
peaked, by

Eem ¼ �
Z d3k

16�3

P0

p0

dp

dP
A�

�ðp;kÞA�ðp;kÞ; (4.4)

where p is the peak value of the momentum distribution.
Many of the details of the calculation which follows find,
as one might expect, direct analogues in the time-
dependent case. Although occasional mention will be
made of these details, many will be left unremarked.
The formula for the emission amplitude, Eq. (2.20),

remains the same. After integrating over t, x? and p0, we
find

A0ðp;kÞ ¼ e

2

ffiffiffiffi
p

P

r Z
dze�ikzz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðzÞPðzÞ

q ½2V0ðzÞ

� ðp0 þ P0Þ� exp
�
i

@

Z z

0
½pð�Þ � Pð�Þ�d�

�
;

(4.5)
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A?ðp;kÞ ¼ e

2

ffiffiffiffi
p

P

r Z
dze�ikzz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðzÞPðzÞ

q
� ½2V?ðzÞ � ðp? þ P?Þ�
� exp

�
i

@

Z z

0
½pð�Þ � Pð�Þ�d�

�
; (4.6)

and

Azðp;kÞ ¼ ie@

2

ffiffiffiffi
p

P

r Z
dze�ikzz

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðzÞPðzÞ

q
�

�
�1

2

�
0
pðzÞ

pðzÞ �
0
PðzÞ

PðzÞ
�
þ i

@
½pðzÞ þPðzÞ�

�

� exp

�
i

@

Z z

0
½pð�Þ �Pð�Þ�d�

�
: (4.7)

Thus, to order @, i.e. letting 0
pðzÞ=pðzÞ � 0

PðzÞ=PðzÞ in
Eq. (4.7), we have

jAðp;kÞj2 ¼ e2

4

p

P

Z
dzdz0

eikzðz0�zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðzÞPðzÞpðz0ÞPðz0Þ

q
� exp

�
i

@

Z z

z0
½pð�Þ � Pð�Þ�d�

�
f�½2V0ðzÞ

� ðp0 þ P0Þ�½2V0ðz0Þ � ðp0 þ P0Þ�
þ ½2V?ðzÞ � ðp? þ P?Þ� � ½2V?ðz0Þ
� ðp? þ P?Þ� þ ½pðzÞ þ PðzÞ�
� ½pðz0Þ þ Pðz0Þ�g: (4.8)

We find the energy emitted, Eem, by substituting this
formula into Eq. (4.4). We can simplify Eem by noting that

P0

p0

dp

dP

p

P
¼ 1; (4.9)

which can readily be proved by using dP=dP0 ¼ P0=P,
dp=dp0 ¼ p0=p and dP0=dp0 ¼ 1. The following formu-
las are crucial in expressing the energy emitted in terms of
the motion of the corresponding classical particle:

p? � V?
pðzÞ ¼ dx?

dz

��������p
; (4.10)

p0 � V0

pðzÞ ¼ dx0

dz

��������p
; (4.11)

where x�ðzÞ is the world line of the classical particle under
the potential V�ðzÞ, and where ‘‘jp’’ indicates that the

quantity is evaluated with the initial momentum p. We
obtain

Eem ¼ � e2

8

Z d3k

ð2�Þ3
Z

dzdz0eikzðz0�zÞ

� exp

�
i

@

Z z

z0
½pð�Þ � Pð�Þ�d�

�

�
2
4 ffiffiffiffiffiffiffiffiffiffiffiffi

pðzÞ
PðzÞ

s
dx�

dz

�����������p

þ
ffiffiffiffiffiffiffiffiffiffiffiffi
PðzÞ
pðzÞ

s
dx�

dz

�����������P

3
5

�
2
4 ffiffiffiffiffiffiffiffiffiffiffiffiffi

pðz0Þ
Pðz0Þ

s
dx0�
dz0

�����������p

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Pðz0Þ
pðz0Þ

s
dx0�
dz0

�����������P

3
5: (4.12)

The correction to the energy emitted to first order in @ again
can be attributed to two sources: the exponential factor and
the other multiplicative factor. We shall examine these
separately but combine the intermediate results to simplify
the calculation.
To consider the contribution from the exponential factor,

we need to find the expansion of PðzÞ to second order in @,
which is analogous to that of �PðtÞ in the time-dependent
case. We have

PðzÞ ¼ pðzÞ
�
1� @!

p

�
dt

dz
� n?

