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Higher derivative field theories with interactions raise serious doubts about their validity due to severe

energy instabilities. In many cases the implementation of a direct perturbation treatment to excise the

dangerous negative-energies from a higher derivative field theory may lead to violations of Lorentz and

other symmetries. In this work we study a perturbative formulation for higher derivative field theories that

allows the construction of a low-energy effective field theory being a genuine perturbations over the

ordinary-derivative theory and having a positive-defined Hamiltonian. We show that some discrete

symmetries are recovered in the low-energy effective theory when the perturbative method to reduce

the negative-energy degrees of freedom from the higher derivative theory is applied. In particular, we

focus on the higher derivative Maxwell-Chern-Simons model which is a Lorentz invariant and parity-odd

theory in 2þ 1 dimensions. The parity violation arises in the effective action of QED3 as a quantum

correction from the massive fermionic sector. We obtain the effective field theory which remains Lorentz

invariant, but parity invariant to the order considered in the perturbative expansion.
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I. INTRODUCTION

The standard model has been extremely well tested at
presently attainable energies, nevertheless it is in general
regarded as an effective theory valid up to certain high
energy scale at which small imprints of a more fundamen-
tal theory can appear. This is assumed in part because the
underlying theory could provide a solution to the ultravio-
let divergences in quantum field theories, incorporate grav-
ity or explain other incomplete issues. With the aim to find
some of the possible low-energy effects of the more fun-
damental theory, usually considered to be a quantum grav-
ity theory or related to a unified theory, several extended
field theory models with small modifications have been
constructed. These small modifications have been pro-
posed mainly through the use of non–higher dimensional
operators with some of them including the possibility of
Lorentz and CPT symmetry violations [1]. On the con-
trary, models containing higher dimensional operators
have been less studied or attractive due to the many diffi-
culties involved in their formulation [2]; even when they
can be incorporated without any symmetry breaking. In
spite of their drawbacks, presently higher derivative field
theories continue to be strongly motivated due to the in-
sights they are believed to provide in the elucidation of the
more fundamental theory. For example, the increase in the
degrees of freedom of a self-interacting harmonic oscilla-
tor due to time derivatives of increasing order obtained in
the calculation of the effective action [3,4], may serve to
evidence that we are approximating a more fundamental
extended object which will become later formally defined
as the wave functional in the quantum theory.

Higher derivatives were first considered in field theories
to get rid of the infinities associated to point particles [5].
They can improve ultraviolet properties in quantum field
theories [6] and gravity [7], although for a contrary point of
view, see [8]. Moreover, they have been obtained from
string theory [9], non commutative theory [10], derivative
expansions of the effective action [3,4] and have been used
in electrodynamics [11], dark energy physics [12,13], in-
flation [14], as ultraviolet regulators [15], Lee-Wick mod-
els [16], and some other contexts [17].
Most of the problems with higher derivative field theo-

ries such as instability, causality violations, nonunitary
evolution and the possible emergence of quantum states
with negative-norm called ghosts states are intimately
connected to the fact that the energy has no bottom. That
is, in general the higher order Hamiltonian, the one pro-
ducing temporal evolution, has an unusual part of the
spectrum taking infinite negative values in addition to the
infinite tower of positive energies. For the noninteracting
theory the negative-energy modes are decoupled from the
positive ones, they evolve independently, which eventually
introduces no harm into the classical or quantum field
theory. However, when turning on the interactions, both
excitations couple, giving origin to Feynman vertices in the
quantum field theory with the possibility of one particle
decaying into the other through the process of creation and
annihilation. Therefore, in compliance with energy conser-
vation, an infinite number of positive and negative energy
states are allowed and actually favored to occur driving the
system to an unlimited particle production. In conse-
quence, the vacuum state in the Fock representation be-
comes rapidly unstable. One can try to overcome these
problems by passing to an alternative realization where the
negative-energy states are exchanged by negative-norm*carlos.reyes@nucleares.unam.mx
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states, however spoiling the unitary evolution of the quan-
tum theory. By using path integrals techniques, it is con-
ceivable to have positive transition amplitudes that behave
as perturbations over the ordinary ones, thereby taking very
small departures from unitarity at low energies [18]. Also,
there are proposals where these problems can be circum-
vented by modifying the standard internal product in aPT
symmetric model [19], modifying the usual energy inter-
pretation [20], or using BRST symmetry [21]. Much of the
instability problem and their related issues can be under-
stood by studying mechanical models for which we
strongly recommend the Refs. [13,22–24].

In many occasions [25–29], onewants to consider higher
derivative theories when they describe small deviations to
an ordinary-derivative theory (ordinary in the sense that
they contain no more than first time-derivatives in the
Lagrangian). In that case an additional problem may arise
since, no matter how weak the higher derivative operators
are coupled, the modified theory, in general, suffers an
increase in the degrees of freedom [30], which ultimately
will depend on how much the theory is constrained.
Therefore, a consistent perturbative formulation requires
us to retain the original number of degrees of freedom
dictated by the ordinary-derivative theory and to reproduce
only the dynamical sector of the higher derivative theory
that is well defined when the higher derivative operators
are taken to zero: the perturbative sector. In addition, in the
presence of interactions these perturbative degrees of free-
dom should have a stable evolution.

To illustrate some of the above problems, consider the
Lagrangian

L ¼ � 1

4
F��F

�� þ g

2
����ðhA�Þð@�A�Þ; (1)

which, by using the field redefinitions

�A� ¼ 1ffiffiffi
2

p ðA� þ gF��Þ; (2)

~A� ¼ gffiffiffi
2

p F��; (3)

can be rewritten as

L ¼ � 1

4
�F��

�F�� � 1

2
~A�

�
1

g2
þh

�
~A�; (4)

where �F�� ¼ @� �A� � @� �A� is the strength tensor and

F�� ¼ 1
2 �

���F�� the pseudovector dual field. At this level

we can emphasize that:
(1) The Lagrangian consists in the sum of a massless

and a massive term both associated to low-energy
and high-energy degrees of freedom, respectively.
The massless Lagrangian is the only one depending
linearly on g so it must be parity odd.

(2) The massive field contributes with negative energy
to the system making the Hamiltonian unbounded
from below.

(3) Since the low-energy and high-energy fields are
decoupled from each other we still have unitarity
and stability in the theory [24].

(4) The mass of the high-energy field depends nonana-
lytically on the parameter g, which goes to infinity
when g ! 0.

