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We show that a Nambu-Jona-Lasinio type four-fermion coupling at the z ¼ 3 Lifshitz-like fixed point

in 3þ 1 dimensions is asymptotically free and generates a mass scale dynamically. This result is

nonperturbative in the limit of a large number of fermion species. The theory is ultraviolet complete

and at low energies exhibits Lorentz invariance as an emergent spacetime symmetry. Many of our results

generalize to z ¼ d in odd d spatial dimensions; z ¼ d ¼ 1 corresponds to the Gross-Neveu model. The

above mechanism of mass generation has potential applications to the fermion mass problem and to

dynamical electroweak symmetry breaking. We present a scenario in which a composite Higgs field arises

from a condensate of these fermions, which then couples to quarks and leptons of the standard model.

Such a scenario could eliminate the need for the Higgs potential and the associated hierarchy problem. We

also show that the axial anomaly formula at z ¼ 3 coincides with the usual one in the relativistic domain.
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I. INTRODUCTION AND SUMMARY

A fundamental problem of particle physics is the ques-
tion of mass generation of elementary particles in 3þ 1
dimensions. Early attempts in this direction were made in
[1,2] based on an analogy with the theory of superconduc-
tivity. In the standard model (SM) this problem is ad-
dressed by introducing the Higgs mechanism and
Yukawa couplings. The technicolor models were invented
to generate particle masses dynamically. However these
have not been phenomenologically viable for a number of
reasons (see, e.g., [3,4]).

In this paper we make an observation which has a
bearing on this question. We show that if we are willing
to give up Lorentz invariance in the ultraviolet then it is
possible to have a renormalizable model involving a
Nambu-Jona-Lasinio type [2] four-fermi interaction in 3þ
1 dimensions. In fact, it turns out that this model is asymp-
totically free and has dynamical mass generation.1

Moreover, the relativistic Dirac theory emerges at low
energies. Our calculations are nonperturbative in the limit
of a large number of fermion species.

The idea that a relativistic theory at low energies may
have a Lorentz noninvariant uv completion has been sug-
gested recently in [6,7], where the theory at high energy is
characterized by an anisotropic scaling exponent z which
describes a different scaling of space and time: x ! bx,
t ! bzt. Quantum critical systems with anisotropic scaling

are known in condensed matter physics (see, e.g., [8–10]).
Recently these theories have been discussed in the context
of AdS/(non)-CFT duality; see, e.g. [11–14]. The idea of
relinquishing relativistic invariance at high energies has
also appeared in cosmology, e.g. as an explanation of
ultrahigh energy cosmic rays above the Greisen-Zatsepin-
Kuzmin cutoff [15]. In a somewhat different approach to
the subject, Lorentz symmetry breaking has also been used
as a regulator for quantum field theories; see [16] for a
recent reference; see also [17]. Currently there is a lot of
interest in the application of such ideas to gravity; however,
in this paper we will only focus on nongravitational
theories.
The plan of this paper is as follows. In Sec. II we present

the four-fermi model with z¼3 scaling in 3 spatial dimen-
sions. The fermions carry a species index i which takes N
different values. We use the large N limit and compute the
nonperturbative ground state characterized by a fermion
condensate. A mass scale is dynamically generated and the
four-fermi coupling, in this vacuum, exhibits asymptotic
freedom. This result can be extended to z ¼ d in any odd d
spatial dimensions. Calculations in this section are similar
to those of the Gross-Neveu model [18], which can be
regarded as the z ¼ d ¼ 1 case. In Sec. III we consider
1=N fluctuations around the condensate and show that the
phase of the condensate appears as a Nambu-Goldstone
boson. When the broken symmetry is gauged, the Nambu-
Goldstone boson is ‘‘eaten up’’ by the dynamical gauge
field, as in the usual Higgs mechanism. In Sec. IV we add a
relevant coupling to the z¼3 model and discuss how a
Lorentz-invariant theory emerges at low energies. In
Sec. V we discuss the structure of axial anomalies in this
theory and compute the anomaly coefficient. In Sec. VI we
briefly discuss the application of this mechanism to dy-
namical electroweak symmetry breaking. We conclude in
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1It is important to note that in 4D theories involving relativistic

fermions, it is impossible to achieve asymptotic freedom without
dynamical gauge fields [5]. We are able to circumvent this
theorem here by working with a Lorentz noninvariant theory.
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Sec. VII with some discussions. Appendix A provides
some details of the gap equation while Appendix B com-
putes one-loop propagators for the bosonic fluctuations.

II. ASYMPTOTIC FREEDOM

Our model consists of 2N species of fermions c aiðt; ~xÞ,
a ¼ 1, 2; i ¼ 1; . . . ; N which carry representations of
SUðNÞ and a flavor group Uð1Þ1 �Uð1Þ2, as follows:

c ai ! Uijc aj c ai ! ei�ac ai; a ¼ 1; 2: (1)

Each of these fermions is an SUð2Þs spinor, where SUð2Þs
is the double cover of the spatial rotation group SOð3Þ.