c
� dx?
dz

�

þ @
2!2

22
p

�
�
�
dt

dz
� n?

c
� dx?
dz

�
2 þ n2z

c2

��
: (4.13)

Therefore, the correction to the energy emitted coming
from the exponential factor is

�E1 ¼ ie2@

32�3m

Z
d�

Z 1

0
d!!4

Z
dtdt0

� ei!ðt�t0Þ�i!n�ðx�x0Þ=cð _x � _x0 � c2Þ
�

Z t

t0

�
1� 2

n?
c

� dx?
dT

��
dz

dT

��2
dT; (4.14)

where ðx?ðTÞ; zðTÞÞ is the position of the corresponding
classical particle at time T with ðx?ð0Þ; zð0ÞÞ ¼ ð0; 0Þ.
After inserting the cutoff factor 
ðatÞ
ðat0Þ, we again

find that the integral is of the form AðnÞ
1 , n ¼ 1, 2, 3, in

Eq. (A1). Hence, one may integrate the ill-defined integral
(4.14) formally by parts. This means that

Z 1

0
d!!4

Z
dtdt0ei!ðt�t0Þð�c2Þ

�
Z t

t0

�
1� 2

n?
c

� dx?
dT

��
dz

dT

��2
dT ¼ 0: (4.15)

By expanding the factor e�i!n�ðx�x0Þ=c to second order in
!=c and integrating over n, we obtain to lowest order in
c�1
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�E1 ¼ ie2@

8�2m

Z 1

0
d!

Z
dtdt0!4ei!ðt�t0þi"Þ
ðatÞ
ðat0Þ

�
��

_x � _x0 þ!2

6
jx� x0j2

�Z t

t0
_z�2dT

� 2i!

3
ðx? � x0

?Þ �
Z t

t0
_x? _z�2dT

�
: (4.16)

Again we have replaced ei!ðt�t0Þ by ei!ðt�t0þi"Þ to regularize
the integral over !.

We now turn to the contribution from the nonexponen-
tial factor in Eq. (4.12). For � ¼ m � 3, we have

dxm

dz

��������P
¼ pðzÞ

PðzÞ
dxm

dz

��������p
� @km

PðzÞ ; (4.17)

where x0 � ct and k0 � !=c. Since we are only looking
for corrections at first order in @, we find from Eq. (4.13)

dxm

dz

��������P
¼

�
1þ @kn

pðzÞ
dxn

dz

�
dxm

dz

��������p
� @km

pðzÞ ; (4.18)

where the summations over Roman indices exclude the z
component. Here we have used

kn
dxn

dz
¼ !

�
dt

dz
� n?

c
� dx?
dz

�
: (4.19)

Thus, denoting the contribution from the nonexponential
factor by �E2, we have the following result:

Eð0Þ
emþ�E2 ¼� e2

16�3c3

Z
d�

Z 1

0
d!!2

Z
dzdz0

� ei!ðt�t0Þ�i!n�ðx�x0Þ=c

�
� ffiffiffiffiffiffiffiffiffiffiffiffi

pðzÞ
PðzÞ

s ffiffiffiffiffiffiffiffiffiffiffiffiffi
pðz0Þ
Pðz0Þ

s
dxm

dz

��������p

dx0m
dz0

��������p

� @km

2

�
1

pðz0Þ
dxm
dz

��������p
þ 1

pðzÞ
dx0m
dz0

��������p

�
� 1

�
:

(4.20)

Therefore, using Eqs. (4.13) and (4.19), we can write

�E2 ¼ � e2@

32�3c3

Z
d�

Z 1

0
d!!2

Z
dzdz0

� ei!ðt�t0Þ�i!n�ðx�x0Þ=c

�
��

kn
pðzÞ

dxn

dz
þ kn

pðz0Þ
dx0n

dz0

�
dxm

dz

dx0m
dz0

�
�

kn
pðz0Þ

dxn

dz
þ kn

pðzÞ
dx0n

dz0

��
: (4.21)

Collecting only the terms up to order c0 in the integrand,
we have

�E2 ¼ � e2@

32�3c3

Z
d�

Z 1

0
d!!3

Z
dtdt0

� ei!ðt�t0Þ�i!n�ðx�x0Þ=c
��

1

_zpðzÞ
�
1� n?

c
� _x?

�

þ 1

_z0pðz0Þ
�
1� n?

c
� _x0

?

