
Information field theory for cosmological perturbation reconstruction and nonlinear
signal analysis

Torsten A. Enßlin, Mona Frommert, and Francisco S. Kitaura

Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Straße 1, 85741 Garching, Germany
(Received 20 June 2008; published 9 November 2009)

We develop information field theory (IFT) as a means of Bayesian inference on spatially distributed

signals, the information fields. A didactical approach is attempted. Starting from general considerations on

the nature of measurements, signals, noise, and their relation to a physical reality, we derive the

information Hamiltonian, the source field, propagator, and interaction terms. Free IFT reproduces the

well-known Wiener-filter theory. Interacting IFT can be diagrammatically expanded, for which we

provide the Feynman rules in position-, Fourier-, and spherical-harmonics space, and the Boltzmann-

Shannon information measure. The theory should be applicable in many fields. However, here, two

cosmological signal recovery problems are discussed in their IFT formulation. (1) Reconstruction of the

cosmic large-scale structure matter distribution from discrete galaxy counts in incomplete galaxy surveys

within a simple model of galaxy formation. We show that a Gaussian signal, which should resemble the

initial density perturbations of the Universe, observed with a strongly nonlinear, incomplete and

Poissonian-noise affected response, as the processes of structure and galaxy formation and observations

provide, can be reconstructed thanks to the virtue of a response-renormalization flow equation. (2) We

design a filter to detect local nonlinearities in the cosmic microwave background, which are predicted

from some early-Universe inflationary scenarios, and expected due to measurement imperfections. This

filter is the optimal Bayes’ estimator up to linear order in the nonlinearity parameter and can be used even

to construct sky maps of nonlinearities in the data.
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I. INTRODUCTION

A. Motivation

The optimal extraction and restoration of information
from data on spatially distributed quantities like the cosmic
large-scale structure (LSS) or the cosmic microwave back-
ground (CMB) temperature fluctuations in cosmology, but
also on many other signals in physics and related fields, is
essential for any quantitative, data-driven scientific infer-
ence. The problem of how to design such methods pos-
sesses many technical and even conceptual difficulties,
which have led to a large number of recipes and
methodologies.

Here, we address such problems from a strictly infor-
mation theoretical point of view. We show, as others have
done before, that information theory for distributed quan-
tities leads to a statistical field theory, which we name
information field theory (IFT). In contrast to the previous
works, which mostly treat such problems on a classical
field level, as will be detailed later, here, we take full
advantage of the existing field theoretical apparatus to
treat interacting and nonclassical fields. Thus, we show
how to use diagrammatic perturbation theory and renor-
malization flows in order to construct optimal signal re-
covering algorithms and to calculate moments of their
uncertainties. Nonclassicality manifests itself as quantum
and statistical fluctuations in quantum and statistical field
theory (QFT and SFT), and very similarly as uncertainty in
IFT.

The information theoretical perspective on signal infer-
ence problems has technical advantages, since it permits
one to design information-yield optimized algorithms and
experimental setups. However, it also provides deeper in-
sight into the mechanisms of knowledge accumulation, its
underlying information flows, and its dependence on data
models, prior knowledge and assumptions than pure em-
pirical evaluations of ad hoc algorithms alone could
provide.
We therefore hope that our work is of interest for two

types of readers. The first are applied scientists, who are
mainly interested in the practical aspect of IFT since they
are facing a concrete inverse problem for a spatially dis-
tributed quantity, especially but not exclusively in cosmol-
ogy. The second are more philosophical or theoretically
inclined scientists, for whom IFT may serve as a frame-
work to understand and classify many of the existing
methods of signal extraction and reception. Since we ex-
pect that many interested readers are not very familiar with
field theoretical formalisms, we introduce some of its basic
mathematical concepts. Because of this anticipated non-
uniform readership, not everything in this article might be
of interest to everyone, and therefore we provide in the
following a short overview on the structure and content of
the article.

B. Overview of the work

The remainder of the Introduction contains a detailed
discussion of the previous work on signal inference theory
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as well as a very brief introduction into the here relevant
works on the cosmic LSS and the CMB. The main part of
this article falls into two categories: abstract IFT and its
application. The concepts of IFT are introduced in Sec. II,
where Bayesian methodology, the distinction of physical
and information fields, the definition of signal response and
noise, as well as the design of signal spaces are discussed.
The basic IFT formalism including the free theory is
introduced in Sec. III, which, according to our judgment,
summarizes and unifies the previous knowledge on IFT
before this paper. An impatient reader, only interested in
applying IFT and not worrying about concepts, may start
reading in Sec. III. From Sec. IVon, the new results of this
work are presented, starting with the discussion of inter-
acting information fields, their Hamiltonians and Feynman
rules, and the Boltzmann-Shannon information measure.
The normalizability of sensibly constructed IFTs is shown,
as well as the classical information field equation. A step-
by-step recipe of how to derive and implement an IFT
algorithm is also provided.

Details of the notation can be found, if not defined in the
main text, in Appendix A.

Applications of the theory are provided in the following
two sections, which can be skipped by a reader interested
only in the general theoretical framework. Although spe-
cific inference problems are addressed, they should serve
as a blueprint for the tackling of similar problems. In
Sec. V the problem of the reconstruction of the cosmic
matter distribution from galaxy surveys is analyzed in
terms of a Poissonain data model. In Sec. VI we derive
an optimal estimator for non-Gaussianity in the CMB, and
show how it can be generalized to map potential non-
Gaussianities in the CMB sky. Our summary and outlook
can be found in Sec. VII.

C. Previous works

The work presented here tries to unify information
theory and statistical field theory in order to provide a
conceptual framework in which optimal tools for cosmo-
logical signal analysis can be derived, as well as for
inference problems in other disciplines. Below, we provide
very brief introductions into each of the required fields1

(information theory, image reconstruction, statistical field
theory, cosmological large-scale structure, and cosmic mi-
crowave background), for the orientation of nonexpert
readers. An expert in any of these fields might decide to
skip the corresponding sections.

1. Information theory and Bayesian inference

The fundament of information theory was laid by the
work of Bayes [1] on probability theory, in which the
celebrated Bayes theorem was presented. The theorem
itself [see Eq. (7)] is a simple rule for conditional proba-
bilities. It only unfolds its power for inference problems if
used with belief or knowledge states, described by condi-
tional probabilities.
The advent of modern information theory is probably

best dated by the work of Shannon [2,3] on the concept of
information measure, being the negative Boltzmann en-
tropy, and the work of Jaynes, combining the language of
statistical mechanics and Bayes probability theory and
applying it to knowledge uncertainties [4–10]. The re-
quired numerical evaluation of Bayesian probability inte-
grals suffered often from the curse of high dimensionality.
The standard recipe against this, still in massive use today,
is importance sampling via Markov-chain Monte Carlo
methods (MCMC), following the ideas of Metropolis
et al. [11], Hastings [12], and Geman and Geman [13],
where the latter authors already had image reconstruction
applications in mind. The Hamiltonian MCMC methods
[14], in which the phase-space sampling is partly following
Hamiltonian dynamics, are also of relevance here. There
the Hamiltonian is introduced as the negative logarithm of
the probability, as we do in this work.
With such tools, higher dimensional problems, as

present in signal restoration, could and can be tackled,
however, for the price of getting stochastic uncertainty
into the computational results. For a recent review on
image restoration MCMC techniques, see [15].
The applications and extensions of these pioneering

works are too numerous to be listed here. Good mono-
graphs exist and the necessary references can be found
there [16–21].

2. Image reconstruction in astronomy and elsewhere

The problem of image reconstruction from incomplete,
noisy data is especially important in astronomy, where the
experimental conditions are largely set by the nature of
distant objects, weather conditions, etc., all mainly out of
the control of the observer, as well as in other disciplines
like medicine and geology, with similar limitations to
arrange the object of observations for an optimal measure-
ment. Some of the most prominent methods of image
reconstruction, which are based on a Bayesian implemen-
tation of an assumed data model, are the Wiener filter [22],
the Richardson-Lucy algorithm [23,24], and the
maximum-entropy image restoration [25] (see also [26–
37]).
The Wiener filter can be regarded to be a full Bayesian

image inference method in case of Gaussian signal and
noise statistics, as we will show in Sec. III B. It will be the
working horse of the IFT formalism, since the Wiener filter
represents the algorithm to construct the exact field theo-

1This work has tremendously benefitted in a direct and indirect
way from a large number of previous publications in those fields.
We, the authors, have to apologize for being unable to give full
credit to all relevant former works in those fields for only
concentrating on a brief summary of the papers more or less
directly influencing this work. This collection is obviously
highly biased toward the cosmological literature due to our
main scientific interests and expertise, and definitely incomplete.
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retical expectation value given the data for an interaction-
free information Hamiltonian. The filter can be decom-
posed into two essential information processing steps, first
building the information source by response-over-noise
weighting the data, and then propagating this information
through the signal space, by applying the so-called Wiener
variance.

The Richardson-Lucy algorithm is a maximum-
likelihood method to reconstruct from Poissonian data
and therefore is also of Bayesian origin. This method is
usually to be regularized by hand, by truncation of the
iterative calculations, against an overfitting instability due
to the missing (or implicitly flat) signal prior. A Gaussian-
prior based regularization was recently proposed by
Kitaura and Enßlin [38], and the implementation of a
variant of this is presented here in Sec. VD.

Maximum-entropy algorithms will not be the topic here,
as well as not a number of other existing methods, which
are partly within and partly outside the Bayesian frame-
work. They may be found in existing reviews on this topic,
e.g. [39,40].

3. Statistical and Bayesian field theory

The relation of signal reconstruction problems and field
theory was discovered independently by several authors. In
cosmology, a prominent work in this direction was
Bertschinger [41], in which the path-integral approach
was proposed to sample primordial density perturbations
with a Gaussian statistics under the constraint of existing
information on the large-scale structure. The work pre-
sented here can be regarded as a nonlinear, non-Gaussian
extension of this. Many methods from statistics and from
statistical mechanics were of course used even earlier, e.g.
the usage of a moment generating function for cosmic
density fields can already be found by Fry [42].

Simultaneously to Bertschinger’s work, Bialek and Zee
[43,44] argued that visual perception can be modeled as a
field theory for the true image, being distorted by noise and
other data transformations, which are summarized by a
nuisance field. A probabilistic language was used, but no
direct reference to information theory was made, since the
optimal information reconstruction was not the aim, but a
model for the human visual reception system. However,
this work actually triggered our research.

Bialek et al. [45] applied a field theoretical approach to
recover a probability distribution from data. Here, a
Bayesian prior was used to regularize the solution, which
was set up ad hoc to enforce smoothness of the reconstruc-
tion, obtained from the classical [or saddle point, or maxi-
mum a posteriori (MAP)] solution of the problem.
However, an ‘‘optimal’’ value for the smoothness control-
ling parameter was derived from the data itself, a topic also
addressed by Stoica et al. [46] and by a follow-up publi-
cation to ours [47]. Bialek et al. [45] also recognized, as we
do, that an IFT can easily be nonlocal.

Finally, the work of Lemm and co-workers [48–55]
established a tight connection between statistical field
theory and Bayesian inference, and proposed the term
Bayesian field theory (BFT) for this. However, we prefer
the term information field theory since it puts the emphasis
on the relevant object, the information, whereas BFT refers
to a method, Bayesian inference. The term information
field is rather self-explaining, whereas the meaning of a
Bayesian field is not that obvious.
The applications considered by Lemm concentrate on

the reconstruction of probability fields over parameter
spaces and quantum mechanical potentials by means of
the maximum a posteriori equation. The extensive book
summarizing the essential insights of these papers, [48],
clearly states the possibility of perturbative expansions of
the field theory. However, this is not followed up by these
authors probably for reasons of the computational com-
plexity of the required algorithms. In contrast to many of
the previous works on IFT, which deal with ad hoc priors,
the publication by Lemm [56] is remarkable, since it
provides explicit recipes of how to implement a priori
information in various circumstances more rigorously.
The mathematical tools required to tackle IFT problems

come from SFT and QFT, which have a vast literature. We
have specially made use of the books of Binney et al. [57],
Peskin and Schroeder [58], and Zee [59].

4. Cosmological large-scale structure

Our first IFT example in Sec. V is geared toward im-
proving galaxy-survey based cosmography, the reconstruc-
tion of the large-scale structure matter distribution. We
provide here a short overview on the relevant background
and works.
The LSS of the matter distribution of the Universe is

traced by the spatial distribution of galaxies, and therefore
well observable. This structure is believed to have emerged
from tiny, mostly Gaussian initial density fluctuations of a
relative strength of 10�5 via a self-gravitational instability,
partly counteracted by the expansion of the Universe. The
initial density fluctuations are believed to be produced
during an early inflationary epoch of the Universe, and to
carry valuable information about the inflaton, the field
which drove inflation, in their N-point correlation func-
tions, to be extracted from the observational data.
The onset of the structure formation process is well

described by linear perturbation theory and therefore to
conserve Gaussianity, however, the later evolution, the
structures on smaller scales, and especially the galaxy
formation require nonlinear descriptions. The observatio-
nal situation is complicated by the fact that the most
important galaxy distance indicator, their redshift, is also
sensitive to the galaxy peculiar velocity, which causes the
observational data on the three-dimensional LSS to be
partially degenerated. There are analytical methods to
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describe these effects,2 and also extensive work on N-body
simulations of the structure formation, the latter probably
providing us with the most detailed and accurate statistical
data on the properties of the matter density field, e.g [75].