An action which is consistent with the above symmetries
is

S ¼
Z

d3 ~xdt½c y
1iði@t þ i ~@ � ~�@2Þc 1i

þ c y
2iði@t � i ~@ � ~�@2Þc 2i þ g2c y

1ic 2ic
y
2jc 1j�;

(2)

where f ~�g are the Pauli matrices. We will study the dy-
namics of this action in the large N limit in which � ¼
g2N, the ’tHooft coupling, is held fixed. Note the sign flip
of the spatial derivative term between the two flavors a ¼ 1
and a ¼ 2; this ensures that the Lagrangian is invariant
under a parity operation under which c 1iðt; ~xÞ !
c 2iðt;� ~xÞ.
Note that if we assign scaling dimensions according to

z ¼ 3, i.e. ½L� ¼ �1, ½T� ¼ �3, then ½c � ¼ 3=2. In this
case, all the three terms appearing in the above action are
of dimension 6 and hence marginal.

It is important that the four-fermion interaction term is
marginal at z ¼ 3. Recall that in the usual context of a 3þ
1 dimensional Lorentz-invariant theory, any interaction
involving four fermions represents an irrelevant operator
and so must be understood as a low-energy effective inter-
action. By contrast, here the marginality of the interaction
leads one to hope that the theory (2) is perhaps uv com-
plete. We will show below that this is indeed the case since
the four-fermi coupling turns out to be asymptotically free.

A more general z ¼ 3 action which considers all rele-
vant and marginal couplings, and is consistent with the
symmetries of (2), can also be written down:

S ¼
Z

d3 ~xdt½c y
1iði@t � i ~@ � ~�ðð�i@Þ2 þ g1Þ þ g2@

2Þc 1i

þ c y
2iði@t þ i ~@ � ~�ðð�i@Þ2 þ g1Þ þ g2@

2Þc 2i

þ g3ðc y
1ic 1i þ c y

2ic 2iÞ þ g24ððc y
1ic 1iÞ2

þ ðc y
21c 2iÞ2Þ þ g25ðc y

1ic 1ic
y
2jc 2jÞ

þ g26ðc y
1ic 2ic

y
2jc 1jÞ�: (3)

The action (2) corresponds to putting all the couplings

g1; . . . ; g5 ¼ 0 and setting g6 ¼ g. We will treat some of
these other couplings in Secs. II C and IV.
One can eliminate the four-fermi interaction in (2) by

using a standard Gaussian trick:

exp

�
i

�
g2

Z
c y

1ic 2ic
y
2jc 1j

��

¼
Z

D� exp

�
i
Z

��c y
1ic 2i þ�c y

2ic 1i

� 1

g2
���

�
:

This gives us the following action, which is entirely
equivalent to (2):

S ¼
Z

d3 ~xdt

�
c y

1iði@t þ i ~@ � ~�@2Þc 1i

þ c y
2iði@t � i ~@ � ~�@2Þc 2i

þ��c y
1ic 2i þ�c y

2ic 1i � 1

g2
���

�
: (4)

The scalar field� is an SUðNÞ singlet and is charged under
the axial Uð1Þ parametrized by exp½ið�1 � �2Þ�.

A. The gap equation

Since the action (4) is quadratic in fermions, one can
integrate them out, leading to the following effective action
for the boson:

Seff½�� ¼ �iN Tr ln ~D� 1

g2

Z
���; (5)

where ~D is defined in (A2). Here Tr represents a trace over
space-time as well as the flavor and spinor indices.
In the large N limit, the classical equation of motion

�Seff=�� ¼ 0 is exact, leading to (see Appendix A for
details)

i
Z d4k

ð2�Þ4
1

k20 � j ~kj6 ����þ i�
¼ 1

2�
; � ¼ g2N:

(6)

This gap equation determines only the absolute value of�.
The phase of� will be identified with a Nambu-Goldstone
mode � in the next section where we consider fluctuations.
The left-hand side of the gap equation is logarithmically

divergent by z ¼ 3 power counting (both numerator and
denominator have dimension 6). Rotating the contour from
k0 2 ð�1;1Þ to k0 2 ð�i1; i1Þ (this is an anticlockwise
rotation in the complex k0 plane by �=2 and can be done
without touching the poles of the Feynman propagator), we
get

Z dk0d
3k

ð2�Þ4
1

k20 þ k6 þ���
¼ 1

2�
: (7)

It is easy to do the angular integration. Then, using the
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variable w ¼ k3 and extending the range of w integral to
the entire real line (possible because the integrand hasw $
�w symmetry), we get

2�=3

ð2�Þ4
Z 1

�1
dk0

Z 1

�1
dw

1

k20 þ w2 þ���
¼ 1

2�
: (8)

The above integral has an SOð2Þ rotational symmetry
between k0 and w. In particular, if we parametrize

ðk0; wÞ ¼ Kðcos�; sin�Þ; � 2 ½0; ��; (9)

then the angle � can be integrated out. Using the
SOð2Þ-invariant cutoff K � �3 and discarding a finite
piece,2 we get

ln

�
�

m

�
¼ 2�2

�
; (10)

where � has momentum dimension 1 and we have intro-
duced the parameter m of momentum dimension 1 by
defining m6 � ���. In the large N limit, fluctuations of
� are suppressed and this solution of the gap equation
becomes exact.