��
ðc2 � _x? � _x0

?Þ �
2

m

�
;

(4.22)

where we have used pðzÞ � mdz=dt to lowest order in

c�1. The argument that led to Eq. (4.15) can be used to
conclude that

c2
Z 1

0
d!!3

Z
dtdt0ei!ðt�t0Þ

�
1

_zpðzÞ þ
1

_z0pðz0Þ
�
¼ 0:

(4.23)

Expanding the factor e�i!n�ðx�x0Þ=c to order !2=c2 and
carrying out the n integration, we find

�E2 ¼ e2@

8�2mc3

Z 1

0
d!!3

Z
dtdt0ei!ðt�t0þi"Þ
ðatÞ
ðat0Þ

�
��

_x? � _x0
? þ!2

6
jx� x0j2

�
ð _z�2 þ _z0�2Þ

� i!

3
ðx? � x0

?Þ � ð _x? _z�2 þ _x0
? _z0�2Þ

�
: (4.24)

It is convenient to combine the two integrals �E1 and
�E2 at this point. After integrating over !, �E � �E1 þ
�E2 to order c�3 becomes

�E ¼ e2@

8�2mc3

Z
dtdt0
ðatÞ
ðat0Þ

� ½F1ðt; t0Þ þ F2ðt; t0Þ þ F3ðt; t0Þ�; (4.25)

where

F1ðt; t0Þ � � 4! _x � _x0

ðt� t0 þ i"Þ5
Z t

t0
_z�2dT

þ 3! _x? � _x0
?ð _z�2 þ _z0�2Þ

ðt� t0 þ i"Þ4 ; (4.26)

F2ðt; t0Þ � 1

6

�
6!jx� x0j2
ðt� t0 þ i"Þ7

Z t

t0
_z�2dT

� 5!jx� x0j2ð _z�2 þ _z0�2Þ
ðt� t0 þ i"Þ6

�
; (4.27)

F3ðt; t0Þ � 1

3

�
2 � 5!ðx? � x0

?Þ
ðt� t0 þ i"Þ6 �

Z t

t0
_x? _z�2dT

þ 4!ðx? � x0
?Þ � ð _x? _z�2 þ _x0

? _z0�2Þ
ðt� t0 þ i"Þ5

�
: (4.28)

Note that all terms in Eq. (4.25) are of the form AðnÞ
1 in

Eq. (A1). For example, the integral in Eq. (4.25) involving
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the first term of F2ð!; t; t0Þ can be seen to be of the form

Að3Þ
1 with fðt; t0Þ ¼ 1, g1ðtÞ ¼ g2ðtÞ ¼ xiðtÞ and g3ðtÞ ¼R
t
0 _z�2dT. Thus, we integrate by parts to reduce the de-

nominator to ðt� t0 þ i"Þ3 in each term in Eqs. (4.26),
(4.27), and (4.28). We integrate the terms proportional toR
t
t0 _z

�2dT so that the coefficient functions are differenti-

ated with respect to each of t and t0 twice, and for the rest
we choose to integrate by parts so that there is no derivative
on either _z�2 or _z0�2. Thus, we find

F1ðt; t0Þ 
 2

ðt� t0 þ i"Þ3
�
€x � €x0 Z t

t0
_z�2dT

� €z _z0�1 þ €z0 _z�1

�
; (4.29)

F2ðt; t0Þ 
 2

3ðt� t0 þ i"Þ3
�
� €x � €x0 Z t

t0
_z�2dT

þ €x � _x0 _z0�2 � €x0 � _x _z�2

�
; (4.30)

F3ðt; t0Þ 
 � 2

3ðt� t0 þ i"Þ3 ð €x? � _x0
? _z0�2 � €x0

? � _x? _z�2Þ;
(4.31)

where
 indicates equivalence under integration over t and
t0. Adding these three terms and integrating some terms
further by parts, we find

�E ¼ e2@

12�2mc3

Z
dtdt0

�
2€x? � €x0

?
ðt� t0 þ i"Þ3 �

z
:::
z
:::0

t� t0 þ i"

�

�
Z t

t0
_z�2dT: (4.32)

A form more convenient for concrete calculations can be
found by integrating the first term by parts further as

�E ¼ e2@

12�2mc3

Z dtdt0

t� t0

�
�x
::: � x:::0

Z t

t0
_z�2dT

þ x
:::
? � €x0

? _z0�2 � x
:::0
? � €x? _z�2

�
: (4.33)

This correction is of the same order in c�1 as the Larmor
formula, though it is of course of higher order in @, in
contrast to the correction (3.18) for a time-dependent vec-
tor potential, which is of higher order in c�1.

