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We present an improved laboratory test of Lorentz invariance in electrodynamics by testing the isotropy

of the speed of light. Our measurement compares the resonance frequencies of two orthogonal optical

resonators that are implemented in a single block of fused silica and are rotated continuously on a

precision air bearing turntable. An analysis of data recorded over the course of one year sets a limit on an

anisotropy of the speed of light of �c=c� 1� 10�17. This constitutes the most accurate laboratory test of

the isotropy of c to date and allows to constrain parameters of a Lorentz violating extension of the

standard model of particle physics down to a level of 10�17.

DOI: 10.1103/PhysRevD.80.105011 PACS numbers: 03.30.+p, 06.30.Ft, 11.30.Cp, 42.60.Da

The theory of special relativity formulated in 1905 [1]
revealed Lorentz invariance as the universal symmetry of
local space-time, rather than a symmetry of Maxwell’s
equations in electrodynamics alone. This striking insight
was drawn from two postulates: (i) the speed of light in
vacuum is the same for all observers independent of their
state of motion, and (ii) the laws of physics are the same in
any inertial reference frame. Today, local Lorentz invari-
ance constitutes an integral part of the standard model of
particle physics, as well as the standard theory of gravity,
general relativity. Still, there have been claims that a
violation of Lorentz invariance might arise within a yet
to be formulated theory of quantum gravity [2–7]. Given a
lack of quantitative predictions, the hope is to reveal a tiny
signature of such a violation by pushing test experiments
for Lorentz invariance across the board. An overview of
recent such experiments can be found in [8].

Previous measurements testing the isotropy of the speed
of light, often referred to as modern Michelson-Morley
experiments [9], have compared the resonance frequencies
of optical [10–13] or microwave [14,15] cavities, which
were either actively rotated on a turntable or relied solely
on Earth’s rotation. The most precise of these have tested
the isotropy of c at an accuracy of a few parts in 1016

limited by relative resonator frequency stability.
The experiment presented here improves on this by 1

order of magnitude, based on an optimized cavity design
and rotation on a precision turntable that allows to mini-
mize systematic effects. The basic principle is depicted in
Fig. 1. At the core of the experiment are two crossed
optical Fabry-Pérot resonators. We compare their reso-
nance frequencies by stabilizing two Nd:YAG lasers to
these cavities and taking a beat note measurement. The
resonance frequency � of a linear Fabry-Pérot cavity de-
pends on the speed of light c along its optical axes as given
by

� ¼ mc=2L; (1)

where m is an integer number and L is the length of the

resonator. Thus, to detect an anisotropy of the speed of
light �c ¼ cx � cy we continuously rotate the setup and

look for a modulation of the beat frequency ��. Since the
light in the cavities travels in both directions and c refers to
the two-way speed of light, such an isotropy violation
indicating modulation would occur at twice the rotation
rate.

I. THE EXPERIMENT

The experiment applies a pair of crossed optical high-
finesse resonators implemented in a single block of fused
silica (Fig. 1). This spacer block is a 55 mm� 55 mm�
35 mm cuboid with centered perpendicular bore holes of
10 mm diameter along each axis. Four fused silica mirror
substrates coated with a high-reflectivity dielectric coating
at � ¼ 1064 nm are optically contacted to either side. The
length of these two crossed optical resonators is matched to
better than 2 �m. The finesse of each resonator (TEM00

mode) is 380 000, resulting in a linewidth of 7 kHz. Two
Nd:YAG lasers at � ¼ 1064 nm are stabilized to these
resonators using a modified Pound-Drever-Hall method
[16]. Tuning and modulation of the laser frequency is
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FIG. 1 (color online). Left: High-finesse fused silica resonators
used in this experiment. Right: Basic principle of the experiment.
The frequencies of two lasers, each stabilized to one of two
orthogonal cavities, are compared during active rotation of the
setup. (Photograph by E. Fesseler).
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achieved with piezoelectric actuators attached to the laser
crystal. Mechanical resonances of the piezoelectric actua-
tors at fm ¼ 444 kHz and 687 kHz, respectively, are used
for modulation of the laser frequencies. The light reflected
from the cavities is detected and demodulated at 3fm to
generate an error signal. Thermal effects from dissipation
of laser power inside the resonators are minimized by
coupling less than 50 �W optical power into the cavities.