We see from (4) that, around this symmetry broken
vacuum, the term involving the parameter m is like a
mass term for the fermions. When we perturb this model
by adding a relevant term that takes it at low energies to the
relativistic fixed point at z ¼ 1, this term goes over to the
familiar mass term for relativistic fermions, with a mass
proportional to m. This is discussed further in Sec. IV.

Equation (10) determines m in terms of � and the cutoff
�. We will demand that � must be assigned an appropriate
� dependence such that the fermion mass m3 ¼ jh�ij is
kept invariant. From (10) this gives us

�ð�Þ ¼ 2�2

lnð�=mÞ : (11)

We see that � is an asymptotically free coupling. The
theory generates a mass scale analogous to�QCD, given by

m ¼ �exp

�
� 2�2

�

�
:

The 	 function is easy to compute and it is negative:

	ð�Þ ¼ �
d�

d�
¼ � �2

2�2
:

The calculation presented above is similar to that for the
Gross-Neveu model [18]. Indeed, we will show in the next
subsection that the results presented above generalize to all
odd d spatial dimensions at z ¼ d. The Gross-Neveu
model, from this viewpoint, is simply the d ¼ 1, z ¼ 1

example. Unlike in the higher dimensional examples, how-
ever, the fermion condensate in the Gross-Neveu model
breaks only a discrete Z2 symmetry and there is no Nambu-
Goldstone mode.
We should point out that the condensate is generated

here for arbitrarily weak coupling g. This is in contrast
with what happens in the usual relativistically invariant
Nambu-Jona-Lasinio model at the z ¼ 1 fixed point [2,19–
21], where the symmetry breaking phase occurs only be-
yond a certain critical value gc of the coupling.
It is useful to express the above result in terms of an

effective potential for the homogeneous mode of�. This is
essentially the negative of (5), evaluated for constant �,
and is given by

Veffð�Þ ¼ j�j2
g2

�
1� �

12�2

�
ln

�6

j�j2 þ 1

��
: (12)

A plot of V as a function of j�j can be found in Fig 1. It
shows a minimum at

j�j ¼ m3 ¼ �3 exp½�6�2=��; (13)

as found above. We emphasize that the treatment of the
effective potential and the renormalization group (RG)
flow presented above is exact in the strict N ¼ 1 limit.

B. Other dimensions and z ¼ d

In this subsection we show that the above conclusion
generalizes to z ¼ d in d ¼ 2nþ 1 spatial dimensions. We
will again consider fermions c ai which transform in the
fundamental representation of SUðNÞ and a flavor group
Uð1Þ1 �Uð1Þ2; each fermion transforms as a spinor of (an
appropriate covering group of) the spatial rotation group
SOð2nþ 1Þ. The action (4) now reads
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FIG. 1. The effective potential, Veffð�Þ, as a function of j�j.

2The actual result for the left-hand side using this cutoff is
lnð1þ�6=j�j2Þ. The finite pieces depend on the cutoff scheme,
e.g. if, in (8), we integrate k0 first from �1 to 1 and then w
from 0 to �3, the left-hand side of (10) would be
lnð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�6=j�j2p þ�6=j�j2Þ.
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S ¼
Z

d2nþ1 ~xdt½c y
1iði@t þ i ~@ � ~�@2nÞc 1i

þ c y
2iði@t � i ~@ � ~�@2nÞc 2i þ g2c y

1ic 2ic
y
2jc 1j�:

(14)

Here �i, i ¼ 1; 2; . . . ; 2n are the gamma matrices in 2n
Euclidean dimensions. For z ¼ d, the dimension of the
fermion is ½c � ¼ d=2. Hence the four-fermi coupling is
marginal for any d.

The gap equation now reads

2nþ1
Z dk0d

2nþ1k

ð2�Þ2nþ2

1

k20 � k2nþ2 ����þ i�
¼ 2

�
; (15)

from which we get

�ð�Þ ¼ A

lnð�=mÞ ; A ¼ 2�nþ1ð2n� 1Þ!!;

showing asymptotic freedom of the coupling. Here ð2n�
1Þ!! ¼ ð2n� 1Þð2n� 3Þ . . . 1 for n � 1 and ¼ 1 for n ¼
0. The beta-function is given by

	ð�Þ ¼ � 1

A
�2:

Note that the 	 function vanishes exponentially as d ! 1.

C. The space of marginal couplings

In the bulk of this section, we have dealt with the action
(2), or equivalently with (4). It is not difficult to generalize
our results to include the marginal couplings g4 and g5 in
(3). We postpone the details to a forthcoming publication
[22] and simply quote the results here. As before, we can
use a Gaussian trick to replace the new quartic interactions
by introducing additional auxiliary scalar fields. A general
effective potential involving these fields can be obtained
along the lines of (12). It turns out that (a) the new terms in
the effective potential do not depend on the cutoff, and
(b) at the minimum of the potential h�i is still given by (13)
whereas the other condensates vanish. Furthermore, only
the coupling g6 ¼ g, considered before, has a nontrivial
beta function and the theory remains asymptotically free. If
we do include the relevant coupling g3, then the other
condensates acquire nonvanishing vacuum expectation val-
ues (vev); however, even then it is only g6 which has a
nontrivial RG flow and the theory is asymptotically free.
We will discuss the consequence of including the relevant
coupling g1 in Sec. IV.