To estimate the size of this correction, we consider a
charged particle moving at a constant speed vz in the z
direction and accelerated in the x direction with accelera-
tion given by aðtÞ ¼ a0ð1� t2=t20Þ for jtj � t0. It is pos-

sible to arrange the vector potential to realize this motion
as shown in Appendix B. Here, the vector potential is
z-dependent and varies only for jzj � vzt0. The first term
in brackets in Eq. (4.33) gives a vanishing contribution.
From the remaining terms we find

�E ¼ � 2e2@a0
2

3�2mv2
zc

3
; (4.34)

and

j�Ej
Eð0Þ
em

¼ 15@

4�mv2
zt0

; (4.35)

whereEð0Þ
em ¼ 8a20t0=45�c

3 is the energy emitted according

to the Larmor formula as before. Thus, the correction is
small and expected to be reliable as long as the kinetic
energy associated with the motion in the z direction is
much larger than the typical energy of the photon emitted,
@=t0.

V. SUMMARYAND OUTLOOK

In this paper we showed that the energy and momentum
of radiation emitted by a charged scalar particle in QED
agree with the classical result (2.39) at order e2 in the limit
@ ! 0 and then went on to study the correction (at first
order in @) to the energy emitted in the nonrelativistic limit
in two cases: one with a time-dependent but space-
independent vector potential and the other with a time-
independent vector potential which depends on one space
coordinate, z. Both corrections were found to arise entirely
due to the fact that the momenta of the initial and final
scalar wave functions are different in the emission ampli-
tude. The results are given by Eqs. (3.18) and (4.33). They
are expressed in terms of the classical trajectory and are
different from each other. Thus, the quantum correction is
sensitive to how the particle is accelerated as well as to the
motion of the corresponding classical particle. Another
notable feature of these corrections is that they are nonlocal
in time unlike the classical approximation.
In a fully quantum-mechanical calculation to all orders

in @, the expectation value of the power of emission ob-
viously cannot be expressed in terms of the corresponding
classical trajectory in a simple manner [13]. Therefore, it is
not surprising that the correction to the Larmor formula at
first order in @ expressed in terms of the classical trajectory
is nonlocal in time. The fact that the corrections to the
Larmor formula at first order in @ are different in the two
cases studied in this paper also reflects the difference in
these cases in a fully quantum-mechanical calculation.
We estimated the size of the correction in each case for a

given acceleration of simple form. For the time-dependent
potential the correction is much smaller than the classical
result unless the typical energy of the photon emitted is
comparable to the rest mass energy of the particle, with the
nonrelativistic approximation itself breaking down. On the
other hand, for the z-dependent potential, the correction is
small compared to the classical result if the typical energy
of the photon emitted is much smaller than the kinetic
energy of the particle in the z direction.
It would be interesting to test the quantum corrections to

the Larmor formula obtained in this paper though it would
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be difficult to realize the conditions in which our results
can directly be compared with experimental results. One
quantum system to which the Larmor formula and other
classical results are applicable is a Rydberg atom, i.e. an
atom with an electron with a very high principal quantum
number up to a few hundred. Indeed the Larmor formula is
known to give a very good approximation to the lifetime of
states with high principal and angular-momentum quantum
numbers [15,16]. It would be interesting to calculate the
quantum correction to this approximation by extending our
calculations to cases with a charged particle in a radially
varying potential and possibly to extend our results to the
case with a vector potential varying in a more general way.
It would also be interesting to study the quantum correc-
tions to the Larmor formula in the ultrarelativistic limit and
determine whether the difference between the two cases
studied in this paper persists in this limit.
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APPENDIX A: CUTOFF INDEPENDENCE OF
INTEGRALS IN SECS. III AND IV

In this appendix we show that formal integration by parts
used in this paper to find the quantum corrections is
justified. Let I � ½�T; T�, T > 0. We choose this interval
such that the acceleration of the particle is nonzero only if
t 2 I. Let fðt; t0Þ be a smooth function such that the sup-
port of @tfðt; t0Þ [resp. @t0fðt; t0Þ] is a subset of I� R (resp.
R� I). Then, one can show that f, @tf and @t0f are all
bounded. Let giðtÞ, i ¼ 1; 2; . . . ; n, be smooth functions
such that the support of g00i ðtÞ is a subset of I. Then, it
can readily be seen that g0i are bounded. We let 
ðtÞ be a
smooth function such that it is compactly supported with