The cavities are installed in a vacuum chamber to ensure
light propagation in vacuum inside the resonators and to
reduce the influence of environmental noise, e.g. thermal
fluctuations and vibrations in the laboratory, (Fig. 3). By
placing the coupling optics inside the vacuum chamber as
well, a high pointing stability of the laser beams incident
on the resonators could be achieved. The custom-made
vacuum chamber features several stages of thermal insu-
lation and is placed upon an active vibration isolation
system (HWL, 350-M).

To compare the stabilized laser frequencies, fractions of
1 mW of each laser beam are split off and are overlapped
on a fast photodiode to generate a beat note at the differ-
ence frequency �� ¼ �1 � �2. By choosing appropriate
longitudinal modes of the cavities, this frequency is set to
<2 GHz and counted with a sampling time interval of 1 s.
Since the length of the two cavities is defined by a single
monolithic block, drifts due to thermal expansion are
largely the same for both resonators and thus cancel in a
measurement of the difference frequency. We have ob-
served a reduction of the relative drift to below
0:01 Hz=s as compared to 100 Hz=s absolute frequency
drift of the individual resonators.

The stability of the frequency beat note is then charac-
terized by calculating the Allan deviation. There is a
pronounced flicker floor from 1 s to 200 s at a level of
�1:5� 10�15 (Fig. 2) presumably caused by thermal noise
of the mirror substrates. This agrees with an estimate of the
thermal noise level of our cavity based on a model of
Numata et al. [17].

To enable continuous rotation of the resonators we
employ an air bearing turntable which carries the complete
laser stabilization setup (Fig. 3) and rotates at a chosen rate
of Ttt ¼ 45 s. As opposed to using Earth’s rotation alone,
such active rotation allows us to perform hundreds of
rotations per day, while taking advantage of the excellent
midterm frequency stability of the cavities (Fig. 2). On the
other hand, active rotation potentially causes a systematic
modulation of the beat frequency and might thus mimic an
anisotropy signal. For example, gravitational or centrifugal
forces that act on the resonators may get modulated with
the turntable rotation and therefore modulate the length of
the resonators. However, most of these effects lead to a
modulation at a rate of !tt ¼ 2�=Ttt so that they are in
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FIG. 3 (color online). Schematic of the complete rotating setup
(top) and the custom-made vacuum chamber (bottom). TS ¼
Tilt Sensor, PDH ¼ Pound-Drever-Hall laser stabilization elec-
tronics.
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FIG. 2 (color online). Allan deviation calculated from a com-
parison of the two stabilized laser frequencies (a) while the setup
is rotating and (b) with a stationary non rotating setup.
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principle distinguishable from the anisotropy signal
searched for at 2!tt. Moreover, if the data spans more
than one day, systematic effects with a fixed phase in the
laboratory average out in the analysis for an anisotropy of c
that is fixed relative to a sidereal frame. Although such an
analysis helps to discriminate a sidereal anisotropy signal
from systematics, a large effort was still made to reduce
systematic effects both at 2!tt and !tt.

First of all, we use a high precision air bearing turntable
specified for <1 �rad rotation axis wobble. Furthermore,
we also prevent long-term variations of the rotation axis
tilt, caused, for example, by daily fluctuations of the build-
ing tilt of several �rad. For this we apply an active stabi-
lization [12] that keeps the rotation axis vertical to better
than 1 �rad, which reduces the effect from a periodic
deformation of the cavities to frequency variations of less
than 0.1 Hz in amplitude. Effects from varying centrifugal
forces are also reduced below an amplitude of 0.1 Hz by an
active stabilization of the rotation rate. Further measures
include balancing the center of mass of the table (< 1 mm
offset from the rotation axis) and shielding the lasers and
optics outside the vacuum chamber against air currents and
temperature gradients in the laboratory.