III. QUANTUM FLUCTUATIONS

In the previous section, we considered the classical
solution of Seffð�Þ [Eq. (5)], which is exact in the large
N limit. In this section we will go beyond this approxima-
tion and consider fluctuations of the scalar field �. It is
convenient to parametrize the fluctuations in terms of a
radial field (sigma) and a phase (pion):

�ðxÞ ¼ 
ðxÞeig�ðxÞ; 
ðxÞ ¼ m3 þ gffiffiffi
2

p �ðxÞ: (16)

It is convenient to use the notation of Dirac matrices and
rewrite the action (4) in the form given by (A1) and (A3).
Substituting (16) in these equations, we get the following
action for the fluctuations:

S ¼
Z

d4x

�
��iði�0@t þ ið ~� � ~@Þði ~@Þ2Þ�i

þ ��i

��
m3 þ gffiffiffi

2
p �ðxÞ

�
eig�ðxÞPL þ

�
m3 þ gffiffiffi

2
p �ðxÞ

�

� e�ig�ðxÞPR

�
�i � 1

g2

�
m3 þ gffiffiffi

2
p �ðxÞ

�
2
�
; (17)

where PL;R ¼ 1
2 ð1	 �5Þ. The action has the following

global Uð1Þ symmetry:

�i ! eig��
5
�i; � ! �� �: (18)

In terms of the original Uð1Þ1 �Uð1Þ2 symmetry of the
action, this is the off-diagonal (axial) Uð1Þ. The fermion
condensate breaks this symmetry, with the pion �ðxÞ as a
Nambu-Goldstone boson.
The masslessness of the pion can be argued as follows.

By making a local phase rotation �i ! e�ig�5�ðxÞ=2�i in
the fermion functional integral, the pion field can be elim-
inated from the Yukawa coupling terms, with the replace-
ments

@t ! @t þ ig

2
@t�; @i ! @i þ ig

2
@i�; (19)

in the fermion kinetic terms. This shows that the effective
action (5) contains the pion field only through its deriva-
tives, which, therefore, rules out a mass term.
The above argument relies on the invariance of the

fermionic measure under an axial phase rotation and could
be potentially invalidated by the appearance of anomalies.
We will discuss this issue in the next subsection which
deals with coupling to gauge fields. For the present, we
note that in the absence of gauge fields any potential
anomaly vanishes and the argument about the masslessness
of the pion goes through.
In Appendix B, further evidence for the masslessness of

the � field is provided by an explicit computation of the
one-loop propagator for the bosonic fluctuations.

Coupling to gauge fields

If we gauge the axial Uð1Þ by appropriately coupling the
fermions to a dynamical gauge field, then the effect of the
phase rotation exp½�ig�5�ðxÞ=2� on the fermions will be
to replace the gauge-covariant derivatives in a manner
analogous to (19). The pion field and the gauge field will
then appear in an extended covariant derivative of the form
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~D t ¼ @t þ ie

�
At þ g

2e
@t�

�
;

~Di ¼ @i þ ie

�
Ai þ g

2e
@i�

�
:

(20)

This shows that the gauge field effectively absorbs the
pion field, as in the standard Higgs mechanism, and be-
comes massive. This mechanism for the generation of
gauge field mass terms is familiar from technicolor theo-
ries. This is discussed further in Sec. VI.

As in the previous subsection, we have assumed invari-
ance of the fermion functional integral under a local axial
phase rotation. This argument is valid only if there are no
anomalies of the axial current. In Sec. V we will calculate
this anomaly and show that it is the same as for relativistic
fermions. The absence of this anomaly therefore imposes
the usual requirement on the spectrum of fermions coupled
to the axial gauge field.

IV. EMERGENCE OF LORENTZ INVARIANCE

In this section we will consider the effect of adding the
relevant coupling g1, defined in (3), to the theory (17).
According to z ¼ 3 scaling, the momentum dimension of
g1 is 2. Denoting g1 � M2, the action reads

S ¼
Z

d4x

�
��iði�0@t þ ið ~� � ~@ÞðM2 þ ði ~@Þ2ÞÞ�i

þ ��i

��
m3 þ gffiffiffi

2
p �ðxÞ

�
eig�ðxÞPL þ

�
m3 þ gffiffiffi

2
p �ðxÞ

�

� e�ig�ðxÞPR

�
�i � 1

g2

�
m3 þ gffiffiffi

2
p �ðxÞ

�
2
�
: (21)

The mass-shell condition of the fermion is

k20 � k2ðM2 þ k2Þ2 �m6 ¼ 0: (22)

For the momentum range

k 
 M; (23)

we get

k20 �M4ðk2 þm�2Þ ¼ 0; m� ¼ m3

M2
:

Let us introduce a rescaled time and energy

t0 ¼ tM2; k00 ¼ k0=M
2; (24)

so that t0 is of mass dimension �1 and k00 of mass dimen-

sion 1. The mass-shell condition becomes the standard
form dictated by the Lorentz invariance:

ðk00Þ2 ¼ ðk2 þm�2Þ: (25)