(5) By turning on the interactions, for example, via a
fourth power of the gauge field ðA�A

�Þ2, the theory
probably collapses giving all the stability problems
we have mentioned.

(6) In order to approach well the low-energy dynamics,
the nonperturbative massive mode has to be re-
moved from the higher derivative theory which is
not clear how to achieve by making field
redefinitions.

In this paper we study the perturbative method for higher
derivatives theories developed in Refs. [9,31]. The method
allows to retain the low-energy sector of the higher deriva-
tive theory and to construct a positive-defined effective
Hamiltonian order by order in the expansion parameter
g. The perturbative method has been thoroughly applied
in [32–34], and, in particular, it has been implemented as a
starting point to quantize Lorentz violating higher deriva-
tive field theories [34]. In this work we attempt to go a step
further. From the observation that Lagrangian (1) describes
a photon at low energies (taking the limit g ! 0), it sounds
plausible to recover electromagnetic symmetries by re-
moving all the high-energy degrees of freedom from the
higher derivative theory. Thus, the main goal in this paper
is to test whether the symmetries of a higher derivative
field theory can be modified by applying the perturbative
formulation. It is well known that symmetries in an effec-
tive theory may depend on the scheme of approximation
used to obtain the low-energy limit. For example, a direct
analytical expansion in the Hamiltonian or implementing a
order reduction treatment using the equations of motion on
the higher derivative Lagrangian may lead to different
results for Lorentz and other symmetries [35,36]. In order
to implement and test the perturbative method we will
consider the Lagrangian (1).
The organization of the paper is as follows. In Sec. II we

obtain the solutions to the equations of motion for the
higher derivative Maxwell-Chern-Simons (MCS). We de-
velop the Hamiltonian formulation with all the constraints
included and we exhibit the negative energies in the total
energy spectrum produced by the massive field. In Sec. III
we review both the Hamiltonian formulation for higher
derivatives field theories and the perturbative method.
Section IV is the main part of this work. There by imple-
menting the perturbative method we derive the effective
theory and we perform a complete study of its symmetries.
In Sec. IV we give the conclusions and final comments. For
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completeness we provide the reduced Hamiltonian and the
Dirac brackets in the appendix.

II. THE HIGHER DERIVATIVE GAUGE THEORY

In this section we will consider higher derivative cor-
rections to the Maxwell dynamics that appear in a pertur-
bative expansion of the effective action in QED in 2þ 1
dimensions [37]. We focus on the extended Chern-Simons
term which is Lorentz invariant, parity-violating, but no
longer topological as the original Chern-Simons term.

A. Extended Maxwell-Chern-Simons model

Let us consider the extended MCS Lagrangian in 2þ 1
dimensions in the Lorentz gauge

L ¼ � 1

4
F��F

�� þ g

2
����ðhA�Þð@�A�Þ � 1

2
ð@�A�Þ2;

(5)

where g is a small coupling parameter.
A direct calculation from the Lagrangian (5) yields

@L
@ð@�A�Þ

¼ �F�� þ g

2
����hA� � 	��ð@�A�Þ; (6)

@L
@ð@�@�A�Þ ¼ g

2
	������@�A�: (7)

The usual variation with respect to A� gives the general-
ized Euler-Lagrange equation

@L
@A�

� @�
@L

@ð@�A�Þ þ @�@�
@L

@ð@�@�A�Þ ¼ 0; (8)

and substituting Eqs. (6) and (7) leads to the modified
Maxwell equations

@�F
�� þ @�ð@ � AÞ þ g

2
����hF�� ¼ 0; (9)

which can be rewritten as

ð	�� þ g����@�ÞhA� ¼ 0: (10)

Using the plane wave ansatz A�ðxÞ ¼ ��ðkÞe�ik�x, we find
the two solutions

k2 ¼ 0; k2 ¼ 1

g2
: (11)

Therefore, we see that the gauge field excitations are
described by a massless and a massive mode [38]. Here
we will use the convention 	�� ¼ diagð1;�1;�1Þ to-
gether with the notation k� ¼ ðk0;kÞ.

B. The Hamiltonian formulation

The Hamiltonian formulation for systems with higher
time-derivatives was developed long time ago by
Ostrogradski [30]. Accordingly, we consider A�ðxÞ and

_A�ðxÞ as two independent configuration field variables

with their corresponding conjugate momenta given by

P� ¼ @L

@ _A�

� @��

@t
; �� ¼ @L

@ €A�

; (12)

which follows from Eq. (44) of the next section.
By using the Eqs. (6) and (7) we can write down the

conjugate momenta

P� ¼ �F0� � g

2
��0�hA� � 	0�ð@ � AÞ � g

2
����@� _A�;

�� ¼ g

2
����@�A�; (13)

which read in components

P0 ¼ �ð@ � AÞ � g

2
�ij@i _Aj; (14)

Pi ¼ F0i þ g

2
�ijhAj þ g

2
�ij@0F0j; (15)

�0 ¼ g

2
�ij@iAj; (16)

�i ¼ �g

2
�ijF0j: (17)

We are using the conventions

�012 ¼ �12 ¼ þ1; �012 ¼ �12 ¼ þ1;

�0ij ¼ �ij; i; j ¼ 1; 2:
(18)

Now, considering the generalized Legendre transformation
H C ¼ P� _A� þ�� €A� �L the canonical Hamiltonian

density H C turns out to be

H C ¼ P0 _A0 þ 2

g
�ijPi�j � Pið@iA0Þ þ 1

4
F2
ij �

2

g2
�2

i

��iðr2AiÞ þ g

2
�ijr2A0ð@iAjÞ þ 1

2
ð@ � AÞ2;

(19)

where we have used Pi _Ai ¼ 2�ijPi�j=g� Pi@iA0 and

F2
0i ¼ 4�2

i =g
2.