At the chosen rotation period of 45 s these measures
reduce residual systematic frequency variations at 2!tt to
amplitudes below 0.1 Hz. This corresponds to a fractional
frequency shift of ��=�0 ¼ 3� 10�16, which is well be-
low the relative frequency stability of the beat note on the
timescale of a single rotation (see Fig. 2). While even faster
rotation would have allowed to acquire more data and thus
improve statistics, it resulted in increased residual system-
atic effects presumably due to modulated centrifugal forces
and was thus not implemented.

Measurements with this setup have been performed
intermittently during a time span of more than one year
from May 2007 to June 2008. The total data includes
recordings of the beat frequency, time and rotation angle
at a sampling interval of 1 s from more than 130 000
turntable rotations.

II. ANALYSIS FOR AN ANISOTROPY SIGNAL

In what follows we first give a phenomenological, i.e.
largely model-independent, description of an anisotropy
signal and present results from a corresponding analysis. In
Secs. II A and II B we then use these results to determine
parameters of two different test theories for Lorentz vio-
lation. Throughout this analysis, we adopt the inertial Sun
centered celestial equatorial coordinate frame (SCCEF) as
used for the analysis of similar, previous such experiments
[18]. This coordinate system has the Z axis pointing north,
the X axis pointing in the direction of the vernal equinox
point, and the Y axis such that ðX; Y; ZÞ form a right-
handed set.

Let us first consider the special case of the apparatus
located at the North Pole with the turntable rotation axis

aligned with Earth’s rotation axis. An anisotropy in the
equatorial XY-plane (cX � cY) then causes a modulation
of the beat frequency with the rotation of the setup. As
noted above, this modulation would be at twice the rotation
frequency, i.e. 2!rot. If we fix the time axis relative to some
arbitrary instant t ¼ 0, we can describe this signal as

�1 � �2

�0
¼ ��

�0

¼ S0 sin2!rottþ C0 cos2!rott; (2)

where �0 � 282 THz and S0, C0 � cX�cY
c . The rotation of

the setup within the sidereal frame of reference is a super-
position of turntable rotation !tt and Earth’s sidereal rota-
tion at !� such that !rot ¼ !� �!tt, plus or minus
depending on the sense of turntable rotation. Since in our
experiment we have !tt � !�, we can describe the an-
isotropy signal as a fast modulation at 2!tt

��

�0

¼ S sin2!tttþ C cos2!ttt; (3)

with amplitudes S and C that slowly vary with Earth’s
rotation as given by

S ¼ �C0 sin2!�tþ S0 cos2!�t; (4)

C ¼ S0 sin2!�tþ C0 cos2!�t: (5)

This daily modulation is essential to discriminate an an-
isotropy signal from constant or slowly varying systematic
effects caused by active rotation as described in Sec. I.
Only systematic effects subjected themselves to a 23.93 h
modulation would mimic such a sidereal anisotropy signal.
Next, we consider an experiment located at an arbitrary

geographical latitude � such that Earth’s axis and the
turntable rotation axis do not coincide anymore. While
this reduces sensitivity to an anisotropy in the equatorial
XY plane, it additionally provides sensitivity to an anisot-
ropy in the XZ and YZ plane. Furthermore, a modulation at
!� in addition to that at 2!� will appear. We thus general-
ize the above expressions to the following anisotropy
signal (see [18] for a formal derivation);

S ¼ S0 þ Ss1 sinð!�ðt� t0ÞÞ þ Sc1 cosð!�ðt� t0ÞÞ
þ Ss2 sinð2!�ðt� t0ÞÞ þ Sc2 cosð2!�ðt� t0ÞÞ; (6)