In the momentum range (23) and in terms of the rescaled
time (24), the action (21) becomes

S¼
Z
d3xdt0

�
��iði�0@t0 þ i ~� � ~@Þ�iþ ��i

��
m�þ gffiffiffi

2
p �0ðxÞ

�

�eig�ðxÞPLþ
�
m�þ gffiffiffi

2
p �0ðxÞ

�
e�ig�ðxÞPR

�
�i

�M2

g2

�
m�þ gffiffiffi

2
p �0ðxÞ

�
2
�
; (26)

where we have defined the rescaled bosonic field �0 ¼
�=M2. In view of (23), the above action should be under-
stood with an effective cutoff M.
The following points are worth noting:
(1) In principle, the coupling g1 in (3) flows under RG.

This is because the fermion propagator receives
corrections from the diagrams shown in
Appendix B 3. Hence, strictly speaking, we should
make a distinction between the coefficient M ap-
pearing in (21) and the constantM appearing in (22)
. The former should be regarded as a cutoff depen-
dent coupling Mð�Þ, whereas the latter should be
regarded as an RG-invariant mass scale M entering
in the mass-shell condition (22). However, the cor-
rection is of order �=N, as can be seen from (B5).
Since it is suppressed by 1=N, the correction can be
neglected in the large N limit. Therefore, in the
present case, the M appearing in the two equations
(21) and (22) can be taken to be the same.

(2) Although the coupling � is asymptotically free and
grows logarithmically at low k, the coupling con-
stant relevant to quantum fluctuations around the

fermion condensate is g ¼ ffiffiffiffiffiffiffiffiffiffi
�=N

p
which remains

weak at large N.
(3) The c yc� coupling g, remarkably, is marginal

both at z ¼ 3 and at z ¼ 1. The reason is that in
(21) � has dimension 3, hence c yc� has dimen-
sion 6 (which is marginal at z ¼ 3); on the other
hand in (26) the rescaled bosonic field �0 ¼ �=M2

has dimension 1, hence the c yc�0 coupling has
dimension 4 (which is marginal at z ¼ 1).

The various mass scales which appeared above can be
schematically represented on the momentum line:

m
*

|k|
0

z=1 (Lorentz) z=3 (Lifshitz)

Mm

Herem is the mass scale generated by the condensate,m ¼
j�j1=3. M is the momentum scale below which Lorentz
symmetry appears. m� is the rest mass of the emergent
Dirac fermion. The three masses are related by m3 ¼
m�M2. Here we have chosen the order M � m � m� for
potential applications to weak interaction (see Sec. VI).
Theoretically, the other order M 
 m 
 m� is also al-
lowed; however, with that choice, the ‘‘Higgs vev’’ is
higher than the scale of violation of Lorentz symmetries,
which is unrealistic.
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V. ANOMALIES

In this section we present a brief discussion of axial
anomalies when our model (2) is coupled to gauge fields.
We will first consider the case where the diagonal Uð1Þ is
gauged and will look for possible anomalies in the axial
Uð1Þ current.

We will compute the anomaly adapting the method of
Fujikawa [23] (see also [19,20]) to our problem. The path
integral for the gauged model is given by [using the form of
the fermion action given in (21)]3

Z ¼
Z Y

i

D�iD ��ie
iS;

S ¼
Z

d3xdt ��ii 6D�i 6D ¼ ��D�; Dt ¼ Dt;

Di ¼ Dið�ð ~DÞ2 þM2Þ; D� ¼ @� þ ieA�:

(27)

Here we have ignored the four-fermion term since it does
not play a role in the calculation of anomalies. Wewill treat
the gauge field as an external field. If we make a local axial
rotation

��i ¼ i�ðxÞ�5�i; � ��i ¼ ��ii�ðxÞ�5; (28)

we generate a term proportional to
R
�ðxÞ@�J�5 in the

action and if the path integral measure is invariant under
(28) then the axial current is conserved. However, it was
shown in [23] that under (28), the measure picks up a
Jacobian. Taking this into account in the present case, we
get4

@�J
�5 ¼ 2hxjtrð�5 exp½i 6D2=�6�Þjxi;

where the gauge-invariant exponential operator is intro-
duced as a regulator, as in [23], except that the cutoff �
follows z ¼ 3 scaling (cf. Sec. II A). Here ‘‘tr’’ refers to a
Dirac trace as well as a sum over the species index i ¼
1; . . . ; N. To evaluate the right-hand side, we will expand
the exponential in powers of the charge e, by using

ð 6DÞ2 ¼ �D�D
� þ i

2
��½D�;D�:

The second term is proportional to e2. In order for the
Dirac trace to survive, we must bring down two powers of
this term. Using trð�5�0i�jkÞ ¼ 4i�ijk and ignoring terms
which would drop out at large � (these include all terms
involving M) we find

@�J
�5 ¼ � 2ie2N

�12
�ijkhxj exp½ð�@20 þ ð ~@Þ6Þ=�6�

� fEið ~@Þ2 þ Ep@p@i; Fjkð ~@Þ4 þ 2Fjl@l@kð ~@Þ2
þ 2Flk@l@jð ~@Þ2gjxi:

The terms inside hxj . . . jxi give rise to various powers of�,
the highest being �12 which is exactly cancelled by the
1=�12 outside. Terms involving derivatives of the electric
or magnetic field give rise to lower powers of � and
eventually drop out. The final result, at the end of a long
calculation, is

@�J
�5 ¼ � e2N

16�2
����F�F��; (29)

which is identical to the usual relativistic calculation of the
axial anomaly.5 The robustness of the anomaly coefficient
with respect to different z values is likely to be related to its
topological character. The result is also gratifying from the
viewpoint of model building since we do not want to
impose different requirements on the fermion spectra at
different energy scales.
The axial anomaly for chiral fermions (only c 1i and no

c 2i) as well as chiral anomalies for chiral gauge theories
can be obtained by simple generalizations of the compu-
tation presented above.

VI. APPLICATION TO LOW-ENERGY
PHENOMENOLOGY

In this section we will consider a simple extension of the
fermion model (4) which can describe electroweak sym-
metry breaking. The extension consists of an additional
SUð2Þ group, under which the a ¼ 1 fermions transform as
a doublet and the a ¼ 2 fermions transform as a singlet.
Using the Dirac spinor notation employed in the previous
section, let us denote the a ¼ 1 fermions as c L (these
satisfy �5 ¼ 1) and a ¼ 2 fermions as c R (these satisfy
�5 ¼ �1). The fermion fields will then be denoted as
c Li�, c Ri where � ¼ 1, 2 is the new SUð2Þ index.6 We
then couple the fermions to SUð2Þ gauge fields.7
The scalar field, ��, which is classically equivalent to

the fermion bilinear gc Ric Li�, now carries the additional
SUð2Þ index � and transforms as a doublet. This will play
the role of the composite Higgs field.
In addition to the above fermions, we will have the usual

quark and lepton degrees of freedom. These do not carry
the species index i, but they do have quartic interaction
terms with the above fermions, similar to those in (2).
These quartic interactions are designed to respect the
SUð2Þ gauge symmetry and the global symmetries of the
action. An example is

3We use i to label the fermion as well as spatial coordinates;
the specific usage should be clear from the context.

4Note that the spatial component of the current, ~J5, is much
more complicated than its relativistic counterpart.

5We can, in fact, recover (29) in the z ¼ 1 limit from (27) by
making the replacement �ð ~DÞ2 þM2 ! M2.

6In order to generate masses for all the c fermions, we need to
double the number of right-handed fermions as well, still keep-
ing them singlets under the above SUð2Þ. In this more general
model, the four-fermi couplings can be arranged such that one
still has only a doublet of Higgs in the broken phase

7We can also add a gauge field to gauge the vector part of
Uð1Þ �Uð1Þ.
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ðc y
Li�c RiÞðqyRqL�Þ; (30)

where the q’s denote quarks. This interaction will generate
the Yukawa couplings after the c ’s have condensed, as we
show below.

We can now repeat the analysis of Secs II and III to show
that �� develops a vev, thereby dynamically breaking the
gauge symmetry. By parametrizing � ¼ expði ~�ðxÞ � ~�Þ
,
we can show, as in Sec. , that ~�ðxÞ’s combine with the
SUð2Þ gauge fields to give them their longitudinal compo-
nents. The fluctuation ��ðxÞ of the radial field 
�ðxÞ
becomes the massive Higgs field, in terms of which (30)
gives the usual coupling of quarks to the Higgs field:

qyR��qL�: (31)

The gauge field masses arise from their gauge-invariant
interactions with the c ’s. The relevant diagram is shown in
the following diagram:

ψ x xψ

ψ

ψ ψ

ψ

π

L

L L

R LR
ww

The crosses on fermion propagators indicate insertions of
the dynamically generated mass. The main point is the
exchange of the massless Nambu-Goldstone ‘‘pion.’’
which is responsible for generating the gauge boson
masses. This well-known mechanism was originally dis-
covered in the context of the Meissner effect (see [1] and
references therein).

We conclude this section with the following observa-
tions:

(1) The introduction of the fermions ðc Li�; c RiÞ with
the marginal four-fermi coupling gives rise to a
composite Higgs field and hence eliminates the
need for the Higgs potential. Consequently, the hi-
erarchy problem of the standard model is avoided.

(2) We used a large numberN of these fermions in order
to make the point that the model exists nonpertur-
batively and that the fluctuations around the non-
perturbative vacuum are weakly coupled. However,
this is not an in-principle requirement if we can
tackle the four-fermion coupling nonperturbatively
by some other method.

(3) For realistic applications, we need to ensure that the
massm� of the extra fermions ðc Li�; c RiÞ is beyond
the presently observed energy scales while the
Higgs mass and the Higgs vev are not too high.
We wish to come back to a detailed analysis of
this constraint in a later paper.

(4) The mechanism of mass generation presented here
is much simpler than in technicolor theories [3,4].

(5) The spectrum and quantum number of fermions is
constrained by the requirement of vanishing of

gauge anomalies, the computation of which is de-
scribed in Sec. V.