Examining Eqs. (14), (16), and (17) we deduce the four
primary constraints


0 ¼ �0 � g

2
�ij@iAj; 
1 ¼ P0 þ ð@ � AÞ þ g

2
�ij@i _Aj;

’i ¼ �i þ g

2
�ijF0j: (20)

Using the canonical Poisson brackets for the extended
phase space variables

fA�ðt;xÞ; P�ðt;x0Þg ¼ 	���
3ðx� x0Þ;

f _A�ðt;xÞ;��ðt;x0Þg ¼ 	���
3ðx� x0Þ;

(21)

and after a straightforward calculation we find the non-
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trivial elements of the algebra of constraints

f
1ðxÞ; 
0ðx0Þg ¼ �3ðx� x0Þ;
f’iðxÞ; 
1ðx0Þg ¼ �g�ij

@

@xj
�3ðx� x0Þ;

f’iðxÞ; ’jðx0Þg ¼ g�ij�3ðx� x0Þ:
(22)

Therefore, according to Dirac classification, we see that all
the primary constraints fall into second class constraints
category.

In order to search for additional constraints in the theory
called secondary constraints, it is necessary to evolve the
primary constraints with the total Hamiltonian, which is
defined adjoining the primary constraints 
 ¼ f
0; 
1; ’

ig
as follows

HT ¼
Z

d3xðH C þ �0
0 þ �1
1 þ �i’iÞ; (23)

where the variables f�0; �1; �
ig play the role of Lagrange

multipliers. However, given that all primary constraints
satisfy the weak condition

f
;HTg � 0; (24)

there are no generations of secondary constraints in the
theory. In addition, the Lagrange multipliers can be deter-
mined by comparing the Hamilton equations using the total
Hamiltonian (23) with the original ones of Eq. (10). After
some algebra we find

�0 ¼ €A0; �1 ¼ 0; �i ¼ �@0F0i: (25)

In this way the total Hamiltonian is shown to be consistent
with the equations of motion (23) and the set of conjugate
momenta (14)–(17). As an aside, let us mention that second
class constraints can be imposed strongly to zero in which
case we shall require the use of the reduced Hamiltonian
H R and the Dirac brackets given in the appendix.

C. The negative-energy mode

To begin, let us express the general solution of Eq. (10)
as a sum of a massless and massive gauge fields as follows

A�ðxÞ ¼ �A�ðxÞ þ ~B�ðxÞ; (26)

such that �A�ðxÞ and ~B�ðxÞ satisfy the equations of motion

h �A� ¼ 0; (27)

ð	�� þ g����@�Þ ~B� ¼ 0: (28)

Now, let us expand both gauge fields in plane wave solu-
tions

�A�ðxÞ ¼
Z d2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þ32 �k0
q X2

�¼0

"ð�Þ� ðkÞða�ðkÞe�ið �k0x0�k�xÞ

þ a��ðkÞeið �k0x0�k�xÞÞ; (29)

~B�ðxÞ ¼
Z d2kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þ3 ~k0
q ð	�ðkÞbðkÞe�ið~k0x0�k�xÞ

þ 	�
�ðkÞb�ðkÞeið~k0x0�k�xÞÞ; (30)

where �k0 ¼ jkj and ~k0 ¼ 1
g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2jkj2p

correspond to the

massless and massive positive frequencies, respectively,
see (11). As in the usual case we are free to choose the

massless polarization vectors "ð�Þ to satisfy any normaliza-
tion condition. Hence, we take

"ð�ÞðkÞ � "ð�0ÞðkÞ ¼ 	��0
: (31)

However, according to Eq. (28) the massive polarization
vector is uniquely determined and has necessarily to satisfy
the normalization condition

	ðkÞ � 	�ðkÞ ¼ �1: (32)

One finds for both polarization vectors the relations

����"ð�
0Þ

� ðkÞ"ð�Þ� ðkÞ ¼ ���
0�00

"ð�
00Þ

� ðkÞ;
�ij	iðkÞ	�

j ðkÞ ¼ �igk0; 	ðkÞ � 	ðkÞ ¼ 0;

	ðkÞ � k ¼ 0; 	iðkÞ ¼ 	ið�kÞ:
(33)

Let us write the canonical Hamiltonian density in the form

H C ¼ �1
2ð _A�

_A� � A�r2A�Þ þ �H C; (34)

where the linear part in g is given by

�H C ¼ g

2
�ij _AihAj � g

2
���� _A�@� _A�

þ g

2
����A�r2@�A�: (35)

After a lengthy manipulation of replacing the gauge fields
in (34) and using the properties of the polarization vectors
(33) the mode decomposition of the canonical Hamiltonian
is

HC ¼
Z

d2kð �k0½a�ð1Það1Þ þ a�ð2Það2Þ � a�ð0Það0Þ� � ~k0b
�bÞ:
(36)

We observe the negative-energy contribution coming from
the time component of the massless gauge field in the

quantity a�ð0Það0Þ which may be removed for instance
switching to the physical Coulomb gauge as performed
in the usual Maxwell theory. However, irrespective of
which gauge is chosen, the negative-energy contribution
from the massive mode will persist making the total energy
unbounded from below. At this level a revision of the
degrees of freedom is straightforward, see [39].

III. A BACKGROUND REVIEW

In this section, the emphasis will be both to recall the
canonical formulation for higher derivative field theories
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and to introduce the perturbative method according to the
Refs. [9,31,32] that will be used later on.

A. Hamiltonian formulation for higher derivative field
theories

Let us start with the action

S ¼
Z

d4xLð
; @�
; @�@�
; . . . ; @�1
@�2

. . . @�N

Þ;
(37)

which for simplicity we assume to be a function of a scalar
field and to depend on a finite number of N derivatives. A

general derivation allowing for more general types of fields
and infinitely many derivatives can be found in [40].
The standard procedure of extremizing the action (37)

leads to the generalized Euler-Lagrange equation

@L
@


� @�

�
@L

@ð@�
Þ
�
þ @�@�

�
@L

@ð@�@�
Þ
�
� . . .

þ ð�1ÞN@�1
. . . @�N

�
@L

@ð@�1
. . . @�N


Þ
�
¼ 0; (38)

and analogously to the generalized energy-momentum
tensor

T�
� ¼ ���

�Lþ
�

@L
@ð@�
Þ

�
@�
�

�
@�1

�
@L

@ð@�@�1

Þ

�
@�
�

�
@L

@ð@�@�1

Þ

�
@�1

@�


�

þ
�
@�1

@�2

�
@L

@ð@�1
@�2

@�
Þ
�
@�
� @�1

�
@L

@ð@�1
@�2

@�
Þ
�
@�2

@�
þ
�

@L
@ð@�1

@�2
@�
Þ

�
@�1

@�2
@�


�

..

.