ðtÞ ¼ 1 for t 2 I. We use 
ðatÞ, 0< a � 1, as our cutoff
factor, with the limit a ! 0 taken at the end. Note that
lima!0a

2
R1
�1½
0ðatÞ�2dt ¼ 0. This property was neces-

sary for the cutoff factor for deriving the Larmor formula
in Sec. II. All integrals in Secs. III and IV that are ill-
defined without the cutoff factor take the form

AðnÞ
1 ¼

Z
dtdt0

fðt; t0Þ
ðt� t0 þ i"Þnþ4

�
�Yn
i¼1

½giðtÞ � giðt0Þ�
�

ðatÞ
ðat0Þ: (A1)

What we show in this appendix is that this integral can be
reduced to the sum of integrals with no derivatives on the
cutoff factor and convergent without them and those which
tend to zero as a ! 0. This implies that one can use formal
integration by parts for this integral until it is convergent,
as we did in Secs. III and IV.

We first prove that the integral of the following form is
convergent without the cutoff factor:

AðnÞ
2 ¼

Z
dtdt0

@tfðt; t0Þ
ðt� t0 þ i"Þnþ3

�
�Yn
i¼1

½giðtÞ � giðt0Þ�
�

ðatÞ
ðat0Þ: (A2)

Since @tfðt; t0Þ ¼ 0 for t =2 I, the t integral is effectively
over interval I. We have noted that @tfðt; t0Þ is bounded.
Since g00i ðtÞ are nonzero only for t 2 I, we have giðt0Þ ¼
��
i t

0 þ ��
i for t0 <�T and giðt0Þ ¼ �þ

i t
0 þ �þ

i for t0 > T
for some constants ��

i and ��
i . Then it is clear that the t0

integral is convergent without the cutoff factor.
Next we prove that the following integral tends to zero

as a ! 0:

AðnÞ
3 ¼ a

Z
dtdt0

fðt; t0Þ
ðt� t0 þ i"Þnþ3

�
�Yn
i¼1

½giðtÞ � giðt0Þ�
�

0ðatÞ
ðat0Þ:

(A3)

To this end it is useful to prove that the following integrals
tend to zero as a ! 0:

AðnÞ
4 ¼ a

Z
dtdt0

@t0fðt; t0Þ
ðt� t0 þ i"Þnþ2

�
�Yn
i¼1

½giðtÞ � giðt0Þ�
�

0ðatÞ
ðat0Þ;

(A4)

AðnÞ
5 ¼ a2

Z
dtdt0

fðt; t0Þ
ðt� t0 þ i"Þnþ2

�
�Yn
i¼1

½giðtÞ � giðt0Þ�
�

0ðatÞ
0ðat0Þ:

(A5)

The t0 integral in Eq. (A4) is over the interval I, and hence
we can drop the cutoff factor 
ðat0Þ. Furthermore,
@t0fðt; t0Þ � Fðt0Þ is t-independent where 
0ðatÞ � 0.
Then, by letting t ¼ �=a, we have

AðnÞ
4 ¼ a2

Z �T

�1
d�

Z T

�T
dt0

Fðt0Þ
ð�� at0Þnþ2

�
�Yn
i¼1

½��
i �þ að��

i � giðt0ÞÞ�
�

0ð�Þ

þ a2
Z 1

T
d�

Z T

�T
dt0

Fðt0Þ
ð�� at0Þnþ2

�
�Yn
i¼1

½�þ
i �þ að�þ

i � giðt0ÞÞ�
�

0ð�Þ: (A6)

These integrals have finite limits as a ! 0. Hence, AðnÞ
4 !

0 as a ! 0. To show that AðnÞ
5 ! 0 as a ! 0, we note that

fðt; t0Þ is constant if jtj, jt0j> T. The integral AðnÞ
5 has

nonzero contributions only from the four disjoint regions
ðT;1Þ � ðT;1Þ, ð�1;�TÞ � ðT;1Þ, ð�1;�TÞ �
ð�1;�TÞ and ðT;1Þ � ð�1;�TÞ on the tt0 plane be-
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cause of the factor 
0ðatÞ
0ðat0Þ. Let fðt; t0Þ ¼ fþþ in the
first region. Then the contribution from the first region to