(6) For applications to the SM, one must appropriately
couple the fermions c Li� to the gauge fields of the
SM. Since these couplings are not suppressed in the
large N limit, the fermion propagator will receive
corrections from the exchange of gauge fields which
are of order one in N. Thus, in this case the coupling
g1 ¼ M2 will get renormalized, even to leading
order in largeN. In this case, then, a scale dependent
g1 will enter in the fermion mass-shell condition,
and, more generally, in the effective ‘‘speed of
light’’ parameter for each particle. For phenomeno-
logically consistent applications, one then needs to
make sure that the variation of the ‘‘speed of light’’
is compatible with existing bounds from experi-
ments. Finally, one must find a consistent frame-
work to couple such a model to gravity. Detailed
work on the various aspects outlined above is crucial
to establish a consistent framework for applications
to the real world, but this is beyond the scope of the
present paper.

VII. DISCUSSION

In this paper, we have shown that at the z ¼ 3 fixed
point, an Nambu-Jona-Lasinio–like four-fermi coupling in
3þ 1 dimensions is asymptotically free, thus providing an
uv completion of the low-energy four-fermion coupling at
the z ¼ 1 fixed point. The price to pay is Lorentz non-
invariance in the ultraviolet. Our work provides a novel
composite Higgs mechanism for dynamical gauge symme-
try breaking and a generation of fermion masses.
The asymmetry in the ultraviolet cutoff corresponding to

space and time directions may be a fundamental feature of
our world. If true, this feature could have important con-
sequences for low-energy particle physics and model
building. It would be interesting to see if the z ¼ 3 model
described here for the electroweak sector can be extended
to include strong and gravitational interactions, especially
in the framework of string theory. For this reason, it is
important to explore the formulation of string theory itself
which incorporates Lorentz violation in the ultraviolet. For
example, we observe that in the exact formulation of 2-
dimensional string theory in terms of matrix quantum
mechanics, one naturally arrives at a z ¼ 2 theory of non-
relativistic fermions [24–28]. The theory becomes relativ-
istic (z ¼ 1) only for low-energy fluctuations around the
fermi surface.
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Note added.—After the first version of this paper was
submitted to the archive, we became aware of the work
[29] which has some overlap with the contents of this
paper.

APPENDIX A: SOME STEPS FOR THE GAP
EQUATION

Let us combine the flavor and spinor indices to write a
four-component fermion

�i ¼ c 1i

c 2i

� �
:

In this notation, (4) reads

L ¼
Z

d3 ~xdt�y
i
~D�i; (A1)

where

~D � i@t1 � 1þ i@2@i�3 � �i þ ð���þ þ���Þ � 1:

(A2)

We find that subsequent calculations get considerably sim-
plified if we write the operator ~D in terms of Dirac’s
gamma matrices �0, �i

~D ¼ �0D;

D ¼ i�0@t þ i�i@iði@Þ2 þ ð�R � i�I�
5Þ: (A3)

Here � ¼ �R þ i�I. In our convention

�0 ¼ �1 � 1; �i ¼ i�2 � �i;

�5 ¼ i�0�1�2�3 ¼ �3 � 1:

We emphasize that although we find it expedient to use the
gamma matrices, the operator D above is not the Dirac
operator. For instance, the coefficient of �i has three
powers of momenta, as appropriate for a z ¼ 3 theory.

It is obvious that integrating the fermions out from (A1)
leads to the effective action (5). Let us consider the equa-
tion of motion �Seff=��R ¼ 0. This gives

2

g2
�R ¼ �iN Trð ~D�1�0Þ ¼ �iN TrðD�1Þ: (A4)

The operator iD�1 is simply the propagator. In the mo-
mentum basis it is given by

D�1 ¼ k0�
0 þ k2ki�

i � ð�R þ i�I�
5Þ

k20 � k6 ����þ i�
:

Equation (6) now simply follows from (A4).
In d ¼ 2nþ 1 spatial dimensions, the propagator is

iD�1, with

D ¼ i�0@t þ i@2n@i�
i þ ð�R � i�I�

dþ2Þ
�0 ¼ �1 � 1; �i ¼ i�2 � �i;

�5 ¼ in�0�1 . . .�d ¼ �3 � 1:

(A5)

APPENDIX B: ONE-LOOP BOSON PROPAGATOR

In this section we will show the masslessness of the pion
by an explicit one-loop computation.
We will find it convenient, for the purpose of this cal-

culation, to expand the scalar field � as

� ¼ m3 þ g�; � ¼ ~�þ i ~�ffiffiffi
2

p :

To this order, the ~� and ~� fields are simply the � and �
fields of Sec. III, up to constant factors.
Using the form of the action as given by (A1) and (A3),

we get

S ¼
Z

d4x½ ��iði�0@t þ ið ~� � ~@Þði ~@Þ2 þm3Þ�i

þ gffiffiffi
2

p ��i�i ~�þ gffiffiffi
2

p ��i�
5�i ~�

� 1

2

��
m3

ffiffiffi
2

p
g

þ ~�

�
2 þ ~�2

��
: (B1)

1. Summary of results

The tree-level propagator for ~� and ~� fields are non-
dynamical. However, the propagators develop a nontrivial
correction through fermion loops. We present the summary
of our results here and defer details of the computation to
the next subsection. To leading order in 1=N, we find the
following results for the propagators G~�ðpÞ and G ~�ðpÞ for
the ~� and ~� fields, respectively:

G ~�ðpÞ ¼ �i

1þ i�ð2Þ
~� ðpÞ ;

�ð2Þ
~� ðpÞ ¼ i

�
1� �

6�2

�
þ oðp2Þ;

G ~�ðpÞ ¼ �i

1þ i�ð2Þ
~� ðpÞ ;

�ð2Þ
~� ðpÞ ¼ iþ oðp2Þ:

In the small p limit,

G~�ðpÞ ¼ 1

�=ð6�2Þ þ oðp2Þ ; G ~�ðpÞ ¼ �i

oðp2Þ : (B2)

Therefore, the pion propagator has a massless pole,
whereas the ~� field is massive.
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2. Details

The Feynman rules that follow from (B1) are given by

The propagators for ~� and ~� are simply given by �i.
We will first compute the one-loop two-point function of

~�. To order g2, it is represented by the following Feynman
diagram:

k

k−p

p p

which evaluates to

�ð2Þ
~� ðpÞ ¼ ð�1ÞTr

Z d4k

ð2�Þ4
igffiffiffi
2

p �FðkÞ igffiffiffi
2

p �Fðk� pÞ

¼ �2�
Z d4k

ð2�Þ4

� k0ðk0 � p0Þ � ~k:ð ~k� ~pÞð ~kÞ2ð ~k� ~pÞ2 þm6

ðk20 � ~k6 �m6Þððk0 � p0Þ2 � ð ~k� ~pÞ6 �m6Þ :

(B3)

The full propagator for ~� at momentum p is obtained by
summing over an infinite series of such diagrams, and we
obtain

G ~�ðpÞ ¼ �iþ ð�iÞ�ð2Þ
~� ðpÞð�iÞ þ . . . ¼ �i

1þ i�ð2Þ
~� ðpÞ :

Note that by changing k0 ! �k0 and ~k ! � ~k we can

prove that �ð2Þ
~� ð�pÞ ¼ �ð2Þ

~� ð�pÞ. Note also that

�ð2Þ
~� ð0Þ ¼ �2�

�
� i

2�
þ 2m6

Z d4k

ð2�Þ4
1

ðk20 � k6 �m6Þ2
�

¼ i� 4�m6 @

@m6

��i

2�

�
�ð2Þ

~� ð0Þ ¼ i

�
1� �

6�2

�
:

Hence, at p ! 0,

Gsð0Þ ¼ �i

�=6�2
;

which shows that ~� is a massive particle.

The one-loop two-point function for ~� is represented by
a Feynman diagram similar to the above, and is given by

�ð2Þ
~� ðpÞ ¼ ð�1ÞTr

Z d4k

ð2�Þ4
�g�5ffiffiffi

2
p �FðkÞ�g�5ffiffiffi

2
p �Fðk� pÞ

¼ �2�
Z d4k

ð2�Þ4

� k0ðk0 � p0Þ � ~k:ð ~k� ~pÞð ~kÞ2ð ~k� ~pÞ2 �m2

ðk0 � ~k6 �m6Þððk0 � p0Þ2 � ð ~k� ~pÞ6 �m6Þ :
(B4)

As for ~�, the full propagator for ~� at momentum p is
given by the sum

G ~�ðpÞ ¼ �iþ ð�iÞ�ð2Þ
~� ðpÞð�iÞ þ . . . ¼ �i

1þ i�ð2Þ
~� ðpÞ :

Note, like before, that �ð2Þ
~� ð�pÞ ¼ �ð2Þ

~� ð�pÞ. Also

�ð2Þ
~� ð0Þ ¼ �2��i

2� ¼ i. Thus, �ð2Þ
~� ðpÞ ¼ iþ oðp2Þ.

Hence, as p ! 0,

G ~�ðpÞ ¼ �i

oðp2Þ :

Thus, the ~� propagator has a pole at p2 ¼ 0. Hence the
pion is massless.

3. Fermion two-point function

In this subsection we present an expression for the

fermion 2-point function �ð2Þ
F ðpÞ. To oðg2Þ, it is given by

the following diagram [the blobs represent the full propa-
gators G ~�ðpÞ and G ~�ðpÞ, respectively]:

p p

kk

p−k

σ

+
p p

kk

p−k

π

The diagram evaluates to

�ð2Þ
F ðpÞ ¼

Z d4k

ð2�Þ4
�
igffiffiffi
2

p iG~�ðkÞ igffiffiffi
2

p �Fðp� kÞ

þ �gffiffiffi
2

p iG~�ðkÞ�gffiffiffi
2

p �5�Fðp� kÞ�5

�

¼ ��

2N

Z d4k

ð2�Þ4
�

G~�ðkþ pÞ
�0k0 þ ~� � ~kð ~kÞ2 �m3

þ G ~�ðkþ pÞ
�0k0 þ ~� � ~kð ~kÞ2 þm3

�
: (B5)

The expression, at least formally, contains terms involving
~p � ~�, which renormalize the relevant coupling g1 in (3).
We postpone a detailed analysis of this diagram to future
work.
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