In recent years, it was recognized that the evolution of
the cosmic density field and its statistical properties can be
addressed with field theoretical methods by virtue of
renormalization-flow equations. Detailed semianalytical
calculations for the density field time propagator, the
two- and three-point correlation functions are now possible
due to this, which are expected to play an important role in
future approaches to reconstruct the initial fluctuations
from the observational data [76–90].

It was recognized early on that the primordial density
fluctuations can in principle be reconstructed from galaxy
observations [41]. This has led to a large development of
various numerical techniques for an optimal reconstruction
[91–131]. Many of them are based on a Bayesian approach,
since they are implementations and extension of the
Wiener filter. However, also other principles are used,
like, e.g. the least action approach, or Voronoi tessellation
techniques [132–138]. A discussion and classification of
the various methods can be found in [38].

Especially the Wiener filter methods were extensively
applied to galaxy-survey data3 and permitted partly to
extrapolate the matter distribution into the zone of avoid-
ance behind the galactic disk and to close the data gap
there, cf. [157–159], a topic we also address in Sec. V.

Another cosmological relevant information field to be
extracted from galaxy catalogs is the LSS power spectrum
[160–164]. This power is also measurable in the CMB, and
for a long time the CMB provided the best spectrum
normalization [165,166].

5. Cosmic microwave background

Since our second example deals with the CMB, we give
a brief overview on it and related inference methods.

The CMB reveals the statistical properties of the matter
field at a time when the Universe was about 1100 times
smaller in linear size than it is today. The photon-baryon
fluid, which decouples at that epoch into neutral hydrogen
and freestreaming photons, has responded to the gravita-
tional pull of the then already forming dark-matter struc-
tures. The photons from that epoch cooled due to the
cosmic expansion since then into the CMB radiation we
observe today, and carry information on the physical prop-
erties of the photon-baryon fluid of that time like density,
temperature, and velocity. To very high accuracy, the spec-
trum of the photons from any direction is that of a black-
body, with a mean temperature of 2.7 K and fluctuations of

the order of 10�5 K, imprinted by the primordial gravita-
tional potentials at decoupling.
Therefore, mapping these temperature fluctuations per-

mits one to precisely study many cosmological parameters
simultaneously, like the amount of dark matter producing
the gravitational potentials, the ratio of photons to baryons,
balancing the pressure and weight of the fluid, and geo-
metrical and dynamical parameters of space-time itself.
The observations are technically challenging, and therefore
require sophisticated algorithms to extract the tiny signal
of temperature fluctuations against the instrument noise,
but also to separate it from other astrophysical foreground
emission with the best possible accuracy.
A number of such algorithms were developed [167–

184], which in many cases implement the Wiener filter.
Thus, the required numerical tools for an IFT treatment of
CMB data are essentially available.
The expected temperature fluctuations spectrum can be

calculated from a linear perturbative treatment of the
Boltzmann equations of all dynamical active particle spe-
cies at this epoch, and fast computational implementations
exist permitting one to predict it for a given set of cosmo-
logical parameters. Well-known codes for this task are
publicly available4 and permit one to extract information
on cosmological parameters from the measured CMB tem-
perature fluctuation spectrum via comparison to their pre-
dictions for a given parameter set. It was recognized early
on that this should happen in an information theoretically
optimal way, and Bayesian methods were therefore
adapted in that area well before other astrophysical disci-
plines [188–191].
The initial metric and density fluctuations, from which

the CMB fluctuations and the LSS emerged, are believed to
be initially seeded by quantum fluctuations of a hypotheti-
cal inflaton field, which should have driven an inflationary
expansion phase in the very early Universe [192–197]. The
inflaton-induced fluctuations have a very Gaussian proba-
bility distribution; however, some non-Gaussian features
seem to be unavoidable in most scenarios and can serve as
a fingerprint to discriminate among them [198–201].
Observational tests on such non-Gaussianities based on
the three-point correlation function of the CMB data
[202–206] were so far mostly negative, however not sensi-
tive enough to seriously constrain the possible theoretical
parameter space of inflationary scenarios; see e.g.
[207,208]. Recently, there has been the claim of a detection
of such non-Gaussianities by Yadav andWandelt [209] and
a confirmation of this with better data and improved algo-
rithms is therefore highly desirable. In Sec. VI we make a
proposal for improving the algorithmic side of this chal-
lenge. A recent review on the current status of CMB
Gaussianity can be found in [210].

2Of special interest in this context may be [60], which already
applies path integrals, [61–74], and the papers they refer to.

3Survey based reconstructions of the cosmic matter fields can
be found in [139–156].

4For example, CMBFAST [185], CAMB [186], and CMBEASY

[187].
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II. CONCEPTS OF INFORMATION FIELD
THEORY

A. Information on physical fields

In our attempts to infer the properties of our Universe
from astronomical observations we are faced with the
problem of how to interpret incomplete, imperfect and
noisy data, draw our conclusions based on them, and
quantify the uncertainties of our results. This is true for
using galaxy surveys to map the cosmic LSS, for the
interpretation of the CMB, as well as for many experiments
in physical laboratories and compilations of geological,
economical, sociological, and biological data about our
planet. Information theory, which is based on probability
theory and the Bayesian interpretation of missing knowl-
edge as a probabilistic uncertainty, offers an ideal frame-
work to handle such problems. It permits one to describe
all relevant processes involved in the measurement proba-
bilistically, provided a model for the Universe or the sys-
tem under consideration is adopted.

The states of such a model, denoted by the state variable
c , are identified with the possible physical realities. They
can have probabilities Pðc Þ assigned to them, the so-called
prior information. This prior contains our knowledge about
the Universe as we model it before any other data are taken.
For a given cosmological model, the prior may be the
probability distribution of the different initial conditions
of the Universe, which determine the subsequent evolution
completely. Since our Universe is spatially extended, the
state variable will in general contain one or several fields,
which are functions over some coordinates x.

Also the measurement process is described by a data
model which defines the so-called likelihood, the proba-
bility Pðdjc Þ to obtain a specific data set d given the
physical condition c . In case the outcome d of the mea-
surement is deterministic Pðdjc Þ ¼ �ðd� d½c �Þ, where
d½c � is the functional dependence of the data on the state.
In any case, the probability distribution function of the
data,

PðdÞ ¼
Z

DcPðdjc ÞPðc Þ; (1)

is given in terms of a phase space or path integral over all
possible realizations of c , to be defined more precisely
later (Sec. II E 1).

A scientist is not actually interested in the total state of
the Universe, but only in some specific aspects of it, which
we call the signal s ¼ s½c �. The signal is a very reduced
description of the physical reality and can be any function
of its state c , freely chosen according to the needs and
interests of the scientist or the ability and capacity of the
measurement and computational devices used. Since the
signal does not contain the full physical state, any physical
degree of freedom which is not present in the signal but
influences the data will be received as probabilistic uncer-
tainty, or shortly noise. The probability distribution func-

tion of the signal, its prior

PðsÞ ¼
Z

Dc�ðs� s½c �ÞPðc Þ; (2)

is related to that of the data via the joint probability

Pðd; sÞ ¼
Z

Dc�ðs� s½c �ÞPðdjc ÞPðc Þ; (3)

from which the conditional signal likelihood

PðdjsÞ ¼ Pðd; sÞ=PðsÞ; (4)

and signal posterior

PðsjdÞ ¼ Pðd; sÞ=PðdÞ; (5)

can be derived.
Before the data are available, the phase space of interest

is spanned by the direct product of all possible signals s
and data d, and all regions with nonzero Pðd; sÞ are of
potential relevance. Once the actual data dobs have been
taken, only a submanifold of this space, as fixed by the
data, is of further relevance. The probability function over
this subspace is proportional to Pðd ¼ dobs; sÞ, and needs
just to be renormalized by dividing byZ
DsPðdobs;sÞ¼

Z
Ds

Z
Dc�ðs� s½c �ÞPðdobsjc ÞPðc Þ

¼
Z
DcPðdobsjc ÞPðc Þ¼PðdobsÞ; (6)

which is the unconditioned probability (or evidence) of that
data. Thus, we find the resulting information of the data to
be the posterior distribution PðsjdobsÞ¼Pðdobs;sÞ=PðdobsÞ.
This posterior is the fundamental mathematical object
from which all our deductions have to be made. It is related
via Bayes’s theorem [1] to the usually better accessible
signal likelihood,

PðsjdÞ ¼ PðdjsÞPðsÞ=PðdÞ; (7)

which follows from Eqs. (4) and (5).
The normalization term in Bayes’s theorem, the evi-

dence PðdÞ, is now also fully expressed in terms of the
joint probability of data and signal,

PðdÞ ¼
Z

DsPðd; sÞ; (8)

and the underlying physical field c basically becomes
invisible at this stage in the formalism. The evidence plays
a central role in Bayes inference, since it is the likelihood
of all the assumed model parameters. Combining this
parameter likelihood with parameter priors, one can start
Bayesian inference on the model classes.

B. Signal response and noise

If signal and data depend on the same underlying physi-
cal properties, there may be correlations between the two,
which can be expressed in terms of signal response R and

INFORMATION FIELD THEORY FOR COSMOLOGICAL . . . PHYSICAL REVIEW D 80, 105005 (2009)

105005-5



noise n of the data as

d ¼ R½s� þ ns: (9)

We have chosen two different ways of denoting the depen-
dence of response and noise on the signal s, in order to
highlight that the response should embrace most of the
reaction of the data to the signal, whereas the noise should
be as independent as possible. We ensure this by putting
the linear correlation of the data with the signal fully into
the response. The response is therefore the part of the data
which correlates with the signal

R½s� � hdiðdjsÞ �
Z

Dd dPðdjsÞ; (10)

and the noise is just defined as the remaining part which
does not:

ns � d� R½s� ¼ d� hdiðdjsÞ: (11)

Although the noise might depend on the signal, as it is well
known, for example, for Poissonian processes, it is—per
definition—linearly uncorrelated to it,

hnssyiðdjsÞ ¼ ðhdiðdjsÞ � R½s�Þsy ¼ 0sy ¼ 0; (12)

whereas higher-order correlation might well exist and may
be further exploited for their information content. The
dagger denotes complex conjugation and transposing of a
vector or matrix.

These definitions were chosen to be close to the usual
language in signal processing and data analysis. They
permit one to define signal response and noise for an
arbitrary choice of the signal s½c �. No direct causal con-
nection between signal and data is needed in order to have
a nontrivial response, since both variables just need to
exhibit some couplings to a common subaspect of c .
The above definition of response and noise is however
not unique, even for a fixed signal definition, since any
data transformation d0 ¼ T½d� can lead to different defini-
tions, as seen from

R0½s� � hd0iðdjsÞ ¼ hT½d�iðdjsÞ � T½hdiðdjsÞ� ¼ T½R½s��:
(13)

Exceptions are some unique relations between signal and
state, Pðc jsÞ ¼ �ðc � c ½s�Þ, and maybe a few other very
special cases. Thus, the concepts of signal response and
therewith defined noise depend on the adopted coordinate
system in the data space. This coordinate system can be
changed via a data transformation T, and the transformed
data may exhibit a better or worse response to the signal.
Information theory aids in designing a suitable data trans-
formation, so that the signal response is maximal, and the
signal noise is minimal, permitting the signal to be best
recovered. Thus, we may aim for an optimal T, which
yields

T½d� ¼ hsiðsjdÞ: (14)

We define the posterior average of the signal,md ¼ hsiðsjdÞ,
to be the map of the signal given the data d and call T a
map-making algorithm if it fulfills Eq. (14) at least ap-
proximately. As a criterion for this one may require that the
signal response of a map-making algorithm,

RT½s� � hT½d�iðdjsÞ; (15)

is positive definite with respect to signal variations as
stated by

�RT½s�
�s

� 0: (16)

This ensures that a map-making algorithm will respond
with a non-negative correlation of the map to any signal
feature, with respect to the noise ensemble. In general, T
will be a nonlinear operation on the data, to be constructed
from information theory if it should be optimal in the sense
of Eq. (14). In any case, the fidelity of a signal reconstruc-
tion can be characterized by the quadratic signal uncer-
tainty,

�2
T;d ¼ hðs� T½d�Þðs� T½d�ÞyiðsjdÞ; (17)

averaged over typical realizations of signal and noise. Of
special interest is the trace of this

Tr ð�2
T;dÞ ¼

Z
dx hjsx � Tx½d�j2iðsjdÞ; (18)

since it is the expectation value of the squared
Lebesgue-L2-space distance between a signal reconstruc-
tion and the underlying signal. Requesting a map-making
algorithm to be optimal with respect to Eq. (18) implies
T½d� ¼ hsiðsjdÞ and therefore to be optimal in an informa-

tion theoretical sense according to Eq. (14).
The uncertainty �2

T;d depends on d, since in Bayesian

inference one averages over the posterior, which is condi-
tional to the data. The frequentist uncertainty estimate,
which is the expected uncertainty of any estimator before
the data are obtained, is given by an average over the joint
probability function:

�2
T ¼ hðs� T½d�Þðs� T½d�Þyiðd;sÞ: (19)

The latter is a good quantity to characterize the overall
performance of an estimator, whereas Trð�2

T;dÞ is a more

precise indicator of the actual estimator performance for a
given data set. As we will see in our IFT applications, data
dependence of the uncertainty is a common feature of
nonlinear inference problems.
An illustrative example should be in order. Suppose our

data are an exact copy of a physical field, d ¼ c , our
signal the square of the latter, s ¼ c 2, and the physical
field obeys an even statistics, Pðc Þ ¼ Pð�c Þ. Then, the
signal response is exactly zero, R½s� ¼ 0, and the data
contain only noise with respect to the chosen signal, d ¼
ns. Thus, we have chosen a bad representation of our data
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to reveal the signal. If we, however, introduce the trans-
formation d0 ¼ T½d� ¼ d2, we find a perfect response,
R0½s� ¼ s, and zero noise, n0s ¼ 0.