. . .þ ð�1ÞN�1

�
@�1

. . . @�N�1

�
@L

@ð@�1
. . . @�N�1

@�
Þ
�
@�
� @�1

. . . @�N�2

�
@L

@ð@�1
. . . @�N�1

@�
Þ
�
@�N�1

@�
þ . . .

þ ð�1ÞN�1

�
@L

@ð@�1
. . . @�N�1

@�
Þ
�
@�1

. . .@�N�1
@�


�
:

Using the Euler-Lagrange equation together with

@�L ¼
�
@L
@


�
@�
þ

�
@L

@ð@�1

Þ

�
@�1

@�
þ
�

@L
@ð@�1

@�2

Þ

�
@�1

@�2
@�
 . . .þ

�
@L

@ð@�1
. . . @�N�1


Þ
�
@�1

. . . @�N�1
@�
; (39)

it can be proven that the energy-momentum tensor satisfies
the conservation equation @�T

�
� ¼ 0, for a detailed deri-

vation see Ref. [40].
The corresponding canonical formulation is given by a

phase space of dimension 2N per space point, been
characterized by N configuration field variables which by

introducing the notation can be written as Q0ðt;xÞ ¼

ðt;xÞ; Q1ðt;xÞ ¼ 
ð1Þðt;xÞ; . . . ; QN�1ðt;xÞ ¼


ðN�1Þðt;xÞ, where


ðnÞðt;xÞ ¼ @n
ðt;xÞ
@tn

; (40)

together with their corresponding conjugate momenta
P0ðt;xÞ; P1ðt;xÞ; . . . ; PN�1ðt;xÞ, and the canonical Hamil-
tonian density which is identified with the component T0

0 ,

namely

H C ¼ �Lþ @L
@ð@0
Þ @0
�

�
@�1

�
@L

@ð@0@�1

Þ

�
@0
�

�
@L

@ð@0@�1

Þ

�
@�1

@0


�

þ
�
@�1

@�2

�
@L

@ð@�1
@�2

@0
Þ
�
@0
� @�1

�
@L

@ð@�1
@�2

@0
Þ
�
@�2

@0
þ
�

@L
@ð@�1

@�2
@0
Þ

�
@�1

@�2
@0
�

..

.

. . .þ ð�1ÞN�1

�
@�1

. . . @�N�1

�
@L

@ð@�1
. . . @�N�1

@0
Þ
�
@0
� @�1

. . . @�N�2

�
@L

@ð@�1
. . .@�N�1

@0
Þ
�
@�N�1

@0
þ . . .

þ ð�1ÞN�1

�
@L

@ð@�1
. . . @�N�1

@0
Þ
�
@�1

. . .@�N�1
@0


�
: (41)
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The strategy to determine the conjugate momenta in the
above expression will be to perform successive spatial
integration by parts in the fields to subsequently regroup
the quantities multiplying the pure time-derivative terms
@n0
. Therefore, after successive integration by parts, the
canonical Hamiltonian density (41) can be given in terms
of space phase variables as

H C ¼ P0ðxÞ _Q0ðxÞ þ P1ðxÞ _Q1ðxÞ þ . . .

þ PN�1ðxÞ _QN�1ðxÞ �L; (42)

from we read the explicit expressions for conjugate mo-
menta

PN�1ðt;xÞ ¼ @L
@QN

; (43)

Piðt;xÞ ¼ @L
@Qiþ1

þ XN�i�1

j¼1

ð�1Þjðjþ iþ 1Þ!
j!ðiþ 1Þ! @m1

. . . @mj

�
�

@L
@@m1

. . .@mj
Qiþ1

�
� @Piþ1

@t
; (44)

the index i runs trough i ¼ 0; . . . ; N � 2 and @mk
stands for

spatial derivatives. We have the compact expressions for
the canonical Hamiltonian and the generalized symplectic
form

HC ¼
Z

d3x

�XN�1

i¼0

Pi
_Qi �L

�
; (45)

�ðtÞ ¼
Z

d3x

�XN�1

i¼0

dPiðx; tÞ ^ dQiðx; tÞ
�
: (46)

The basic Poisson brackets which can be read off from the
above symplectic form are

fQiðt;xÞ; Pjðt;x0Þg ¼ �ij�
3ðx� x0Þ;

i; j ¼ 0; . . . ; N � 1: (47)

Let us remark that due to possible degeneracy of the higher
derivative theory, there may not be a unique solution ex-
pressing Qiðx; tÞ in terms of the other canonical variables,
occurring when ð @2L

@QN@QN
Þ ¼ 0. In this case one can follow

the Hamiltonian treatment for singular higher derivative
systems developed in Ref. [41].

B. The perturbative method

Let us consider a framework of a system having a
Lagrangian density of the form

L ¼ L0ð
; @�
Þ þ gL1; (48)

where L1 is an arbitrary function of the fields (not neces-
sarily quadratic) that contains all the higher order deriva-
tive dependence. In the limit of the coupling parameter

g ! 0we recover the ordinary derivative theory defined by
L0.
The perturbative method for a canonically formulated

higher derivative theory can be described in the following
steps:
(i) In order to obtain the appropriate Hamiltonian to

order gp one starts by iteratively solving the equation
of motion to the order gp�1.

(ii) Using the above iterated equation we express all the

time-derivatives of the fields
ðqÞðt;xÞwith q > 2 in

terms of the first-order variables 
ðt;xÞ; _
ðt;xÞ,
called from now velocity phase space variables,
and their possible spatial derivatives. This will in-
troduce further contributions in powers of the per-
turbation parameter g which need to be maintained
only up to the required order.

(iii) We substitute the above expressions 
ðqÞðt;xÞ, q >
2 into the conjugate momenta Pj, the canonical

Hamiltonian and the generalized symplectic form
�ðtÞ. This allows to recast up to the order p in
terms of velocity phase space variables the first-
order expressions

PðpÞ
j ¼ PðpÞ

j ð
; _
Þ þOðgpþ1Þ; (49)

HðpÞ ¼
Z

d3xH ðpÞð
; _
Þ þOðgpþ1Þ; (50)

�ðpÞðtÞ ¼
ZZ

d3xd3y�̂ðpÞðt;x; yÞ
� ðd _
ðt;xÞ ^ d
ðt; yÞÞ þOðgpþ1Þ; (51)

From above we can deduce the Poisson bracket

f
ðt;xÞ; _
ðt; yÞg ¼ ð�̂ðpÞðt;x; yÞÞ�1; (52)

the hat in �̂ðpÞðt;x; yÞ denotes possible dependence
on spatial derivatives.