C ¼ C0 þ Cs1 sinð!�ðt� t0ÞÞ þ Cc1 cosð!�ðt� t0ÞÞ
þ Cs2 sinð2!�ðt� t0ÞÞ þ Cc2 cosð2!�ðt� t0ÞÞ; (7)

where the phase is fixed by t0 chosen in accordance to the
adopted reference frame conventions. Again, this daily
modulation at!� and 2!� makes it possible to distinguish
between a sidereal anisotropy of c and systematic effects
due to the active rotation.
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To analyze our data for a Lorentz violation signal of the
above form we proceed in two steps. First we determine the
modulation amplitudes C and S as modeled in Eq. (3) from

short samples of the data set spanning 10 table rotations
each. These samples extend over 450 s each such that we
may neglect a possible modulation due to Earth’s rotation
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FIG. 4 (color online). Results I. a): Cosine amplitudes C (left) and Sine amplitudes S (right) of a systematic beat frequency
modulation at 2!tt for all n ¼ 13 384 measurement subsets (10 rotations each). t00 is set to an instant when one of the resonators is

oriented along the North-South axis. b) þ c): Amplitudes of a superimposed 2!� (11.96 h) (b), respectively !� (23.93 h)
(c) modulation of C and S, respectively, as expected for an anisotropy of c fixed within a sidereal frame. Each point represents the
amplitudes determined from a 23.93 h set of data. 64 such data sets are included. t0 is set to an instant when the East-West axis of the
laboratory coincides with the Y axis of the adopted SCCEF reference frame. Error bars are omitted for the purpose of clarity except for
one representative data point. d): Amplitudes C0 and S0 as modeled in Eqs. (6) and (7), which are most prone to constant systematic
effects (note the different scale). The mean values and standard errors [shown in red in (b), (c), and (d)] of the modulation amplitudes
as modeled in Eqs. (6) and (7) are C0 ¼ �0:2� 11:7, Cs1 ¼ 15:5� 6:0, Cc1 ¼ �9, 9� 7:2, Cs2 ¼ �1:5� 6:6, Cc2 ¼ 4:0� 6:6 and
S0 ¼ �10:2� 14:4, Ss1 ¼ �3:1� 6:4, Sc1 ¼ �2, 7� 8:1, Ss2 ¼ �5:0� 6:2, Sc2 ¼ �5:5� 6:7 (all values� 10�18).
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within each sample. We use a fit function of the form

��=� ¼ S sinð2!ttðt� t00ÞÞ þ C cosð2!ttðt� t00ÞÞ
þ AS sinð!ttðt� t00ÞÞ þ AC cosð!ttðt� t00ÞÞ
þ A0 þ A1t; (8)

where A0 and A1 account for an arbitrary offset and a linear
drift while AS and AC account for residual systematics at
!tt. In accordance with the reference frame convention of
[18] the starting time t00 is determined by the first instant of

the measurement at which one of the two resonators is
oriented along the North-South direction. We choose a

sample size of 10 rotations for each fit rather than fitting
single rotations to reduce the correlation of a small linear
drift and a sinusoidal variation of the beat frequency. We
found, however, that choosing different sample sizes of
n ¼ 2 to 20 does not significantly change the final results.
From each sidereal day (23.93 h) of measurement we

obtain a distribution of 192 values of S and C, and each
value is assigned the mean time of the respective data
sample. In total we obtain a distribution of 13 384 values
for S and C as shown in Fig. 4(a).
Next, each 23.93 h interval of these distributions is fitted

with Eqs. (6) and (7) to determine whether there is any
daily modulation as a consequence of a sidereal anisotropy
of c. The results are shown in Figs. 4(b) and 4(c) as well as
in Fig. 5. Each graph corresponds to a pair of sidereal
modulation amplitudes and shows a distribution of 64
data points. Each point is determined from one day of the
measurement. The standard error associated with each one-
day data point is on the order of �5� 10�17. If for each
sidereal modulation amplitude we take the mean value of
the corresponding 64 data points, we find a standard error
on the order of �7� 10�18 for each distribution and no
deviation from zero by more than three standard errors.
Figure 4(d) shows the results for the modulation ampli-

tudes S0 and C0. These are solely connected to a modula-
tion at 2!tt [Eqs. (3), (6), and (7)] and thus are strongly
effected by any residual systematic effects fixed to the
laboratory frame. Single points of these amplitudes deviate
by several standard errors from zero, however, over the
complete measurement span of one year, the data points
vary in magnitude and phase and thus average out. The
variation of these amplitudes over time can also be seen
from the bottom graphs in Fig. 5.
Overall, we conclude that no significant evidence for an

anisotropy of c fixed relative to a sidereal frame can be
claimed from this data. This of course assumes otherwise
uncorrelated noise, e.g. no annual phase shift of a nonzero
anisotropy signal.