In this case, finding the optimal map-making algorithm
was trivial, but in more complicated situations, it cannot be
guessed that easily. Since the response and noise defini-
tions depend on the signal definition, some thoughts should
be given to how to choose the signal in a way that it can be
well reconstructed.

C. Signal design

For practical reasons one will usually choose s accord-
ing to a few guidelines, which should simplify the infor-
mation induction process:

(1) The functional form of s½c � should best be simple,
steady, analytic, and if possible linear in c , permit-
ting one to use the signal s to reason about the state
of reality c .

(2) The degrees of freedom of s should be related to the
ones of the data d in the sense that cross correlations
exist which permit one to deduce properties of s
from d. Signal degrees of freedom, which are in-
sensitive to the data, will only be constrained by the
prior and therefore just contain a large amount of
uncertainty. This adds to the error budget and should
be avoided as much as possible.

(3) The choice of s½c � should also be led by mathe-
matical convenience and practicality. In the ex-
amples presented in this work, simple signals are
chosen which permit one to guess good approxima-
tions for signal likelihood PðdjsÞ and prior PðsÞ
without the need to develop the full physical theory
starting with Pðc Þ.

To give a more specific example, we assume a cosmo-
logical model in which the reality is thought to be solely
characterized by the primordial dark-matter density distri-
bution c ðxÞ, from which all observable cosmological phe-
nomena like galaxies derive in a deterministic way. The
coordinate x may refer to the comoving coordinates at
some early epoch of the Universe. Although the LSS of
the matter distribution at a later time may predominantly
depend on the initial large-scale modes, and is reflected in
the galaxy distribution, the actual positions of the individ-
ual galaxies also depend in a nontrivial way on the small-
scale modes. Because of the discreteness of our observable,
the galaxy positions, it may be impossible to reconstruct
these small-scale modes. Therefore it could be sensible to
define a signal s½c � ¼ Fc , with F being a linear low-pass
filter, which suppresses all small-scale structures. This
signal may be reconstructible with high precision, whereas
any attempt to reconstruct c directly would be plagued by
a larger error budget, since all the data-unconstrained
small-scale modes represent uncertainties to a reconstruc-
tion of c , but not to one of s being defined as a low-pass
filtered version of c .

D. Signal moment calculation

The information of some data d on a signal s defined
over some set �, which in most applications will be a
manifold like a subvolume of the Rn, or the sphere in case
of a CMB signal, is completely contained in the posterior
PðsjdÞ of the signal given the data.5 The expectation value
of s at some location x 2 �, and higher correlation func-
tions of s can all be obtained from the posterior by taking
the appropriate average:

hsðx1Þ � � � sðxnÞid � hsðx1Þ � � � sðxnÞiðsjdÞ
�
Z

Ds sðx1Þ � � � sðxnÞPðsjdÞ: (20)

The problem is that often neither the expectation values
nor even the posterior are easily calculated analytically,
even for fairly simple data models. Fortunately, there is at
least one class of data models for which the posterior and
all its moments can be calculated exactly, namely, in case
the posterior turns out to be a multivariate Gaussian in s. In
this case analytical formulas for all moments of the signal
are known and are in principle computable. Technically,
one is still often facing a huge, but linear inverse problem.
However, in the last decades a couple of computational
high-performance map-making techniques were developed
to tackle such problems either on the sphere, for CMB
research, or in flat spaces with one, two, or three dimen-
sions, for example, for the reconstruction of the cosmic
LSS (detailed references are given in Sec. I C). The pur-
pose of this work is to show how to expand other posterior
distributions around the Gaussian ones in a perturbative
manner, which then permits one to use the existing map-
making codes for the computation of the resulting dia-
grammatic perturbation series. Since the diagrammatic
perturbation series in the Feynman diagrams are well
known and understood in QFTand SFT, the most economi-
cal way is to reformulate the information theoretical prob-
lem in a language which is as close as possible to the
former two theories. Thereby, many of the results and
concepts become directly available for signal inference
problems. Moreover, it seems that expressing the optimal
signal estimator in terms of Feynman diagrams immedi-
ately provides computationally efficient algorithms, since
the diagrams encode the skeleton of the minimal necessary
computational information flow.

E. Signal and data spaces

1. Discretization and continuous limit

Both, the signal and the data space may be continuous,
however, in practice will most often be discrete since

5We are mostly dealing with scalar fields, however, multicom-
ponent, vector or tensor fields can be treated analogously, and
many of the equations just have to be reinterpreted for such fields
and stay valid.
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digital data processing only permits one to chose a dis-
cretized representation of the distributed information. The
space in which the data and signal discretization happens
can be chosen freely, and of course can be as well a Fourier,
wavelet, or spherical-harmonics space. Even if we would
like to analyze a continuous signal, the computationally
required discretization will force an implicit redefinition of
our actual signal to be the discretely sampled version of
that continuous signal, and this discretization step should
also be part of the data model, if it has the potential to
significantly affect the analysis [211].

Although discretization implies some information loss it
also has an advantage. We can just assume discretization
and therefore read all scalar and tensor products as being
the usual, componentwise ones, now just in high-, but
finite-dimensional vector spaces.

To be concrete, let fxig � � be a discrete set of Npix

pixel positions, each of which has a volume size Vi attrib-
uted to it; then the scalar product of two discretized func-
tion vectors f ¼ ðfiÞ, and g ¼ ðgiÞ sampled at these points
via fi ¼ fðxiÞ, and gi ¼ gðxiÞ could be defined by

gyf �XNpix

i¼1
Vigi

�fi: (21)

The asterisk denotes complex conjugation. This scalar
product has the continuous limit

gyf !
Z
�
dx g�ðxÞfðxÞ: (22)

In many cases the actual volume normalization in
Eq. (21) does not matter for final results, since it usually
cancels out, and therefore Vi is often dropped completely
for equidistant sampling of signal and data spaces. The
volume terms also disappear for a scalar product involving
a function which is discretized via volume integration,
fi ¼

R
Vi
dxfðxÞ, e.g. the number of counts within the

cell i. Anyhow, higher-order tensor products are defined
analogously.

The path integral of a functional F½f� � Fðf1; . . . ; fNpix
Þ

over all realizations of such a discretized field f is then just
a high-dimensional volume integral, with as many dimen-
sions as pixels:

Z
DfF½f� �

�YNpix

i¼1

Z
dfi

�
Fðf1; . . . ; fNpix

Þ: (23)

This definition of a finite-dimensional path integral is well
normalized, since in case we want to integrate over a
probability distribution over f, which is separable for all

pixels, PðfÞ ¼ QNpix

i¼1 PiðfiÞ, as e.g. for white and
Poissonian noise, we find

h1iðfÞ ¼
Z

DfPðfÞ ¼YNpix

i¼1

Z
dfiPiðfiÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼1

¼ 1: (24)

Although, in real data-analysis applications, it is practi-
cally never required to perform the continuous limit
Npix ! 1 with Vi ! 0 for all i, we stress that this limit

can formally be taken and is well defined even for the path
integral, as we argue in more detail in Sec. IVB. The basic
argument is that suitable signals could and should be
defined in such a way that path-integral divergences, which
plague sometimes QFT, can easily be avoided by sensible
signal design. Practically, the existence of a well-defined
continuous limit of a well-posed IFT implies that two
numerical implementations of a signal reconstruction
problem, which differ in their space discretization on
scales smaller than the structures of the signal, can be
expected to provide identical results up to a small discre-
tization difference, which vanishes with higher discretiza-
tion resolution.

2. Parameter spaces

In many applications, the signal space is identified with
the physical space or with the sphere of the sky. However,
IFT can also be done over parameter spaces. In Sec. VI, a
field theory over the sphere will implicitly define the
knowledge state for an unknown parameter of that theory,
which can be regarded again to define an information
theory for that parameter. The latter is an IFT in case that
the parameter has spatial variations.
However, there are also functions defined over a parame-

ter space, �parameter ¼ fpg for some parameter p, which

one might want to obtain knowledge on from incomplete
data. Avery import one is the probability distribution of the
parameter given the observational data, PðpjdÞ, which
defines our parameter-knowledge state. This function
may only be incompletely known and therefore requires
an IFT approach for its reconstruction and interpolation.
Such incomplete knowledge on the function could be due
to incomplete numerical sampling of its function values
because of large computational costs and the huge volumes
of multidimensional parameter spaces. Or, there might be
another unknown nuisance parameter q in the problem,
which induces an uncertainty in PðpjdÞ ¼ PðpjdÞ and there-
fore an IFT over all possible realizations of this knowledge
state field function via

P½PðpjdÞ� ¼
Z

DPðpjdÞ�
�
PðpjdÞ �

Z
dqPðp; qjdÞ

�
: (25)

In case that q is a field, the marginalization integral in the
delta functional also becomes a path integral. Probabilistic
decision theory, based on knowledge states as expressed by
probability functions on parameters, has to deal with such
complications. For inference directly on p, and not on the
knowledge state PðpjdÞ, the marginalized probability
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PðpjdÞ ¼
Z

dqPðp; qjdÞ (26)

contains all relevant information, and that will be sufficient
for most inference applications, and especially for the ones
in this work.

III. BASIC FORMALISM

A. Information Hamiltonian

We argued that the posterior PðsjdÞ contains all avail-
able information on the signal. Although the posterior
might not be easily accessible mathematically, we assume
in the following that the prior PðsÞ of the signal before the
data are taken as well as the likelihood of the data given a
signal PðdjsÞ are known or at least can be Taylor-Fréchet
expanded around some reference field configuration t.
Then Bayes’s theorem permits one to express the posterior
as

PðsjdÞ ¼ Pðd; sÞ
PðdÞ ¼

PðdjsÞPðsÞ
PðdÞ � 1

Z
e�H½s�: (27)

Here, the Hamiltonian

H½s� � Hd½s� � � log½Pðd; sÞ� ¼ � log½PðdjsÞPðsÞ�;
(28)

the evidence of the data

PðdÞ �
Z

Ds PðdjsÞPðsÞ ¼
Z

Ds e�H½s� � Z; (29)

and the partition function Z � Zd were introduced. It is
extremely convenient to include a moment generating
function into the definition of the partition function

Zd½J� �
Z

Ds e�H½s�þJys: (30)

This means PðdÞ ¼ Z ¼ Z½0�, but also permits one to
calculate any moment of the signal field via Fréchet dif-
ferentiation of Eq. (30),

hsðx1Þ � � � sðxnÞid ¼ 1

Z

�nZd½J�
�Jðx1Þ � � ��JðxnÞ

��������J¼0
: (31)

Of special importance are the so-called connected correla-
tion functions or cumulants

hsðx1Þ � � � sðxnÞicd �
�n logZd½J�

�Jðx1Þ � � ��JðxnÞ
��������J¼0

; (32)

which are corrected for the contribution of lower moments
to a correlator of order n. For example, the connected mean
and dispersion are expressed in terms of their unconnected
counterparts as

hsðxÞicd ¼ hsðxÞid;
hsðxÞsðyÞicd ¼ hsðxÞsðyÞid � hsðxÞidhsðyÞid;

(33)

where the last term represents such a correction. For

Gaussian random fields all higher-order connected corre-
lators vanish:

hsðx1Þ � � � sðxnÞicd ¼ 0 (34)

for n > 2. For non-Gaussian random fields, they are in
general nonzero, and for later usage we provide the con-
nected three- and four-point functions,

hsxsyszicd ¼ hðsx � �sxÞðsy � �syÞðsz � �szÞid;
hsxsyszsuicd ¼ hðsx � �sxÞðsy � �syÞðsz � �szÞðsu � �suÞid

� hsxsyicdhszsuicd � hsxszicdhsysuicd
� hsxsuicdhsyszicd; (35)

where we used sx ¼ sðxÞ and defined �sx ¼ hsðxÞid.
The assumption that the Hamiltonian can be Taylor-

Fréchet expanded in the signal field permits one to write

H½s� ¼ 1

2
syD�1s� jysþH0 þ

X1
n¼3

1

n!
�ðnÞx1...xnsx1 � � � sxn :

(36)

Repeated coordinates are thought to be integrated over.
The first three Taylor coefficients have special roles. The
constant H0 is fixed by the normalization condition of the
joint probability density of signal and data. If H0d½s� de-
notes some unnormalized Hamiltonian, its normalization
constant is given by

H0 ¼ log
Z

Ds
Z

Dd e�H0d½s�: (37)

Often H0 is irrelevant unless different models or hyper-
parameters are to be compared.
We call the linear coefficient j information source. This

term is usually directly and linearly related to the data. The
quadratic coefficient, D�1, defines the information propa-
gator Dðx; yÞ, which propagates information on the signal
at y to location x, and thereby permits one, e.g., to partially
reconstruct the signal at locations where no data were

taken. Finally, the anharmonic tensors �ðnÞ create interac-
tions between the modes of the free, harmonic theory.
Since this free theory will be the basis for the full interac-

tion theory, we first investigate the case �ðnÞ ¼ 0.