(iv) In order to diagonalize (51), we search for an
invertible change of variables from velocity phase

variables ð
ðt;xÞ; _
ðt;xÞÞ to new canonical ones

ð ~Qð
; _
Þ; ~Pð
; _
ÞÞ in such a way that the new

Poisson bracket f ~Qðt;xÞ; ~Pðt; yÞg are canonical to
the order considered. That is to say

f ~Qðt;xÞ; ~Pðt; yÞg ¼
Z

d3zd3z0
�
� ~Qðt;xÞ
�
ðt; zÞ

� ~Pðt; yÞ
� _
ðt; z0Þ

� � ~Qðt;xÞ
� _
ðt; z0Þ

� ~Pðt; yÞ
�
ðt; zÞ

�

� f
ðt; zÞ; _
ðt; z0Þg
¼ �3ðx� yÞ þOðgpþ1Þ: (53)

(v) Having the kinematical theory completed we pro-
ceed with the dynamics of the theory. Thus, replac-
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ing the new variables we rewrite the Hamiltonian as

HðpÞ ¼
Z

d3xH ðpÞð
ð ~Q; ~PÞ; _
ð ~Q; ~PÞÞ; (54)

and using the Hamilton equation

_~Q ¼ f ~Q;HðpÞg; (55)

we write conjugate momenta ~P in terms of ~Q and _~Q.
Finally, by using the Legendre transformation we
arrive to the effective Lagrangian density

~L ¼ ~PðQ; _~QÞ _~Q�H ð ~Q; _~QÞ: (56)

Therefore, in terms of the new variables ~Q, ~P both

the Hamiltonian densityH ð ~Q; ~PÞ, together with the
Poisson bracket f ~Qðt;xÞ; ~Pðt; yÞg ¼ �3ðx� yÞ de-
fine the physical approximation of the system to
the order considered. The first-order Hamiltonian
will be bounded from below provided the initial
one obtained from L0 is. One can check that the
Euler-Lagrange equations reproduce those of the
original system to the order considered; a proof of
self-consistency to all orders is provided in a me-
chanical setting in Ref. [33].

IV. THE EFFECTIVE THEORY

In this section we describe the main ingredients and
results of the application of the perturbative method to
the extended MCS theory [42]. The method has been
previously applied for fermions and scalars in
Refs. [33,34].

A. The reduced phase space

We start by iteratively solving the equation of motion
(10) to the lowest order approximation (p ¼ 1). A first
iteration gives

hA� ¼ g2ð@�hð@ � AÞ �h2A�Þ � Oðg2Þ: (57)

Therefore, to the order considered, our iterated equation of

motion is the basic equation

€A� ¼ r2A� þOðg2Þ: (58)

Replacing into the set of canonical variables (14) we arrive
to

Pi ¼ F0i þ g

2
�ijr2Aj � g

2
�ij@j _A0 þOðg2Þ; (59)

P0 ¼ �ð@ � AÞ � g

2
�ij@i _Aj; (60)

�0 ¼ g

2
�ij@iAj; (61)

�i ¼ �g

2
�ijF0j: (62)

The perturbed Hamiltonian density (34) gets expressed by

H ð1Þ ¼ � 1

2
ð _A2

0 � A0r2A0Þ þ 1

2
ð _A2

i � Air2AiÞ
� g�ij@i _Aj

_A0 þ g�ijr2Aj
_Ai þ g�ij@iAjr2A0

þOðg2Þ; (63)

and the perturbed symplectic form

�ð1ÞðtÞ ¼
Z

d2xðd _Ai ^ dAi � d _A0 ^ dA0

� g�ij½dð@i _AjÞ ^ dA0 þ dð@j _A0Þ ^ dAi�
þ g

2
�ij½d _Ai ^ d _Aj � dðr2AiÞ ^ dAj�Þ þOðg2Þ:

(64)

Let us consider the equivalent two-point split expression

�ð1ÞðtÞ ¼ 1

2

ZZ
d2xd2x0�̂ð1Þ

abðt;x;x0Þdzaðt;xÞ ^ dzbðt;x0Þ;
(65)

where

�̂
ð1Þ
abðt;x;x0Þ ¼

0 0 0 1 �g@2 g@1
0 0 �gr2 g@2 �1 0
0 gr2 0 �g@1 0 �1
�1 g@2 �g@1 0 0 0
�g@2 1 0 0 0 g
g@1 0 1 0 �g 0

2
66666664

3
77777775
�3ðx� x0Þ; (66)

and the notation is such that za ¼ ðA0; A1; A2; _A0; _A1; _A2Þ with a ¼ 1, 2, 3, 4, 5, 6. Notice that a minus sign has appeared in
the linear derivatives due to an integration by parts. Also, here and in the following, to avoid ambiguities we will consider
the action of the derivatives with respect to the unprimed coordinate x.

The inverse symplectic matrix is easily computed to give
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ð�̂ð1Þ
abðt;x;x0ÞÞ�1 ¼

0 0 0 �1 g@2 �g@1
0 0 g �g@2 1 0
0 �g 0 g@1 0 1
1 �g@2 g@1 0 0 0
g@2 �1 0 0 0 �gr2

�g@1 0 �1 0 gr2 0

2
666666664

3
777777775
�3ðx� x0Þ: (67)

It can be checked that the usual properties for the matrices
(66) and (67), such as the antisymmetry property

�̂
ð1Þ
abðt;x;x0Þ ¼ ��̂ð1Þ

baðt;x0;xÞ; (68)

together with the inverse relation

Z
d2x0�̂ð1Þ

abðt;x;x0Þð�̂ð1Þ
bc ðt;x0;x00ÞÞ�1 ¼ �ac�

3ðx�x00Þ;
(69)

are satisfied up to linear order in g.
Now, considering that

fzaðt;xÞ; zbðt;x0Þg ¼ ð�̂ð1Þ
abðt;x;x0ÞÞ�1; (70)

from (67) the nonzero brackets are

fA0ðt;xÞ; _A0ðt;x0Þg ¼ ��3ðx� x0Þ;
fAiðt;xÞ; _Ajðt;x0Þg ¼ �ij�

3ðx� x0Þ;
fAiðt;xÞ; Ajðt;x0Þg ¼ g�ij�3ðx� x0Þ;
fAiðt;xÞ; _A0ðt;x0Þg ¼ �g�ij

@

@xj
�3ðx� x0Þ;

fA0ðt;xÞ; _Aiðt;x0Þg ¼ g�ij
@

@xj
�3ðx� x0Þ;

f _Aiðt;xÞ; _Ajðt;x0Þg ¼ �g�ijr2�3ðx� x0Þ:

(71)

B. New canonical variables

Until now we have the effective theory given in terms of
velocity phase space variables with their corresponding
Poisson brackets exhibiting the non standard form (71).
According to the method we need to search for a new set of
canonical variables for which the Poisson brackets (71) are
diagonal. The effective theory will be constructed in terms
of these variables. Therefore, let us consider the invertible
change of variables

A ! ~AðA; _AÞ; (72)

_A ! ~�ðA; _AÞ; (73)

such that (64) can be put in the form

�ð1ÞðtÞ ¼
Z

d2xd ~��ðt;xÞ ^ d ~A�ðt;xÞ þOðg2Þ; (74)

or alternatively

f ~A�ðAðt;xÞ; _Aðt;xÞÞ; ~��ðAðt; yÞ; _Aðt; yÞÞg
¼ 	���

3ðx� yÞ þOðg2Þ; (75)

which may be verified with the use of (71). It is important
to mention that the above realization can be achieved by
more than one set of canonical variables. Hence, in order to
fix a unique set of canonical variables we will impose
additional criteria on the gauge field redefinition: These

requirements are: (i) we choose the new gauge field ~A� to
transform covariantly under Lorentz transformations and
(ii) to satisfy the same gauge fixing condition as the old
one.
Here the simplest way to proceed is to select a new set of

canonical variables and check if Eqs. (74) and (75) together
with the two above conditions are verified. Therefore, let us
consider the twisted gauge redefinition

~A� ¼ A� þ g

2
����@�A�; (76)

which in components becomes

~A i ¼ Ai þ g

2
�ijF0j; (77)

~A 0 ¼ A0 þ g

2
�ij@iAj: (78)

We define the corresponding canonical momenta by

~� 0 ¼ �ð@ � AÞ; (79)

~� i ¼ F0i þ g

2
�ijr2Aj � g

2
�ij@j _A0 � g

2
�lm@i@lAm: (80)

One can check that the new gauge field respects the gauge
fixing condition


G:F ¼ ð@ � AÞ ¼ ð@ � ~AÞ; (81)

and transforms covariantly under Lorentz transformations,
which we further prove.
It is not a difficult task to check that the new variables

diagonalize the Poisson brackets, using (71) let us compute
the Poisson brackets

f ~A0ðt;xÞ; ~�0ðt;x0Þg ¼
�
A0 þ g

2
�ij@iAj;�ð@ � AÞ

�

¼ �
�
A0 þ g

2
�ij@iAj; _A0 � @kAkÞ

�

¼ �3ðx� x0Þ þOðg2Þ; (82)
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f ~Aiðt;xÞ; ~�jðt;x0Þg ¼
�
Ai þ g

2
�imF0m; F0j þ g

2
�jkr2Ak

� g

2
�jm@m _A0 � g

2
�lm@j@lAm

�

¼ 	j
i�

3ðx� x0Þ þOðg2Þ; (83)

and

f ~Aiðt;xÞ; ~Ajðt;x0Þg ¼
�
Ai þ g

2
�imF0m; Aj þ g

2
�jmF0m

�

¼ g�ij þ g

2
�jm�im � g

2
�im�mj þOðg2Þ

¼ 0; (84)

from where we finally arrive to

f ~A�ðt;xÞ; ~��ðt;x0Þg ¼ 	���
3ðx� x0Þ þOðg2Þ: (85)

The same result follows by considering the inverse change
of variables

A0 ¼ ~A0 � g

2
�ij@i ~Aj;

Ai ¼ ~Ai � g

2
�ij ~�j;

_A0 ¼ @k ~Ak � ~�0 � g

2
�ij@i ~�

j;

_Ai ¼ ~�i þ @i ~A0 þ g

2
�ij@j@k ~Ak � g

2
�ij@j ~�0 � g

2
�ijr2 ~Aj;

(86)

and replacing in the perturbed symplectic form

�ð1ÞðtÞ ¼
Z

d2xðd _Ai ^ dAi � d _A0 ^ dA0

� g�ij½dð@i _AjÞ ^ dA0 þ dð@j _A0Þ ^ dAi�
þ g

2
�ij½d _Ai ^ d _Aj � dðr2AiÞ ^ dAj�Þ; (87)

which after some algebra produces

�ð1ÞðtÞ ¼
Z

d2xd ~��ðt;xÞ ^ d ~A�ðt;xÞ; (88)

in agreement with the result (85).

C. The low-energy effective Lagrangian

Recall from the Eq. (63) the canonical Hamiltonian
density written in the old variables

H ð1Þ ¼ �1
2
_A2
0 þ 1

2A0r2A0 þ 1
2
_A2
i � 1

2Air2Ai

� g�ij@i _Aj
_A0 þ g�ijr2Aj

_Ai þ g�ij@iAjr2A0;

(89)

which with the use of the inverse transformations has to be
expressed in terms of the new canonical variables. Using
the inverse transformations (86) we have the expressions

�1

2
_A2
0 ¼�1

2
ð@k ~AkÞ2 � 1

2
ð ~�0Þ2 þ ~�0ð@k ~AkÞ

þg

2
�ij@i ~�

jð@k ~Ak � ~�0Þ;

�1

2
ð@iA0Þ2 ¼�1

2
ð@i ~A0Þ2 þ g

2
�lmð@i@l ~AmÞð@i ~A0Þ;

1

2
_A2
i ¼

1

2
ð ~�iÞ2 þ 1

2
ð@i ~A0Þ2 þ ~�ið@i ~A0Þ

þ ~�i

�
g

2
�ij@j@k ~Ak� g

2
�ij@j ~�0 � g

2
�ijr2 ~Aj

�

�g

2
�ij@i ~A0r2 ~Aj;

1

2
ð@iAjÞ2 ¼ 1

2
ð@i ~AjÞ2 �g

2
�jk@i ~�

k@i ~Aj; (90)

and the ones linear in g

�g�ij@i _Aj
_A0 ¼ �g�ij@i ~�

jð@k ~AkÞ þ g�ijð@i ~�jÞ ~�0;

g�ijr2Aj
_Ai ¼ g�ij ~�ir2 ~Aj þ g�ijr2 ~Ajð@i ~A0Þ;

g�ij@iAjr2A0 ¼ g�ijð@i ~AjÞr2 ~A0: (91)

Replacing in the Hamiltonian, we arrive to

H ð1Þ ¼ �1
2 ~�

2
0 þ 1

2ð~�iÞ2 þ ~�0ð@k ~AkÞ � ~A0ð@i ~�iÞ
þ 1

4F
2
ijð ~AÞ; (92)

where Fijð ~AÞ ¼ @i ~Aj � @j ~Ai.