AðnÞ
5 can be written, after the change of variables t ¼ �=a,

t0 ¼ �0=a,

AðnÞ
5 jþþ ¼ a2fþþ

Yn
i¼1

�þ
i

Z 1

T
d�

Z 1

T
d�0 
0ð�Þ
0ð�0Þ

ð�� �0 þ i"Þ2 :

(A7)

The contribution from ð�1;�TÞ � ð�1;�TÞ has a simi-
lar expression. The contribution from ðT;1Þ � ð�1;�TÞ
with fðt; t0Þ ¼ fþ� is

AðnÞ
5 j�� ¼ a2fþ�

Z 1

T
d�

Z �T

�1
d�0 


0ð�Þ
0ð�0Þ
ð�� �0Þnþ2

�Yn
i¼1

ð�þ
i �þ a�þ

i � ��
i �

0 � a��
i Þ; (A8)

and that from ð�1;�TÞ � ðT;1Þ is similar. Hence we

find that AðnÞ
5 ! 0 as a ! 0.

To show that AðnÞ
3 ! 0 as a ! 0, we first integrate by

parts and find

AðnÞ
3 ¼ � a

nþ 2

Z
dtdt0

1

ðt� t0 þ i"Þnþ2

� @

@t0

�
fðt; t0ÞYn

i¼1

½giðtÞ � giðt0Þ�
ðat0Þ
�

0ðatÞ

¼ � AðnÞ
4

nþ 2
� AðnÞ

5

nþ 2
þ a

nþ 2

Xn
k¼1

Z
dtdt0

� fðt; t0Þg0kðt0Þ
ðt� t0 þ i"Þnþ2

�Y
i�k

½giðtÞ � giðt0Þ�
�

0ðatÞ
ðat0Þ:

(A9)

Now, the first and second terms tend to zero as a ! 0. Each

of the remaining terms is of the form Aðn�1Þ
3 because the

partial derivatives of fðt; t0Þg0kðt0Þ with respect to t and t0
have support in I � R and R� I, respectively. Therefore,

if Aðn�1Þ
3 tends to zero as a ! 0, so does AðnÞ

3 . This means

that all we need to show is Að0Þ
3 ! 0 as a ! 0, which is true

because

Að0Þ
3 ¼ �1

2A
ð0Þ
4 � 1

2A
ð0Þ
5 : (A10)

Now, we are ready to turn to the integrals AðnÞ
1 , which are

the ones we encounter in our calculations. By integrating
by parts with respect to t we find

AðnÞ
1 ¼ 1

nþ 3

Z
dtdt0

1

ðt� t0 þ i"Þnþ3

� @

@t

�
fðt; t0ÞYn

i¼1

½giðtÞ � giðt0Þ�
ðatÞ
�

ðat0Þ

¼ 1

nþ 3

�
AðnÞ
2 þ AðnÞ

3 þ Xn
k¼1

Z
dtdt0

fðt; t0Þg0kðtÞ
ðt� t0 þ i"Þnþ3

�
�Y
i�k

½giðtÞ � giðt0Þ�
�

ðatÞ
ðat0Þ

�
: (A11)

As we have seen, the term AðnÞ
2 is cutoff independent and

AðnÞ
3 ! 0 as a ! 0. The remaining terms are of the form

Aðn�1Þ
1 . Thus, all we need to show is that Að0Þ

1 can written in

a cutoff independent form. Indeed we have

Að0Þ
1 ¼ 1

3A
ð0Þ
2 þ 1

3A
ð0Þ
3 ! 1

3A
ð0Þ
2 as a ! 0: (A12)

Thus, we have shown that we may use integration by

parts with respect to t for integrals of the form AðnÞ
1 dis-

regarding the cutoff factor until it is convergent without
them. It is clear that this statement holds for integration by
parts with respect to t0 as well.

APPENDIX B: THE VECTOR POTENTIAL FOR
THE MOTION USED IN SEC. IV

We recall that the local momentum of the particle is
given by

m
dx?
d�

¼ p? � V?ðzÞ; (B1)

m
dz

d�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½p0 � V0ðzÞ=c�2 � jp? � V?ðzÞj2 �m2c2

q
;

(B2)

where we have restored the factors of c in Eq. (4.2) letting
V0 and V? have the dimensions of energy and momentum,
respectively. Here p? and p0 are constants. Thus, it is clear
that any motion in the perpendicular direction can be
realized by adjusting V?ðzÞ appropriately while maintain-
ing the condition dz=dt � dz=d� ¼ vz by adjusting V0ðzÞ.
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