B. Free theory

1. Gaussian data model

For our simplest data model we assume a Gaussian
signal with prior

PðsÞ ¼ Gðs; SÞ � 1

j2�Sj1=2 exp

�
� 1

2
syS�1s

�
; (38)

where S ¼ hssyi is the signal covariance. The signal is
assumed here to be processed by nature and our measure-
ment device according to a linear data model
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d ¼ Rsþ n: (39)

Here, the response R½s� ¼ Rs is linear in and the noise
ns ¼ n is independent of the signal s. The linear response
matrix R of our instrument can contain window and selec-
tion functions, blurring effects, and even a Fourier trans-
formation of the signal space, if our instrument is an
interferometer. Typically, the data space is discrete,
whereas the signal space may be continuous. In that case
the ith data point is given by

di ¼
Z

dxRiðxÞsðxÞ þ ni: (40)

We assume, for the moment, but not in general, the noise
to be signal independent and Gaussian, and therefore dis-
tributed as

PðnjsÞ ¼ Gðn; NÞ; (41)

where N ¼ hnnyi is the noise covariance matrix. Since the
noise is just the difference of the data to the signal re-
sponse, n ¼ d� Rs, the likelihood of the data is given by

PðdjsÞ ¼ Pðn ¼ d� RsjsÞ ¼ Gðd� Rs;NÞ; (42)

and thus the Hamiltonian of the Gaussian theory is

HG½s� ¼ � log½PðdjsÞPðsÞ�
¼ � log½Gðd� Rs; NÞGðs; SÞ�
¼ 1

2s
yD�1s� jysþHG

0 : (43)

Here

D ¼ ½S�1 þ RyN�1R��1 (44)

is the propagator of the free theory. The information
source,

j ¼ RyN�1d; (45)

depends linearly on the data in a response-over-noise
weighted fashion and reads

jðxÞ ¼X
ij

R�i ðxÞN�1ij dj (46)

in case of discrete data but continuous signal spaces.
Finally,

HG
0 ¼ 1

2d
yN�1dþ 1

2 logðj2�Sjj2�NjÞ (47)

has absorbed all s-independent normalization constants.

The partition function of the free field theory,

ZG½J� ¼
Z

Dse�HG½s�þJys

¼
Z

Ds exp

�
� 1

2
syD�1sþ ðJ þ jÞys�HG

0

�
;

(48)

is a Gaussian path integral, which can be calculated ex-
actly, yielding

ZG½J� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
j2�Dj

p
expfþ1

2ðJ þ jÞyDðJ þ jÞ �HG
0 g: (49)

The explicit partition function permits one to calculate via
Eq. (32) the expectation of the signal given the data, in the
following called the map md generated by the data d:

md ¼ hsid ¼ � logZG

�J

��������J¼0
¼ Dj

¼ ½S�1 þ RyN�1R��1RyN�1d|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
FWF

: (50)

The last expression shows that the map is given by the data
after applying a generalized Wiener filter, md ¼ FWFd.
The propagator Dðx; yÞ describes how the information on
the density field contained in the data at location x prop-
agates to position y: mðyÞ ¼ R

dxDðy; xÞjðxÞ.
The connected autocorrelation of the signal given the

data,

hssyicd ¼ D ¼ ½S�1 þ RyN�1R��1; (51)

is the propagator itself. All higher connected correlation
functions are zero. Therefore, the signal given the data is a
Gaussian random field around the mean md and with a
variance of the residual error

r ¼ s�md (52)

provided by the propagator itself, as a straightforward
calculation shows

hrryid ¼ hssyid � hsidhsyid ¼ hssyicd ¼ D: (53)

Thus, the posterior should be simply a Gaussian given by

PðsjdÞ ¼ Gðs�md;DÞ: (54)

As a test for the latter equation, we calculate the evidence
of the free theory via

PðdÞ ¼ PðdjsÞPðsÞ
PðsjdÞ ¼ Gðd� Rs;NÞGðs; SÞ

Gðs�Dj;DÞ
¼
�jDj=jSj
j2�Nj

�
1=2

exp

�
1

2
ðjyDj� dyN�1dÞ

�
; (55)

which is indeed independent of s and also identical to
ZG½0�, as it should be.
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2. Free classical theory

The Hamiltonian permits one to ask for classical equa-
tions derived from an extremal principle. This is justified,
on the one hand, as being just the result of a the saddle
point approximation of the exponential in the partition
function. On the other hand, the extrema principle is
equivalent to the MAP estimator, which is quite commonly
used for the construction of signal filters. An exhaustive
introduction into and discussion of the MAP approxima-
tion to Gaussian and non-Gaussian signal fields is provided
by Lemm [48].

The classical theory is expected to capture essential
features of the field theory. However, if the field fluctua-
tions are able to probe phase-space regions away from the
maximum in which the Hamiltonian (or posterior) has a
more complex structure, deviations between classical and
field theory should become apparent.

Extremizing the Hamiltonian of the free theory
[Eq. (43)]

�HG

�s

��������s¼m
¼ D�1m� j � 0; (56)

we get the classical mapping equation m ¼ Dj, which is
identical to the field theoretical result [Eq. (50)].

It is also possible to measure the sharpness of the maxi-
mum of the posterior by calculating the Hessian curvature
matrix

H ½m� ¼ �2H½s�
�s2

��������s¼m
¼ D�1: (57)

In the Gaussian approximation of the maximum of the
posterior, the inverse of the Hessian is identical to the
covariance of the residual

hrryi ¼H�1½m� ¼ D; (58)

which for the pure Gaussian model is of course identical to
the exact result, as given by the field theory [Eq. (53)].

IV. INTERACTING INFORMATION FIELDS

A. Interaction Hamiltonian

1. General form

All results of the free theory presented so far are well
known within the field of signal reconstruction. IFT repro-
duces them elegantly and is therefore of pedagogical value.
However, the new results presented in the rest of this paper
arise as soon as one leaves the free theory. Non-Gaussian
signal or noise, a nonlinear response, or a signal dependent
noise create anharmonic terms in the Hamiltonian. These
describe interactions between the eigenmodes of the free
Hamiltonian.

We assume the Hamiltonian can be Taylor expanded in
the signal fields, which permits one to write

H½s� ¼ 1

2
syD�1s� jysþHG

0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
HG½s�

þX1
n¼0

1

n!
�ðnÞx1���xnsx1 � � � sxn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hint½s�

:

(59)

Repeated coordinates are thought to be integrated over. In
contrast to Eq. (36) we have now included perturbations
which are constant, linear, and quadratic in the signal field,
because we are summing from n ¼ 0. This permits one to
treat certain nonideal effects perturbatively. For example if
a mostly position-independent propagator gets a small
position-dependent contamination, it might be more con-
venient to treat the latter perturbatively and not to include it
into the propagator used in the calculation. Note further
that all coefficients can be assumed to be symmetric with
respect to their coordinate indices.6

Often, it is more convenient to work with a shifted field
� ¼ s� t, where some (e.g. background) field t is re-
moved from s. The Hamiltonian of � reads

H0½�� ¼ 1

2
�yD�1�� j0y�þH00|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H0
G
½��

þX1
n¼0

1

n!
�0ðnÞx1���xn�x1 � � ��xn|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

H0
int
½��

;

with H00 ¼ HG
0 � jytþ 1

2
tyD�1t;

j0 ¼ j�D�1t; and

�0ðmÞx1���xm ¼
X1
n¼0

1

n!
�ðmþnÞx1���xmþn tx1 � � � txn :

(60)

2. Feynman rules

Since all the information on any correlation functions of
the fields is contained in the partition sum and can be
extracted from it, only the latter needs to be calculated:

6This means Dxy ¼ Dyx and �ðnÞx�ð1Þ���x�ðnÞ ¼ �ðnÞx1���xn with � any
permutation of f1; . . . ; ng, since even nonsymmetric coefficients
would automatically be symmetrized by the integration over all
repeated coordinates. Therefore, we assume in the following that
such a symmetrization operation has been already done, or we
impose it by hand before we continue with any perturbative
calculation by applying

�ðnÞx1���xn �
1

n!

X
�2P n

�ðnÞx�ð1Þ���x�ðnÞ :

This clearly leaves any symmetric tensor invariant if P n is the
space of all permutations of f1; . . . ; ng.
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Z½J� ¼
Z

Ds e�H½s�þJys

¼
Z

Ds exp

�
�X1

n¼0

1

n!
�ðnÞx1���xnsx1 � � � sxn

�
e�HG½s�þJys

¼ exp

�
�X1

n¼0

1

n!
�ðnÞx1���xn

�

�Jx1
� � � �

�Jxn

�
�
Z

Ds e�HG½s�þJys

¼ exp

�
�Hint

�
�

�J

��
ZG½J�: (61)

There exist well-known diagrammatic expansion tech-
niques for such expressions [57]. The expansion terms of
the logarithm of the partition sum, from which any con-
nected moments can be calculated, are represented by all
possible connected diagrams build out of lines ( ),

vertices (with a number of legs connecting to lines, like

, , , , . . .) and without any external line

ends (any line ends in a vertex). These diagrams are
interpreted according to the following Feynman rules:

(1) Open ends of lines in diagrams correspond to exter-
nal coordinates and are labeled by such. Since the
partition sum, in particular, does not depend on any
external coordinate, it is calculated only from sum-
ming up closed diagrams. However, the field expec-
tation valuemðxÞ¼ hsðxÞiðsjdÞ ¼dlogZ½J�=dJðxÞjJ¼0
and higher-order correlation functions depend on
coordinates and therefore are calculated from dia-
grams with one or more open ends, respectively.

(2) A line with coordinates x0 and y0 at its end represents
the propagator Dx0y0 connecting these locations.

(3) Vertices with one leg get an individual internal,

integrated coordinate x0 and represent the term jx0 þ
Jx0 ��ð1Þ

x0 .

(4) Vertices with n legs represent the term ��ðnÞ
x0
1
���x0n ,

where each individual leg is labeled by one of the
internal coordinates x01; . . . ; x0n. This more complex
vertex structure, as compared to QFT, is a conse-
quence of nonlocality in IFT.

(5) All internal (and therefore repeatedly occurring)
coordinates are integrated over, whereas external
coordinates are not.

(6) Every diagram is divided by its symmetry factor, the
number of permutations of vertex legs leaving the
topology invariant, as described in any book on field
theory [57].

The nth cumulative moment of s is generated by taking the
nth derivative of logZ½J� with respect to J, and then setting
J ¼ 0. This correspond to removing n end vertices from all
diagrams. For example, the first four diagrams contributing
to a map (m ¼ hsiðsjdÞ) are

(62)

Here we have assumed that any first and second order
perturbation was absorbed into the data source and the

propagator, thus �ð1Þ ¼ �ð2Þ ¼ 0. Repeated indices are
assumed to be integrated (or summed) over.

3. Local interactions and Fourier-space rules

In case of purely local interactions

�ðnÞx1���xn ¼ �nðx1Þ�ðx1 � x2Þ � � ��ðx1 � xnÞ; (63)

the interaction Hamiltonian reads

Hint ¼
X1
m¼0

1

m!
�ymsm; (64)

and the expressions of the Feynman diagrams simplify
considerably. The fourth Feynman rule can be replaced by
(4) Vertices with n lines connected to it are associated

with a single internal coordinate x0 and represent the
term ��nðx0Þ.