Considering the Hamilton equation _~A� ¼ f ~A�;H
ð1Þg we

obtain the canonical momenta in terms of configuration
variables and their first time derivatives

~� 0 ¼ �ð@ � ~AÞ; ~�i ¼ _~Ai � @i ~A0: (93)

The effective Lagrangian is obtained via the Legendre
transformation

~L ¼ ~�� _~A� �H ð1Þð ~A; ~�Þ: (94)

Finally, using the relations (93) we obtain

~L ¼ �1
4F��ð ~AÞF��ð ~AÞ � 1

2ð@ � ~AÞ2: (95)

Therefore, considering that ~A� ¼ A� þ g
2 ����@

�A� and

F��ð ~AÞ ¼ @� ~A� � @� ~A� the Maxwell theory is correctly

reproduced by setting g ! 0.
The standard variation produces the equation of motion

h ~A� ¼ 0; (96)

and by considering plane waves with respect to the new
gauge field gives the solution k2 ¼ 0. We see that only the
massless solution has been retained in the effective field
theory while the massive mode has been removed.
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1. Gauge invariance

Recall that classically appropriate conditions can be

imposed on the boundary data in order to set @ � ~A ¼ 0
everywhere so we can lift this condition from the effective
theory. Therefore, let us consider the Lagrangian

~L ¼ �1
4F��ð ~AÞF��ð ~AÞ; (97)

which is manifestly invariant under the gauge transforma-

tion ~A0
� ¼ ~A� � @��.

2. Lorentz symmetry

Lorentz invariance follows naturally in the effective

theory by proving covariance of the gauge field ~A�.
Therefore, consider the Lorentz transformation

~A� ! ~A�0 ¼ A�0 þ g

2
��

0�0�0
@�0A�0 ; (98)

and replace the transformation for the original fields

A�0 ¼ ��0
�A

�; (99)

together with the relation ��
0�0�0

��
�0��

�0 ¼ �����
�0
� . This

gives the desired relation

~A�0 ¼ �
�0
�

�
A� þ g

2
����@�A�

�
¼ �

�0
�
~A�: (100)

3. CPT symmetries

Parity transformation P is defined in 2þ 1 dimensions
by

x0 ! x0; x1 ! �x1; x2 ! x2; (101)

which corresponds to a reflection in just one of the spatial
axes [44]. Notice that this transformation yields the im-
proper transformation defined to have det� ¼ �1, instead
of the space inversion x ! �x one is familiar in three
spatial dimensions.

The original gauge field transforms as

PA0ðx0;xÞP�1 ¼ A0ðx0;x0Þ;
PA1ðx0;xÞP�1 ¼ �A1ðx0;x0Þ;
PA2ðx0;xÞP�1 ¼ A2ðx0;x0Þ;

(102)

where x ¼ ðx1; x2Þ and x0 ¼ ð�x1; x2Þ.
From (76) we have in components

~A0ðx0;xÞ ¼ A0ðx0;xÞ þ g

2
ð@1A2ðx0;xÞ � @2A1ðx0;xÞÞ;

~A1ðx0;xÞ ¼ A1ðx0;xÞ þ g

2
ð@2A0ðx0;xÞ � @0A2ðx0;xÞÞ;

~A2ðx0;xÞ ¼ A2ðx0;xÞ þ g

2
ð@0A1ðx0;xÞ � @1A0ðx0;xÞÞ:

(103)

In order to find expressions analogous to those of

Eqs. (102) it is convenient to set A�ðxÞ ¼ ��ðkÞe�ik�x,
where Eq. (103) becomes

~A�ðx0;xÞ ¼ T
�
� ðk0;kÞA�ðx0;xÞ; (104)

such that

Tðk0;kÞ ¼
1 �igk2=2 igk1=2

�igk2=2 1 �igk0=2
igk1=2 igk0=2 1

2
64

3
75: (105)

Under a parity transformation we find

P ~A�ðx0;xÞP�1 ¼ R
�
� ðk0;kÞA�ðx0;x0Þ; (106)

with

Rðk0;kÞ ¼
1 igk2=2 �igk1=2

�igk2=2 �1 �igk0=2
�igk1=2 �igk0=2 1

2
64

3
75: (107)

We need the original gauge field evaluated at x0, so from
(104) we get

~A�ðx0;x0Þ ¼ T�
� ðk0;kÞA�ðx0;x0Þ: (108)

Replacing (108) in (106) we obtain

P ~A�ðx0;xÞP�1 ¼ ~T�
� ðk0;kÞ ~A�ðx0;x0Þ; (109)

where the matrix of the transformation ~Tðk0;kÞ ¼
Rðk0;kÞT�1ðk0;kÞ is find to be

1 igk2 �igk1
�igk2 �1 �igk0
�igk1 �igk0 1

2
64

3
75 !

1 �g@02 g@01
g@02 �1 g@00
g@01 g@00 1

2
64

3
75:

(110)

From (95) and (110) we have that the Lagrangian trans-
forms as

P ~LðxÞP�1 ¼ ~Lðx0Þ þOðg2Þ; (111)

where we have used ~TT	 ~T ¼ 	þOðg2Þ. We conclude
that the effective theory is invariant under parity trans-
formations to the order considered. One can in addition
check that the effective Lagrangian is time reversal T and
charge conjugation C invariant.