A. Analysis in the framework of the minimal standard
model extension

The above phenomenological results can be further
evaluated as a test of Lorentz invariance in electrodynam-
ics, adopting the Lorentz violating extension of the stan-
dard model of particle physics by Colladay and Kostelecký
[19,20]. In this standard model extension (SME), Lorentz
violation in electrodynamics is modeled by extending the
Lagrangian of the photonic sectorL ¼ � 1

4F
��F�� with a

term Lext ¼ � 1
4 ðkFÞ����F

��F��, where F�� is the elec-

trodynamic field tensor and ðkFÞ����a tensor that parame-

terizes Lorentz violation with 19 independent components.
Kostelecký and Mewes [18] have shown that with such

an extra term the propagation of light in vacuum can be
described in analogy to the propagation of light in an
anisotropic medium. They have also modeled how this
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anisotropy affects the resonance frequency of a linear
optical Fabry-Pérot resonator. These results can be used
to model the amplitude coefficients of Eqs. (6) and (7) for
our experiment.

The resulting expressions as derived explicitly in [12]
are given in Table II. Ten of the SME parameters are linked
to birefringence and are restricted to values <10�32 by
astrophysical measurements [18,21]. These parameters are
assumed to be zero here. Eight of the remaining nine SME
parameters, grouped into two traceless 3� 3 matrices �e�
and �oþ, can then be determined from the present mea-
surement: Five are parity even and boost independent (�e�,
symmetric) and three are parity odd and boost dependent
(�oþ, antisymmetric). The boost dependent parameters
�oþ lead to an annual phase shift of the anisotropy signal
due to Earth’s orbital revolution (Table II). Note that since

our measurement spans more than one year we are indeed
able to resolve such an annual variation.
A simultaneous fit of the expressions in Table II to the

2� 5 distributions of sidereal modulation amplitudes ob-
tained from our data, yields estimates on the eight SME
parameters as summarized in Table I. Four parameters of
�e� and the three boost dependent parameters of ���oþ
(with Earth’s orbital boost �� ¼ v�=c ¼ 10�4) feature a
standard error of �1� 10�17, while one parameter, �ZZ

e�,
shows a slightly increased error bar of 1:7� 10�17. This is
attributed to the fact that �ZZ

e� enters the C0 component
only, which is most prone to the residual systematic effects
as discussed above.
All together these limits represent a significant improve-

ment of more than 1 order of magnitude over the results of
the best previous experiment by Stanwix et al. [14]. They
also complement results from a newly emerging astrophys-
ical technique, which argues that equivalent limits at the
10�18 level can be obtained by analyzing observations of
ultrahigh energy cosmic rays [22].

B. Analysis in the Mansouri-Sexl framework

We also analyze the data according to the kinematic test
theory of Mansouri and Sexl [23], which builds on earlier
work by Robertson [24]. In this test theory a preferred
frame is assumed in which the speed of light c is isotropic,
usually taken to be the cosmic microwave background.
General, linear transformations, using three free parame-
ters �, �, 	, transform from this preferred frame to a frame
moving at a velocity v. In the moving frame an anisotropy
of the propagation of light then takes the form �c=c ¼
ð�þ 	� 1

2Þv2=c2sin2
 where 
 is the angle between the

direction of the propagation of light and the direction of v.

TABLE II. Modulation amplitudes according to Eqs. (6) and (7) related to photonic SME
parameters. �0 ¼ 1

4 sin
2�, �1 ¼ 1

2 cos� sin�, �2 ¼ 1
4 ð1þ cos2�Þ, �3 ¼ � 1

2 sin�, and �4 ¼ 1
2 �

cos�. Relations are stated to first order in orbital boost. �� ¼ 10�4 is the boost parameter,
� ¼ 37� is the colatitude of the Berlin laboratory and � ¼ 23� is the tilt of Earth’s axis relative
to the SCCEF Z axis. In accordance to the reference frame conventions in [18]. T ¼ 0 is set to
the instant of Earth passing vernal equinox in the year 2000.