For example, the last loop diagram in Eq. (62) becomes

(65)

In case of local interactions, it can be helpful to do the
calculations in Fourier space, for which the Feynman rules
can be obtained by inserting a real-space identity operator
1 ¼ FyF in between any scalar product and assigning the
inverse Fourier transformation Fy to the left and the for-
ward transform F to the right term, e.g.
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Dj ¼ FyFDFy|fflffl{zfflffl}
D0

Fj|{z}
j0

¼ FyD0j0:

This yields
(1) An open end of a line has an external momentum

coordinate k, and gets an
R
dke�ikx=ð2�Þn applied

to it, if real-space functions are to be evaluated.
(2) A line connecting momentum k with momentum k0

corresponds to a directed propagator between these
momenta: Dkk0 ¼ Dðk; k0Þ.

(3) A data-source vertex is ðjþ J � �1Þðk00Þ, where k00
is the momentum at the data end of the line.

(4) A vertex with m> 1 lines with momentum labels
k1; . . . ; km is ��mðk0Þð2�Þn�ð

P
m
i¼0 kiÞ.

(5) An internal end of a line has an internal (integrated)
momentum coordinate k0. Integration means a termR
dk0=ð2�Þn in front of the expression.

(6) The expression gets divided by the symmetry factor
of its diagram.

Here, jðkÞ¼ðFjÞðkÞ¼RdxjðxÞeikx, Dðk;k0Þ¼ðFDFyÞ�
ðk;k0Þ¼RdxRdx0Dðx;x0Þeiðkx�k0x0Þ,etc.are theFourier trans-
formed information source, propagator, etc., respectively

Note that momentum directions have to be taken into
account. The momenta that go into a vertex, data source, or
open end get a positive sign in the delta function of
momentum conservation, and the ones that go out of a
vertex get a minus sign.

4. Simplistic interaction Hamiltonians

In order to have a toy case, which permits analytic
calculations, we introduce a simplistic Hamiltonian by
requiring the data model to be translational invariant and
all interaction terms to be local. This is the case whenever
the signal and noise covariances are fully characterized by
power spectra over the same spatial space,

Sðk; qÞ ¼ ð2�Þn�ðk� qÞPSðkÞ; (66)

Nðk; qÞ ¼ ð2�Þn�ðk� qÞPNðkÞ; (67)

with PsðkÞ ¼ hjsðkÞj2i=V, and PnðkÞ ¼ hjnðkÞj2i=V, where
V is the volume of the system. We assume further that the
signal processing can be completely described by a con-
volution with an instrumental beam,

dðxÞ ¼
Z

dyRðx� yÞsðyÞ þ nðxÞ; (68)

where the response-convolution kernel has a Fourier power
spectrum PRðkÞ ¼ jRðkÞj2 (no factor 1=V). In this case D
can be fully described by a power spectrum:

Dðk; qÞ ¼ ð2�Þn�ðk� qÞPDðkÞ; (69)

with PDðkÞ ¼ ðP�1S ðkÞ þ PRðkÞP�1N ðkÞÞ�1.
The locality of the interaction terms requires �m ¼

const beside translational invariance and therefore the
interaction Hamiltonian reads

Hint½s� ¼
X1
m¼1

�m

m!

Z
dx smðxÞ

¼ X1
m¼1

�m

m!

�Ym
i¼1

Z dki
ð2�Þn ski

�
ð2�Þn�

�Xm
j¼1

kj

�
: (70)

In that case, the Feynman rules simplify considerably.
For the interaction Hamiltonian of Eq. (70), the Feynman
rules are now
(1) unintegrated x-coordinate: expð�ikxÞ (if real-space

functions are to be evaluated),
(2) propagator: PDðkÞ,
(3) data-source vertex: ðjþ J � �1ÞðkÞ,
(4) vertex with m> 1 lines: ��m,
(5) imply momentum conservation at each vertex:
ð2�Þn�ðPm

i¼1 kiÞ, and integrate over every internal
momentum:

R
dk
ð2�Þn ,

(6) and divide by the symmetry factor.

5. Feynman rules on the sphere

For CMB reconstruction and analysis, but presumably
also for terrestrial applications, the Feynman rules on the
sphere � ¼ S2 are needed and therefore provided in
Appendix B.

B. Normalizability of the theory

In contrast to QFT, IFT should be properly normalized
and not necessarily require any renormalization procedure.
The reason is that IFT is not a low-energy limit of some
unknown high-energy theory, but can be set up as the full
(high-energy) theory. The Hamiltonian is just the logarithm
of the joint probability function of data and signal,Hd½s� �
� log½Pðd; sÞ�, and therefore well defined and properly
normalized if the latter is. Only if ad hoc Hamiltonians
are set up, or if approximations lead to ill-normalized
theories, should normalization be an issue.
However, since we are trying a perturbative expansion of

the theory, there is no guarantee that all individual terms
are providing finite results. For example in QFT, simple
loop diagrams are known to be divergent and require
renormalization. In the following we investigate a simplis-
tic, but representative case of IFT, which shows that such
problems are generally not to be expected.
Let us adopt the simplistic situation described in

Sec. IVA4 and estimate a simple loop diagram for which
we assume for notational convenience �3 ¼ �2ð2�Þn�0
(with �0 > 0):

(71)
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where V is the volume of the system. Here and in the

following, Ĉ denotes the diagonal of the matrix C.
Thus, as long the signal field is of bounded variance, the

loop diagram is convergent due to PD 	 PS for all k. Even
a signal of unbounded variance would not lead to a diver-
gent loop diagram if

R
dkðPN=PRÞðkÞ is finite, since we

also have PD 	 PN=PR. A bounded variance signal is very
natural, especially in a cosmological setting.7

Finally, since a signal as an information field can be
chosen freely, we can define it to be the filtered version of
the physical field (e.g. dark-matter distribution or CMB
fluctuations), so that only modes of sufficiently bound
variance are present in it. Since we have the freedom to
choose information fields, which are mathematically well
behaved, we can therefore ensure the convergence of
expressions.

Although this is not a general proof of normalizability of
the theory, which is beyond the scope of this paper, it
should provide confidence in the well behavedness of the
formalism in sensible applications. The price to be paid for
this well behavedness is the more complex structure of the
propagator, which, in comparison to QFT, even in simplis-
tic cases can be nonanalytical and require numerical
evaluation.

C. Expansion around the classical solution

1. General case

The classical solution of the Hamiltonian in Eq. (59) is
provided by its minimum,

�H

�sx
¼ D�1xy sy � jx þ

X1
m¼1

1

m!
�ðmþ1Þxx1���xmsx1 � � � sxm ¼ 0:

(72)

This leads to the equation for the classical field

scly ¼ Dyx

�
jx �

X1
m¼1

1

m!
�ðmþ1Þxx1���xmsclx1 � � � sclxm

�
; (73)

which one can try to solve iteratively.

2. Local interactions

For simplicity, we concentrate for a moment on the case
of purely local interactions, for which the equation for the
classical field scl is

scl ¼ D

�
j� X1

m¼1

�ymþ1
m!

smcl

�
: (74)

Iterating this equation and rewriting the resulting terms as
Feynman diagrams shows that the classical solution con-
tains the tree diagrams. The loop diagrams can be added by
investigation of the nonclassical uncertainty field� ¼ s�
scl.
A nonclassical expansion of the information field around

the classical field is possible by inserting s ¼ scl þ� into
the Hamiltonian [Eq. (64)]. Reordering terms according to
the powers of the field � leads to its Hamiltonian

H0½�� �H½sclþ��

¼H00þ
1

2
�yD0�1�� j0y�þ X1

m¼3

1

m!
�0my�m;

with �0n �
X1
m¼0

�nþm
m!

smcl ;

H00 �H½scl� ¼H0þ 1

2
syclD

�1sclþ�00;

j0 � j��01�D�1scl; and D0 � ðD�1þ �̂02Þ�1:
(75)

In case scl is exactly the classical solution, Eqs. (74) and
(75) imply that j0 ¼ 0. Thus, there are no one-line internal
vertices in any Feynman graphs of the � theory, and only
loop diagrams contribute uncertainty corrections8 to any
information theoretical estimator. For example, the uncer-
tainty corrections to the classical map estimator are given
by

.

(76)

However, in case scl is not (exactly) the classical solution,
may this be due to a truncation error of an iteration scheme
to solve for the classical field, or may scl be chosen for a
completely different purpose, Eq. (75) provides the correct
field theory for � ¼ s� scl independent of the nature of
scl. In case of a truncation error, incorporating diagrams
with data-source terms j0 into any computation will permit
one to correct the inaccuracy of scl in a systematic way.

D. Boltzmann-Shannon information

1. Helmholtz free energy

Information fields carry information on distributed
physical quantities. The amount of signal information
should be measurable in information units like bits and

7The cosmological signal of primary interest, the initial den-
sity fluctuations as revealed by the large-scale-structure and the
CMB, is expected to exhibit a suppression of small-scale power
due to the freestreaming of dark-matter particles before they
became nonrelativistic. Also the CMB temperature fluctuations
are damped on small scales, due to freestreaming of photons
around the time of recombination.

8We propose the term uncertainty corrections in order to
describe the influence of the spread of the probability distribu-
tion function around its maximum. The uncertainty corrections
are the information field theoretical equivalent to quantum
corrections in quantum field theories.
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bytes. This is possible by adopting the Boltzmann-Shannon
information measure of negative entropy. The entropy of a
signal probability function measures the phase-space vol-
ume available for signal uncertainties, and therefore the
constraintness of the remaining uncertainties. Thus we
define

Id �
Z

DsPðsjdÞ logPðsjdÞ

¼ �
Z

Ds
1

Z
e�H½s�ðH½s� þ logZÞ ¼ �hH½s�id � logZ

(77)

as the information measure. Introducing

Z�½d; J� ¼
Z

Ds expf��ðH½s� � JysÞg; and

F�½d; J� ¼ � 1

�
logZ�½d; J�; (78)

of which the latter is the Helmholtz free energy as a
function of the inverse temperature �, we can write

Id ¼ � logZ1½d; 0� � hH½s�id ¼ �
@F�½d; J�

@�

���������¼1;J¼0
;

(79)

as can be verified by a direct calculation. The first expres-
sion for Id in Eq. (79) is equivalent to the well-known
thermodynamic relation F ¼ E� TSB with the internal
energy E ¼ hH½s�id, the Boltzmann entropy SB ¼ �Id,
and the temperature, which is set here to T ¼ 1. The
second expression actually holds even if the Hamiltonian
is improperly normalized, e.g.H0 can be chosen arbitrarily
if Z�½d; J� is calculated consistently with this choice.

The Helmholtz free energy F�½J� is also the generator of
all connected correlation functions of the signal
hsx1 � � � sxnicðsjdÞ ¼ ��nF�½d; J�=�Jx1 � � ��Jxn j�¼1;J¼0. It

can be calculated as follows:

F� ¼ � 1

�
log

�ZG
�½J�

ZG
�½J�

Z
Dse��Hint½s�e��ðHG½s��JysÞ

�

¼ � 1

�
logZG

�½J� �
1

�
loghe��Hint½s�iðsjJþj;GÞ; (80)

where the average in the last term is over the Gaussian

probability function PG
J;�½s� ¼ expð��ðHG½s� �

JysÞÞ=ZG
�½J�. This term can be calculated by using the

well-known fact that the logarithm of the sum of all
possible connected and unconnected diagrams with only
internal coordinates (or without free ends), as generated by
the exponential function of the interaction terms, is given
by the sum of all connected diagrams [57]. For example, a
free theory, perturbed by small, up-to-fourth-order interac-
tion terms (all being proportional to some small parameter
�), has

(81)

where an information source vertex reads �ðJ þ j��ð1ÞÞ,
an internal vertex with n lines ��ðnÞ, and the propagator
��1D. Finally, we have defined

Thus, we have

F�½J� ¼ H0 � 1

2�
Trðlogð2�D��1ÞÞ þ 1

2�
�ð2Þ½D�

þ 1

2
ðJ þ j��ð1ÞÞyðDþ�ð2ÞÞðJ þ j��ð1ÞÞ

þ 1

2�
�ð3Þ½D;mJ� þ 1

3!
�ð3Þ½mJ;mJ;mJ�

þ 1

8�2
�ð4Þ½D;D� þ 1

4�
�ð4Þ½D;mJ;mJ�

þ 1

4!
�ð4Þ½mJ;mJ;mJ;mJ� þOð�2Þ; (82)

where we introduced the zero-order map mJ ¼ DðJ þ jÞ
for notational convenience. The power of � associated
with the different diagrams in Eq. (81) is given by the
number of vertices minus the number of propagators minus
1. Thus, all tree diagrams are of order �0, the one-loop
diagrams are of order ��1, and the two-loop diagram of
order ��2, and only the latter two affect the information
content:

(83)

where % ¼ Trð1Þ, � ¼ 1, J ¼ 0, and thus m0 ¼ Dj.9

2. Free theory

To obtain the information content of the free theory, we
can set � ¼ 0 in Eqs. (82) and (83) or use Eq. (49) with the

9Here, we introduced the symmetrized tensor product A 
 B of
an n-rank tensor A and an m-rank tensor B, which has the
property

ðA 
 BÞx1���xnþm ¼
1

m!