V. CONCLUSIONS

In this paper we have studied higher derivative field
theories within a framework in which their corresponding
higher derivative operators are regarded as small correc-
tions to an ordinary-derivative field theory. Historically, the
use of higher derivative operators have been avoided in
field theories due to the many problems encountered with
their formulation. Perhaps the most significant ones are the
proliferation of extra degrees of freedom with respect to
the ordinary ones therefore going against the premise that
corrections should introduce small deviations together with
the appearance of Hamiltonians being unbounded from
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below. Indeed, these problems arise regardless of whether
these corrections appear as free or interacting terms in the
Lagrangian. In general the solutions in the higher deriva-
tive theory can be classified according to their analytical
behavior in the limit g ! 0. We associate the analytical
solutions to low-energy degrees of freedom and the non-
analytical solutions to high-energy degrees of freedom. In
this regard, we see that the appropriate way of treating such
corrections as small perturbations is to implement tech-
niques in order to control and subsequently remove the
high-energy degrees of freedom. The perturbative formu-
lation [9,31] accomplishes this by suppressing the excita-
tion of high-energy modes in a way consistent with the
exact evolution and only allowing further excitations of the
low-energy modes already present in the zeroth order
theory.

The main goal in this work has been to test the symme-
tries in the low-energy regime of higher derivatives field
theories. In particular, we have focused on the higher
derivative Chern-Simons theory. It is well known that
symmetries in an effective theory will depend on the
scheme of approximation used to obtain the low-energy
limit. For example, the removal of all nonanalytical terms
in the Hamiltonian (19) justified within an analytical ex-
pansion would lead to the violations of Lorentz invariance
[35]. Also, we would have parity invariance to all orders
with no g dependence by applying the equations of motion
directly on the extended MCS Lagrangian [36], which
follows by replacing the lowest order iterated solution
hA� � 0 in the original Lagrangian.

To summarize, we have developed the Hamiltonian for-
mulation for the higher derivative MCS theory in 2þ 1
dimensions. Given the singular nature of the system we
have been required to follow the Dirac method to impose
second class constraints strongly from where we have
computed both the Dirac brackets and the reduced
Hamiltonian. In addition, we have exhibited in the
Hamiltonian the negative-energies producing instabilities
in the interacting case. The perturbative method was im-
plemented for the higher derivative Chern-Simons
Lagrangian and an effective field theory that describes
corrections to the low-energy physics with a Hamiltonian
well bounded from below and low-energy solutions were
constructed. We have introduced a prescription for the
choice of the new canonical field variables which are
unique according to the following criteria: (i) the new
gauge field transform covariantly under Lorentz transfor-
mations and (ii) it satisfies the same gauge fixing condition
as the old gauge field. As suggested above, prior to (i) and
(ii), there is some arbitrariness in the choice of new ca-
nonical variables since the diagonalization of the symplec-
tic form may be achieved by different sets of canonical
variables. Nevertheless, since they are connected by ca-
nonical transformations they all describe physically
equivalent theories. Although it is beyond the scope of

this paper, by adopting similar arguments than before, we
can provide an expression for the new gauge field to the

next order which is uniquely given by ~A� ¼ A� þ
�g����@�A� þ �g2hA� with �, � some real numbers.

Finally, we have obtained an effective field theory which is
parity invariant to the order considered therefore recover-
ing symmetries one could expect at low energies.
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APPENDIX: DIRAC BRACKETS

In this appendix we follow Dirac procedure to reduce
second class constraints from the higher derivative theory.
To begin, let us introduce the notation ’A ¼ ð
0; 
1; ’

iÞ,
with A ¼ �0, �1, 1, 2. The matrix of the second class con-
straints will be denoted by

CABðt;x;x0Þ ¼ f’Aðt;xÞ; ’Bðt;x0Þg: (A1)

From (22) we have

CAB ¼
0 �1 0 0
1 0 �g@2 g@1
0 �g@2 0 g
0 g@1 �g 0

2
6664

3
7775�3ðx� x0Þ: (A2)

The inverse matrix is

C�1
AB ¼

0 1 �@1 �@2
�1 0 0 0
�@1 0 0 �1=g
�@2 0 1=g 0

2
6664

3
7775�3ðx� x0Þ: (A3)

The nonzero components are

C�1
�0 �1
ðx;x0Þ ¼ �3ðx� x0Þ;

C�1
�0i
ðx;x0Þ ¼ �@i�

3ðx� x0Þ;

C�1
ij ðx;x0Þ ¼ � 1

g
�ij�3ðx� x0Þ; i; j ¼ 1; 2:

(A4)

And as usual Dirac brackets are defined as

fX; YgD ¼ fX; Yg � fX;’AgC�1
ABf’B; Yg: (A5)

After some calculation the nonzero Dirac brackets are
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fA0ðt;xÞ; _A0ðt;x0ÞgD ¼ ��ðx� x0Þ;
fA0ðt;xÞ; P0ðt;x0ÞgD ¼ �ðx� x0Þ;
fA0ðt;xÞ; Piðt;x0ÞgD ¼ g

2
�ij@j�ðx� x0Þ;

f _Aiðt;xÞ; _Ajðt;x0ÞgD ¼ � 1

g
�ij�ðx� x0Þ;

f _Aiðt;xÞ; _A0ðt;x0ÞgD ¼ �@i�ðx� x0Þ;
f _Aiðt;xÞ; P0ðt;x0ÞgD ¼ 1

2
@i�ðx� x0Þ;

f _Aiðt;xÞ; Pjðt;x0ÞgD ¼ g

2
�jk@i@k�ðx� x0Þ;

f _Aiðt;xÞ;�jðt;x0ÞgD ¼ 1

2
�ij�ðx� x0Þ;

f _A0ðt;xÞ; Piðt;x0ÞgD ¼ @i�ðx� x0Þ;
fP0ðt;xÞ;�iðt;x0ÞgD ¼ g

4
�ij@j�ðx� x0Þ;

f�0ðt;xÞ; Piðt;x0ÞgD ¼ �g

2
�ij@j�ðx� x0Þ;

fPiðt;xÞ; Pjðt;x0ÞgD ¼ g

2
�ijr2�ðx� x0Þ;

f�iðt;xÞ;�jðt;x0ÞgD ¼ �g

4
�ij�ðx� x0Þ;

(A6)

and the reduced Hamiltonian density is

H R ¼ P0
_A0 � 2

g
�i

�
�ijPj þ�i

g
þ g

2
r2Ai

�

� @iA0

�
Pi þ g

2
�ijr2Aj

�
þ 1

4
F2
ij þ

1

2
ð@ � AÞ2:

(A7)

Finally, the reader may check that the reduced Hamiltonian
together with the Dirac brackets give the exact higher
derivative equations of motion.
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