SME amplitude

C0: �0ð32 ~�ZZ
e� � ��½ðcos�~�XZ

oþ þ 2 sin�~�XY
oþÞ cos��T þ ~�YZ

oþ sin��T	Þ
Cs1: �1ð�~�YZ

e� þ ��½cos�~�XY
oþ � sin�~�XZ

oþ	 cos��TÞ
Cc1: �1ð�~�XZ

e� þ ��½sin�~�YZ
oþ cos��T � ~�XY

oþ sin��T	Þ
Cs2: �2ð~�XY

e� � ��½cos�~�YZ
oþ cos��T þ ~�XZ

oþ sin��T	Þ
Cc2: �2ð12 ½~�XX

e� � ~�YY
e�	 � ��½cos�~�XZ

oþ cos��T � ~�YZ
oþ sin��T	Þ

S0: 0

Ss1:
�3

�1
Cc1

Sc1: � �3

�1
Cs1

Ss2: � �4

�2
Cc2

Sc2:
�4

�2
Cs2

TABLE I. Estimates on photonic SME parameters obtained
from this work (one sigma errors). For comparison the limits
obtained by Stanwix et al. [14] are also given. All values are
�10�17. �� ¼ v�=c ¼ 10�4 accounts for Earth’s orbital boost.

This work Stanwix et al. [14]

�XY
e� �0:31� 0:73 29� 23

�XZ
e� 0:54� 0:70 �69� 22

�YZ
e� �0:97� 0:74 21� 21

�XX
e� � �YY

e� 0:80� 1:27 �50� 47

�ZZ
e� �0:04� 1:73 1430� 1790

���XY
oþ �0:14� 0:78 �9� 26

���XZ
oþ �0:45� 0:62 �44� 25

���YZ
oþ �0:34� 0:61 �32� 23
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For � ¼ 1
2 , � ¼ 1

2 , 	 ¼ 0, the generalized transformations

reduce to Lorentz transformations and no anisotropy of c is
observed.

A derivation of the signal amplitudes of Eqs. (6) and (7)
in the Robertson-Mansouri-Sexl (RMS) framework has
been given in [12]. The resulting expressions are given in
Table III. Therein we take the velocity of the laboratory
relative to the CMB as the superposition of the solar
system’s velocity vc ¼ 370 km=s, pointing toward c ¼
100� right ascension and 
 ¼ �7� declination and the
annual modulation due to Earth’s orbit with v� ¼
30 km=s.

Simultaneously fitting these expressions to our data
yields a value of ð�þ 	� 1

2Þ ¼ ð4� 8Þ � 10�12. This is

a factor of 10 more stringent as compared to the value of
ð9:4� 8:1Þ � 10�11 given by Stanwix et al. [14].

III. CONCLUSION

In conclusion, we have set a limit on an anisotropy of the
speed of light at a level of �c=c� 1� 10�17, which
allows us to confirm the validity of Lorentz invariance in
electrodynamics at the 10�17 level. This accuracy has been

obtained with optical resonators that feature a relative
frequency stability of ��=�0 � 1� 10�15 in 1 s. The final
precision could be reached by integrating over more than
130 000 rotations relying on a careful suppression of sys-
tematic effects caused by the turntable rotation.
Finally, we note that comparable results from a similar

experiment [25] have been reported after submission of
this manuscript.
The relative frequency stability is currently limited by

thermal noise of the cavity mirrors. Thus, in the longer
term it should be possible to improve the relative frequency
stability by using cryogenic resonators [10,26]. Together
with a reasonable improvement in the suppression of sys-
tematic effects, this would ultimately allow one to test for
potential violations of Lorentz invariance in electrodynam-
ics in the �c=c� 10�20 regime.
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