X
�2P nþm

Ax�ð1Þ���x�ðnÞBx�ðnþ1Þ���x�ðnþmÞ ;

with P l being the set of permutations of f1; . . . ; lg.
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replacements J ! �J, j! �j, D! ��1D, and H0 !
�H0. In both cases we find identically

F�½J� ¼ HG
0 �

1

2
ðJ þ jÞyDðJ þ jÞ � 1

2�
Tr log

�
2�

�
D

�
;

and Id ¼ � 1

2
Trð1þ logð2�DÞÞ: (84)

Very similarly, one can calculate the information prior to
the data, which turns out to be

I0 ¼ �1
2 Trð1þ logð2�SÞÞ: (85)

Thus, the data-induced information gain is

�Id ¼ Id � I0 ¼ 1
2 TrðlogðSD�1ÞÞ

¼ 1
2 Trðlogð1þ SRyN�1RÞÞ: (86)

The information gain depends on the signal-response-to-
noise ratio Q � RSRyN�1, also shortly denoted by the
measurement fidelity or quality. The information increases
linearly with Q as long as Q� 1, but levels off to a
logarithmic increase for Q� 1.

We note that for the free theory only the information
gain does not depend on the actual data realization.

E. IFT recipe

A typical IFTapplication will aim at calculating a model
evidence PðdÞ, the expectation value of a signal given the
data, the map mðxÞ ¼ hsðxÞiðsjdÞ of the signal, or its vari-

ance �2
sðx; yÞ ¼ hðsðxÞ �mðxÞÞðsðyÞ �mðyÞÞiðsjdÞ as a

measure of the signal uncertainty. The general recipe for
such applications can be summarized as follows:

(i) Specify the signal s and its prior probability distri-
bution PðsÞ. If the signal is derived from a physical
field c , of which a prior statistic is known, the
distribution of s ¼ s½c � is induced according to
Eq. (2).

(ii) Specify the data model in terms of a likelihood
PðdjsÞ conditioned on s. Again, if the data are related
to an underlying physical field c , the likelihood is
given by Eq. (4).

(iii) Calculate the Hamiltonian Hd½s� ¼ � logðPðd; sÞÞ,
where Pðd; sÞ ¼ PðdjsÞPðsÞ is the joint probability,
and expand it in a Taylor-Fréchet series for all de-
grees of freedom of s. Identify the coefficients of the
constant, linear, quadratic, and nth-order terms with
the normalization H0, information source j, inverse

propagatorD�1, and nth-order interaction term�ðnÞ,
respectively, as shown in Eq. (36) or (59).

(iv) Draw all diagrams, which contribute to the quantity
of interest, consisting of vertices, lines, and open
ends up to some order in complexity or some small
ordering parameter. The log evidence is given by the
sum of all connected diagrams without open ends,
the expectation value of the signal by all connected
diagrams with one open end, and the signal variance

around this mean by all connected diagrams with
two open ends.

(v) Read the diagrams as computational algorithms
specified by the Feynman rules in Sec. IV, and imple-
ment them by using linear algebra packages or ex-
isting map-making codes for the information
propagator and vertices. The required discretization
is outlined in Sec. II E 1. Information on how to
implement the required matrix inversions efficiently
can be found in the literature given in Secs. I C 2,
I C 4, and I C 5 and especially in [38].

(vi) If the resulting nonlinear data transformation (or
filter) has the required accuracy, e.g. to be verified
via Monte Carlo simulations using signal and data
realizations drawn from the prior and likelihood,
respectively, an IFT algorithm is established.

(vii) In case that too large interaction terms in the
Hamiltonian prevent a finite number of diagrams to
form a well-performing algorithm, a resummation of
high order terms is due. This can be achieved by the
saddle point approximation (classical solution, maxi-
mum a posteriori estimator), or even better by a
detailed renormalization-flow analysis along the
lines outlined in Sec. V F.

V. COSMIC LARGE-SCALE STRUCTURE VIA
GALAXY SURVEYS

A. Poissonian data model and Hamiltonian

Many data sets suffer from Poisson noise, which is non-
Gaussian and signal dependent, and therefore well suited to
test IFT in the nonlinear regime. For example, the cosmo-
logical LSS is traced by galaxies, which may be assumed to
be generated by a Poisson process. On large scales, the
expectation value of the galaxy density follows that of the
underlying (dark) matter distribution. The aim of cosmog-
raphy is to recover the initial density field from the shot-
noise contaminated galaxy data. Currently, large galaxy
surveys are conducted in order to chart the cosmic matter
distribution in three dimensions. Improving the galaxy
based LSS reconstruction techniques and understanding
their uncertainties better is therefore an imminent and
important goal. Optimal techniques to reconstruct
Poissonian-noise affected signals are also crucial for other
problems, since e.g. imaging with photon detectors plays
an important role in astronomy and other fields. Here, we
outline how such problems can be treated, by discussing a
specific data model motivated by the problem of large-
scale-structure reconstruction from galaxies. For this prob-
lem we work out the optimal estimator and show its
superiority numerically. A more general discussion of
models of galaxy and structure formation and references
to relevant works was given in Sec. I C 4.
In order to treat the Poissonian case in a convenient

fashion, we subdivide the physical space into small cells
with volumes �V, and assume that a cell located at xi has
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an expected number of observed galaxies

�i 
 	ð1þ bsðxiÞÞ; (87)

with 	 ¼ �ng�V being the cosmic average number of gal-

axies per cell and b being the bias of the galaxy overdensity
with respect to the dark-matter overdensity s, still assumed
to be a Gaussian random field [Eq. (38)]. However, this
data model has two shortcomings. First, too negative fluc-
tuations of the Gaussian random field with s <�1 lead to
negative expectation values, for which the Poissonian sta-
tistics is not defined. Second, the mean density of observ-
able galaxies 	 and their bias parameter b are constant
everywhere, whereas in reality both exhibit spatial varia-
tions.10 Although being now spatially inhomogeneous, we
assume 	 and b to be known for the moment and to
incorporate all the above observational effects.

To cure the above mentioned shortcomings we replace
Eq. (87) by a nonlinear and nontranslational invariant
model:

�i ¼ 	ðxiÞ expðbðxiÞsðxiÞÞ; (88)

where 	 and b may depend on position in a known way,
and the unknown Gaussian field s, the log-matter density,
may exhibit unrestricted negative fluctuations. Note that �
is the signal response, by our definition in Eq. (10), since
�½s� ¼ hdiðdjsÞ. We call 	 the zero response, since �½0� ¼
	. It should be stressed that the data model in Eq. (88) is
just a convenient choice for illustration and proof-of-
concept purposes, and is easily exchangeable with more
realistic, and even nonlocal data models. However, this
log-normal data model was originally proposed by Coles
and Jones [212], investigated for constrained realizations
by Sheth [107] and Vio et al. [213] and seems to reproduce
the statistics of LSS simulations much better than the often
used normal distribution of the overdensity [214].

Having chosen a Poissonian process to populate the
Universe and our observational data with galaxies accord-
ing to the underlying log-density field s, the likelihood is

PðdjsÞ ¼Y
i

�di
i

di!
e��i

¼ exp

�X
i

½di log�i ��i � logðdi!Þ�
�
; (89)

where di is the actual number of galaxies observed in cell i.
Since PðsÞ ¼ Gðs; SÞ, the Hamiltonian is given by

Hd½s� ¼ � logPðd; sÞ ¼ � logPðdjsÞ � logPðsÞ
¼ �dybsþ	y expðbsÞ þH00þ

1

2
syS�1s

¼ 1

2
syD�1s� jysþH0þ

X1
n¼3

1

n!
�ynsn; with

D�1 ¼ S�1þd	b2;
j¼ bðd�	Þ;

H0 ¼ 1

2
logðj2�SjÞ þ ð	þ logðd!ÞÞy1� dy log	; and

�n ¼ 	bn: (90)

The hat on a scalar field denotes that it should be read as a
matrix, which is diagonal in position space (see
Appendix A). A few remarks are in order. Comparing the
propagator to the one of our Gaussian theory one can read

off an inverse noise term M ¼ RyN�1R ¼d	b2. Thus the
effective (inversely response weighted) noise decreases
with increasing mean galaxy number and bias, and seems
to be infinite in regions without data (	 ¼ 0) without
causing any problem for the formalism.
The information source j increases with increasing re-

sponse (bias) of the data (galaxies) to the signal (density
fluctuations). However, it certainly vanishes for zero re-
sponse (b ¼ 0) or in case that the observed galaxy counts
match the expected mean at a given location exactly.
Finally, the interaction terms �n are local in position space,
and vanish with decreasing b and 	. The latter parameter is
under the control of the data analyst, since it is proportional
to the volume of the individual pixel sizes, and therefore
can be made arbitrarily small by choosing a more fine
grained resolution in signal space. However, this would
not change the convergence properties of the series since
any interaction vertex has then to be summed over a
correspondingly larger number of pixels within a coher-
ence patch of the signal, which exactly compensates for the
smaller coefficient.11 The bias, in contrast, is set by nature
and can be regarded as a power counting parameter, which
provides naturally a numerical hierarchy among the
higher-order vertices and diagrams for b2S < 1. Note that
j ¼ OðbÞ.

B. Galaxy types and bias variations

Real galaxies can be cast into different classes, which all
differ in terms of their luminosities, bias factors, and the
frequencies with which they are found in the Universe.

10Such variations are due to the geometry of the observational
survey sky coverage, due to a galaxy selection function which
decreases with distance from the observer, and due to a changing
composition of the galaxy population. The latter distance effects
are caused by the cosmic evolution of galaxies and by the
changing observational detectability of the different types with
distance. We note that an observed sample of galaxies, which
was selected deterministically or stochastically from a complete
sample e.g. by their luminosity due to instrumental sensitivity,
still possesses a Poissonian statistics, if the original distribution
does.

11	 seems to control the stiffness of the later introduced
response-renormalization flow equation and its values are there-
fore numerically relevant. A lower 	, due to a finer space
pixelization, results in a less stiff and better behaved equation.
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Although we are not going to investigate this complication
in the following, it should be explained here how all the
formulas in this section can easily be reinterpreted, in order
to incorporate also the different classes of galaxies.

The galaxies can be characterized by a type variable L 2
�type, which may be the intrinsic luminosity, the morpho-

logical galaxy type, or a multidimensional combination of
all properties which determine the galaxy type’s spatial
distributions via a L-dependent bias bL, and their detect-
ability as encoded in 	L. The data space is now spanned by
�data ¼ �space ��type, and also �, 	, and b can be re-

garded as functions over this space.
Performing the same algebra as in the previous section,

just taking the larger data space into account, we get to
exactly the same Hamiltonian, as in Eq. (90), if we inter-
pret any term containing d, 	, and b to be summed or
integrated over the type variable L. Thus, we read

jðxÞ ¼ ðbðd� 	ÞÞðxÞ �
Z

dLbLðxÞðdLðxÞ � 	LðxÞÞ;

D�1xy ¼ ðS�1 þd	b2Þxy � S�1xy þ 1xy
Z

dL	LðxÞb2LðxÞ;

�nðxÞ ¼ ð	bnÞðxÞ �
Z

dL	LðxÞbnLðxÞ; and

�½s�ðxÞ ¼ ð	ebsÞðxÞ �
Z

dL	LðxÞebLðxÞsðxÞ

¼
Z

dL�L½s�ðxÞ; (91)

which all live in �space solely, so that the computational

complexity of the matter distribution reconstruction prob-
lem is not affected at all, and only a bit more bookkeeping
is required in its setup.

A few observations should be in order. In case of all
galaxies having the same bias factor, Eq. (91) is simply a
marginalization of the type variable L, and any differen-
tiation of the various galaxy types is not necessary. Since
all known galaxy types seem to have b�Oð1Þ, such a
marginalization seems to be justified, and explains why
LSS reconstructions, which applied this simplification, are
relatively successful, although the different galaxy masses,
luminosities, and frequencies vary by orders of magnitude.
As our numerical experiments below reveal, the data, and
therefore the reconstructability of the density field, exhibit
a sensitive dependence on the bias for s fluctuations with
unity variance.12 Such a variance is indeed observed on
scales below �10 Mpc in the galaxy distribution, and
therefore the galaxy type-dependent bias variation does
indeed matter. Larger galaxies, which have larger biases,
therefore provide per galaxy a slightly larger information
source (j / b), less shot noise (RyN�1R / b2), and in-

creasingly larger higher-order interaction terms (�n / bn)
in comparison to smaller galaxies. However, smaller gal-
axies are much more numerous by orders of magnitude,
and therefore provide the largest total contribution to the
information source, noise reduction, and most low-order
interaction terms. Thus, the latter will dominate and there-
fore permit a reasonable accurate matter reconstruction
from an inhomogeneous galaxy survey using a single
bias value. Nevertheless, improvements of the bias treat-
ment are possible by applying the recipes described here.

C. Nonlinear map making

The map, the expectation of our information field s
given the data, is to the lowest order in interaction

(92)

or in compact notation

m1 ¼ m0 � 1
2D
db3	ðD̂þm2

0 þ ĉDbm0Þ þOðb6Þ: (93)

It is apparent that the nonlinear map-making formula con-
tains corrections to the linear map m0 ¼ Dj. The first two
correction terms are always negative, reflecting the fact
that our nonlinear data model has nonsymmetric fluctua-
tions in the data with respect to the mean. The last correc-
tion term is oppositely directed to the linear map, thereby
correcting for the curvature in the signal response.
A one-dimensional, numerical example is displayed in

Fig. 1. There, the signal was realized to have a power
spectrum PsðkÞ / ðk2 þ q2Þ�1, with a correlation length
q�1 ¼ 0:04. The normalization was chosen such that the
autocorrelation function is hsðxÞsðxþ rÞiðsÞ ¼ expð�jqrjÞ
and therefore the signal dispersion is unity, hs2iðsÞ ¼ 1. The
data are generated by a Poissonian process from 	s ¼
	 expðbsÞ with b ¼ 0:5. All three displayed reconstruc-
tions exhibit less power than the original signal, as it is
expected since the reconstruction is conservative, and
therefore biased toward zero.
The nonlinear correction to the naive mapm0 should not

be too large, otherwise higher-order diagrams have to be
included. In the case displayed in Fig. 1, b ¼ 0:5 ensured
that the linear corrections were mostly going in the right
direction. However, in case b 
 1 there is no obvious
ordering of the importance of the different interaction
vertices, and numerical experiments reveal that the first-
order corrections strongly overcorrect the linear mapm0 ¼
Dj. In such a case interaction resummation techniques
should be used to incorporate as many higher-order inter-
action terms as possible. One very powerful resummation
is provided by the classical solution, as developed below,

12This is found for our specific data model � / expðbsÞ;
however, it should also apply for other models, which somehow
have to keep � � 0 even for bs <�1
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which contains all tree diagrams simultaneously. This so-
lution, also shown in Fig. 1, is very close tom1 in this case.

D. Classical solution

The classical signal field or MAP solution is given by
Eq. (74), which reads in this case

scl ¼ D

�
j� X1

m¼2

bmþ1

m!
	smcl

�
¼ Dbðd� 	ðebscl � bsclÞÞ

¼ Sbðd� 	ebscl|ffl{zffl}
	scl

Þ: (94)

The last expression motivates one to introduce the ex-
pected number of galaxies given the signal s:

	s ¼ 	ebs: (95)

Also alternative forms of theMAP equation can be derived,
for example, one, which is especially suitable for large j:

scl ¼ 1

b
log

�
j� S�1scl

	b

�
¼ 1

b
log

�
d

	
� 1� S�1scl

	b

�
:

(96)

This may be solved iteratively, while ensuring that sðiÞcl 	
Sj at all iterations i with equality only where 	 ¼ 0. This
form of the classical field equation has some similarities to
the naive inversion of the response formula, hdiðdjsÞ ¼
	 expðbsÞ, which yields

snaive ¼ 1

b
log

�
d

	

�
; (97)

a formula one can only dare to use in regimes of large d.

FIG. 1 (color online). Poissonian reconstruction of a signal
with unit variance and correlation length q�1 ¼ 0:04, observed
with slightly nonlinear response (b ¼ 0:5, resolution: 513 pixels
per unit length, zero-signal galaxy density: 1000 galaxies per
unit length). Top panel: data d, signal response �, and zero
response 	. Middle panel: signal s, linear Wiener-filter recon-
struction m0 ¼ Dj, its 1� error interval m0 � D̂1=2, next order
reconstruction m1 according to Eq. (92), and classical solution
scl according to Eq. (94). Although the linear Wiener filter is
reconstructing well at most locations, the nonlinear response
requires the perturbative corrections present in m1 or the classi-
cal solution in regions of high signal strength. Bottom panel: The
residuals, the deviations of m0, m1, scl from the signal, and the
Wiener variance �D̂1=2.

FIG. 2 (color online). Poissonian reconstruction of the same
signal realization as in Fig. 1 (unit variance and correlation
length q�1 ¼ 0:04), observed now with a strongly nonlinear
response (b ¼ 2:5, resolution: 512 pixels per unit length, zero-
signal galaxy density: 100 galaxies per unit length where the
mask is 1) through a complicated mask. Top panel: data d, signal
response �, and zero response 	. Middle panel: signal s,
classical solution scl ¼ mT¼0, intermediate solution mT¼0:5,
and renormalization-based reconstruction mT¼1 with uncertainty
interval mT¼1 � D̂1=2

T¼1, and mask 	=ðng�VÞ. The linear Wiener-

filter reconstruction m0 as well as its next order corrected version
m1 are not displayed, since they are partly far outside of the
displayed area. Bottom panel: Deviations of the three recon-
structions from the signal, and the original and the renormalized

uncertainty estimates �D̂1=2
0 and�D̂1=2

T¼1, respectively. Note that
in the regions with many observed galaxies, the high signal-to-

noise ratio can be seen in the narrowness of D̂1=2
T¼1, which is

significantly smaller than the data unaffected D̂1=2
0 at these

locations.

INFORMATION FIELD THEORY FOR COSMOLOGICAL . . . PHYSICAL REVIEW D 80, 105005 (2009)

105005-19



Since snaive contains the full noise of the data, a suitable
naive map may be given by mnaive ¼ Ssnaive, after some fix
for the locations without galaxy counts. The classical
solution, however, is more conservative than this naive
data inversion, in that there is a damping term,
S�1scl=ð	bÞ, compensating a bit the influence of too large
data points.

Those equations permit one to calculate the classical
solution if suitable numerical regularization schemes are
applied, since naive iterations can easily lead to numerical
divergences in the nonlinear case.

One way of doing this is by turning the classical equa-
tion [Eq. (94)] into a dynamical system. Its initial condi-
tions are given by a well-solvable linear or even trivial
problem to which nonlinear complications are added suc-
cessively during an interval of some pseudotime. The end
point of this dynamics is then the required solution. The
meaning of the pseudotime depends on the way it was set
up. In any case, it can just be regarded as a mathematical
trick to generate a differential equation, which might be
easier to solve numerically than the original problem.

For example, a pseudotime 
 can be introduced by
setting jð
Þ ¼ 
j. Thus, the information source is succes-
sively injected into an initially trivial field state, sclð0Þ ¼ 0.
This allows one to set up a differential equation for sclð
Þ
by taking the time derivative of Eq. (94),

_s cl ¼ Dsclj with Dscl ¼ ðS�1 þ 	sclb
2Þ�1; (98)

which has to be solved for sclð1Þ starting from sclð0Þ ¼ 0.
This equation is very appealing, since it looks like Wiener
filtering an incoming information stream j and accumulat-
ing the filtered data, while simultaneously tuning the filter
Dsclð
Þ to the accumulated knowledge on the signal sclð
Þ
and thereby implied Poissonian-noise structure. Thus, it is
a nice example system for continuous Bayesian learning
and also illustrates how different data sets can successively
be fused into a single knowledge basis.

Map-making algorithms with a higher fidelity are pos-
sible by not only investigating the maximum of the poste-
rior, but by averaging the signal s over the full support of
PðsjdÞ. Anyhow, we can assume that a good approximation
t 
 scl to the classical solution can be achieved. Figures 1
and 2 display classical solutions for slightly and strongly
nonlinear Poissonian inference problems. Especially the
second example shows that the classical solution can be
improved in regions of large uncertainty (see the region
between x ¼ 0:2 and 0.5 in Fig. 2, where apparently better
estimators exist) for missing uncertainty-loop diagrams,
which contain information about the non-Gaussian struc-
ture of the posterior PðsjdÞ away from scl.

E. Uncertainty-loop corrections

Now, we see how the missing uncertainty-loop correc-
tions can be added to the classical solution. These correc-
tions can be derived from the Hamiltonian of the

uncertainty field � ¼ s� t,

Ht½�� ¼ 1

2
�yD�1t �� jyt �þ 	yt gðb�Þ þH0;t;

where D�1t ¼ S�1 þ b2	̂t;

jt ¼ bðd� 	tÞ � S�1t;

gðxÞ ¼ ex � 1� x� 1

2
x2 ¼ X1

m¼3

xm

m!
; (99)

and H0;t is a momentarily irrelevant normalization con-

stant. Again, we have permitted for a nonzero jt, since t
might not be exactly the classical solution.
It is interesting to note that the interaction coefficients in

this Hamiltonian, �ðmÞt ¼ 	tb
m, all reflect the expected

number of galaxies given the reference field t. Thus, the
replacement 	0 ! 	t would provide us with the shifted
field Hamiltonian, as defined in Eq. (60), except for the
term �S�1t in jt. It turns out that this term is some sort of
counterterm, which accumulates the effect of the nonlinear
interactions.
We see that effective interaction terms arise when rele-

vant parts of the solution are absorbed in the background
field t. A similar approach is desirable for the loop dia-
grams. Instead of drawing and calculating all possible loop
diagrams, we want to absorb several of them simulta-
neously into effective coefficients. For each vertex of the
Poissonian Hamiltonian with m legs, there exist diagrams
in any Feynman expansion, in which a number of n simple
loops are added to this vertex. Such an n-loop enhanced
m vertex is given by

(100)

All these diagrams can be resummed into an effective
interaction vertex, via

�ðmÞt ! �0ðmÞt ¼ 	tb
m
X1
n¼0

1

2nn!
b2nD̂n ¼ 	t exp

�
b2

2 D̂

�
bm

¼ 	tþbD̂=2b
m ¼ �ðmÞ

tþbD̂=2
: (101)

Thus, this resummation is effectively equivalent to the
replacement

	t ! 	tþbD̂=2; (102)

which reflects the larger expected response to a reference
field t due to the uncertainty fluctuations around it. Those
fluctuations pick up the asymmetric shape of the exponen-
tial term in the Hamiltonian, where the larger response to
positive fluctuations is not fully compensated by the lower
response to negative fluctuations. One might wonder, if the
simple replacement rule in Eq. (102) could supplement the
classical solution with the missing uncertainty-loop cor-
rections. Thus we ask, if the modified classical equation
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m ¼ bSðd� 	mþbD̂=2Þ; (103)

together with a self-consistently determined propagator

D�1 ¼ S�1 þdb2	mþbD̂=2; (104)

could provide the mean field given the data. A more
rigorous renormalization calculation will show that this is
indeed the case, within some approximation.

The loop-corrected density and propagator permit one to
construct estimators for the dark-matter density itself,

% ¼ %0e
cs; (105)

instead of its logarithm, s. Here c fixes the relation between
s and %, and %0 being the cosmic median dark-matter
density. Translating our log-density map into the density
results in the naive density estimator

mnaive
% ¼ %0e

cm; (106)

which is not optimal in the sense of minimal rms devia-
tions. The proper estimator would be

m% ¼ h%0e
csiðsjdÞ ¼ %0e

cmþc2D̂=2; (107)

which contains uncertainty-loop corrections accounting for
the shift of the mean under the nonlinear transformation
between log density and density.

F. Response renormalization

Since we are dealing with a �1-field theory, the zoo of
loop diagrams is quite complex, and forms something like
a Feynman foam. In order not to get stuck in the multitude
of this foam, we urgently require a trick to keep either the
maximal order of the diagrams low, or to limit the number
of vertices per diagram, or both. We have basically two
handles on any interaction term �n ¼ 	bn, the bias b and
the zero response 	. We concentrate on the response, since
it enters the Hamiltonian in a linear way and also the data
can be regarded to be proportional to 	. Thus, the full
Hamiltonian

H½s� ¼ 1
2s
yS�1s� bdysþ 	0e

bs (108)

can be regarded to be proportional to the response, except
for the prior term and also constant terms we immediately
drop here and in the following.

Let us assume that prior to any data analysis we have an
initial guess m0 for the signal with some Gaussian uncer-
tainty characterized by the covariance D0. This can be
expressed via a Hamiltonian of the form

H0½s� ¼ 1
2ðs�m0ÞyD�10 ðs�m0Þ; (109)

which defines a probability density via P0ðsÞ /
expð�H0½s�Þ. In case the prior should be our initial guess,
we have m0 ¼ 0 and D0 ¼ S, but we need not restrict
ourself to this case. Now, we want to anticipate step by
step the information of the full problem and forget our

initial guess with the same rate. This can be modeled by
adopting an affine parameter 
, which measures how much
we exposed ourselves to the full problem. For each 
,
which we regard as a pseudotime, our knowledge state is
described by a Hamiltonian H
. Increasing 
 by some
small amount " should therefore lead to the next knowl-
edge state characterized by

H
þ" ¼ H
½s� þ "ðH½s� �H
½s�Þ: (110)

This equation just models an asymptotical approach to the
correct Hamiltonian. If the initial guess was the prior, one
sees that for infinitesimal steps " the knowledge flow
corresponds to tuning up all terms proportional to 	,

H
½s� ¼ 1
2s
yS�1sþ ð1� e�
Þð�bdysþ 	0e

bsÞ ! H½s�:
This motivates the term response renormalization for this
kind of continuous learning system, into which the infor-
mation source as well as the interactions is fed with the
same rate.
The trick for the renormalization procedure is to ap-

proximate the knowledge state at each moment 
 to be of
Gaussian shape and therefore the Hamiltonian to be free
(quadratic in the signal). Thus we set

H
½s� ¼ 1
2ðs�m
ÞyD�1
 ðs�m
Þ; (111)

where m
 and D
 ¼ ðS�1 þM
Þ�1 are the mean and dis-
persion of the field given the acquired knowledge at time 
,
respectively.
These have to be updated when the next learning step is

to be performed. The next Hamiltonian, before being again
replaced by a free one, is

H
þ"½�� ¼ 1

2
�yD�1
 �þ "

�
ðS�1m
 � bdÞy�

� 1

2
�yM
�þ 	m


eb�
�

¼ 1

2
�yD�1
 �þ "

X1
n¼1

1

n!
�n�

n; (112)

if expressed for the momentarily uncertainty field� ¼ s�
m
. Here, the perturbative expansion coefficients are given
by

�1 ¼ 	m

bþ S�1m
 � bd;

�2 ¼ 	m

b2 � M̂
; and �n ¼ 	m


bn for n > 2;

assuming for simplicity that M
 is diagonal. This is a save
restriction, since we will see that for 
! 1 this is the case
asymptotically, even for a nondiagonal initialM0. Thus we
can require that our initial guess was also of this form.
In order to approximate this Hamiltonian by a free one,

we have to calculate the shifted mean field and its con-
nected two-point correlation function, the full propagator.
To first order in " only leaf diagrams with a single pertur-
bative interaction vertex contribute to the perturbed expec-
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tation value of �:

(113)

Note that only odd interaction terms shift the expectation

value m
þ" ¼ m
 þ h�ið
þ"ÞðsjdÞ . The even ones do not exert

any net forces in the vicinity of �
 ¼ 0 since they repre-
sent a potential which is mirror symmetric about this point.

The renormalized propagator D
þ" is given by the con-

nected two-point correlation function h��yið
þ"ÞðsjdÞ , and this

is up to linear order in "

.

(114)

Rewriting this for an update of M
 we find up to linear
order in "

M
þ" ¼ ð1� "ÞM
 � "b2	m

eb

2D̂
=2: (115)

Taking the limit "! 0 yields the integro-differential sys-
tem

_m ¼ Dðbd� b	0e
bmþb2D̂=2 � S�1mÞ;

_M ¼ b2	0e
bmþb2D̂=2 �M; and

D ¼ ðS�1 þ M̂Þ�1: (116)

This converges at a fixed point, which we previously
guessed in Eqs. (103) and (104) for our uncertainty-loop
enhanced classical equation.

The classical and the renormalization flow fix point
equations can be unified:

m ¼ bSðd� 	bmþTbD̂=2Þ;
D ¼ ðS�1 þ 	̂bmþTbD̂=2Þ�1;

(117)

with T ¼ 0 and T ¼ 1 for the classical and renormaliza-
tion result, respectively.

The parameter T is more than a pure convenience. If we
would have introduced a temperature T at the beginning,
via Pðd; sjTÞ ¼ expð�Hd½s�=TÞ, Eq. (117) would have
been the result of the renormalization-flow calculation.
And the classical limit naturally corresponds to the zero
temperature regime, in which the field expectation value is
not affected by any uncertainty fluctuations since the sys-
tem is at its absolute energy minimum.

An example of such reconstructions can be seen in
Fig. 2, and its uncertainty structures in Fig. 3. Here, the
renormalization equation indeed seems to provide a better
result compared to the classical one. However, a statistical

comparison of the two reconstructions using 1000 realiza-
tions of the signal and data in Fig. 4 shows that there is at
most a marginal difference. This may be surprising, since
the classical and renormalization solutions are quite dis-
tinct, and the latter is always lower than the former. One
might therefore ask if the two are bracketing the correct
solution. And indeed, intermediate solutions constructed
using T ¼ 1=2 perform better than the ones for T ¼ 0 and
T ¼ 1, as can be seen in Fig. 4.
If neither T ¼ 0 nor T ¼ 1 provide the optimal recon-

struction, what would be the right choice? We have to
remember that we replaced the probability density function
at each step of the renormalization scheme by a Gaussian
with the correct mean and dispersion. However, the real
probability is not a Gaussian, and therefore our mean field
estimator is not optimal. Reconstructions with different T
probe the non-Gaussian probability structure with a differ-
ent wide Gaussian kernel in phase space, and therefore
result in a slightly different signal means due to the anhar-
monic nature of our Hamiltonian.

G. Uncertainty structure

The remaining uncertainties at the end of the renormal-
ization flow can mainly be read of the renormalized propa-
gator D, which we display in the top part of Fig. 3 in
comparison to the original, unrenormalized one D0. The
renormalized propagator is a much better approximation to
the uncertainty dispersion of the signal posterior distribu-
tion around the mean map than the original one. One can
clearly see that the data imprinted a highly nonuniform
structure into the uncertainty pattern visible in the renor-
malized propagator with small uncertainties where there
were many galaxy counts. Also the density estimator in
Eq. (107) benefits from the knowledge of the uncertainty

FIG. 3. The original propagator D0 ¼ ðS�1 þ d	0b
2Þ�1 (left

panel) and the final of the renormalization flow D [Eq. (117),
right panel] in logarithmic grey scaling for the data displayed in
Fig. 2. The values of the diagonals show the local uncertainty
variance (in Gaussian approximation) before (D̂0) and after (D̂)
the data are analyzed, respectively. The bottom left and top right
corners exhibit nonvanishing propagator values due to the as-
sumed periodic spatial coordinate, which puts these corners
close to the two others on the matrix diagonal.
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structure contained in the renormalized propagator, as the
lower panel of Fig. 4 shows.

The propagators also visualize the effect any additional
data would have at different locations. The height and
width of the propagator values define, respectively, the
strength of the response to and the distance of information
propagation from an information source.

The structure of D0 is imprinted by the prior and the
mask. At D0’s widest locations the mask blocks any infor-
mation source and the structure of the signal prior S
becomes visible. At locations where the mask is transpar-
ent, the reconstruction response per information source is
lower, as plenty of information can be expected there. Also
the propagator width is smaller, since the individual in-
formations do not need to be propagated that far, thanks to
the richer information source density in such regions.

The structure of Dm has additionally imprinted the ex-
pected information source density structure given the re-
construction m. The strongly nonlinear signal response has
led to regions with very high galaxy count rates, which
have larger information densities, and therefore lower and
narrower information propagators. This implies that any
additional galaxy detection in the regions with high galaxy

counts will have little impact on the updated map, whereas
any additional detected galaxies in low density regions will
more strongly change it. However, the number of addi-
tional galaxies per invested observing time will be larger in
high density regions, which may compensate the lower
information-per-galaxy ratio there. It is therefore interest-
ing to look at the observational information content and
how it depends on the actual data realization.

H. Information gain

In the case of a free theory, the amount of information
depends on the experimental setup and on the prior, but is
independent of the data obtained as we have shown in
Sec. IVD2. This changes in the case that one wants to
harvest information in a situation described by a nonlinear
IFT. There, the amount of information can strongly depend
on the actual data.
This is well illustrated by our LSS reconstruction prob-

lem. A perturbative calculation of the nonlinear informa-
tion gain is possible if either the bias factor or the signal
amplitude, which both control the strength of the nonlinear
interactions, are small compared to unity.13

The information gain, as given by Eq. (83), expanded to
the first few orders in b

�I1 ¼ 1
2 Tr logð1þ Sd	b2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�I0

þ 1
2ð	b3D̂0Þyðm0 þ 1

2bðD̂0 þm2
0ÞÞ þOðb5Þ; (118)

clearly depends on the actual realization of the data. The
different fluctuations in the Wiener map m0 ¼ D0j, with

D0 ¼ ðS�1 þdb2	Þ�1 and j ¼ bðd� 	Þ, imply positive
and negative information density fluctuations.
To conveniently calculate the information gain of the

observation in case of a large bias factor, we use the
Gaussian approximation of the jointed probability func-
tion, as provided by the renormalization scheme. Because
of the Gaussianity of this approximate solution, we can
simply use the formula for the information gain of a free
theory, as given by Eq. (86). This yields

�Id ¼ 1
2 Trðlogð1þ S db2	�ÞÞ; (119)

with � ¼ ebmþð1=2Þb2D̂T¼1 being proportional to the ex-
pected number density of galaxies in this region [see
Eq. (107)]. It is also obvious that the information gain
depends on the data. In regions with higher observed
galaxy numbers, � is larger, and more information is
expected to be harvested by further observations. This is

FIG. 4 (color online). Top panel: Statistical reconstruction
error from 1000 signal and data realizations. Curves are, roughly
in order from top (bad performance) to bottom (good perform-

ance): error �mnaive
¼ hðs�mnaiveÞ2i1=2ðd;sÞ of the signal-covariance-

convolved naive map mnaive ¼ Ssnaive [see Eq. (97)], expected

Wiener uncertainty �D̂0
¼ D̂1=2

0 , averaged renormalized uncer-

tainty �D̂T¼1 ¼ hD̂T¼1i1=2ðd;sÞ, error of the classical map �mT¼0 ¼
hðs�mT¼0Þ2i1=2ðd;sÞ, error of the renormalized map �mT¼1 ¼ hðs�
mT¼1Þ2i1=2ðd;sÞ, and error of the intermediate map �mT¼0:5 ¼ hðs�
mT¼0:5Þ2i1=2ðd;sÞ. The lowest curve without a label is 	. Bottom

panel: Error variance of estimators for the density, % ¼ es,

namely, �m
very naive
%

¼ hð%� emnaive Þ2i1=2ðd;sÞ, �mnaive
%
¼

hð%�mnaive
% Þ2i1=2ðd;sÞ, and �m%

¼hð%�m%Þ2i1=2ðd;sÞ [see Eqs. (106)

and (107)].

13The signal amplitude can, for example, be made small by
defining the signal of interest to be the cosmic density field,
smoothed on a sufficiently large scale (> 10 Mpc) so that
hs2iðsÞ < 1.
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illustrated in Fig. 5, where the information gain density, the
individual contributions to the trace in Eq. (119), as well as
the first and all terms of Eq. (118) are shown for the cases
displayed in Figs. 1 and 2. The approximate Eq. (118)
seems to be adequate for b� 1, but not for our cases of
b ¼ 0:5 and 2.5.

The expected benefit of additional observations at loca-
tion x can also be calculated by differentiating Eq. (119)
with respect to 	ðxÞ. Using Eqs. (88) and (117) we find



�Id
�	0

�
ðnew datajdÞ

¼ 1

2
b2�

�
1þ 1

2
d	b2�D2b2

��1
D̂: (120)

The expected information gain is especially large for ob-

servations at locations where the uncertainty D̂ is large,
where a large number density of galaxies ( / �) can be
expected, and where strong nonlinearities are present ( /
b2). The inverse term caps the maximally available infor-
mation gain at some level. For the two reconstruction
examples given in Figs. 1 and 2 we display the expected
information gain as a function of the observing position in
Fig. 6.

It is apparent from the top panel, showing the case of
uniform observation coverage, that additional observations
are more advantageous at locations where already an in-
creased matter density is identified. The bottom panel,
showing the case of a very inhomogeneous observation
of strongly nonlinear data, demonstrates that filling obser-
vational gaps should have the highest priority. But there

again, regions where the extrapolated galaxy density seems
to be larger should be preferred, as can be seen from the
asymmetric shape of the expected information gain for
observations in the gap around x ¼ 0:2. In this example,
the information harvest of high galaxy density regions can
be so large that further observations of the already well-
observed regions at the boundary of the domain seem to be
more advantageous than improving the poorly observed
regions around x ¼ 0:4, where a low galaxy density is
already apparent from the existing data.
Of course, in order to plan observations in a real case,

the dependence of observational costs as a function of
location x and already achieved zero response there,
	ðxÞ, have to be folded into the considerations.

VI. NON-GAUSSIAN CMB FLUCTUATIONS
VIA fnl THEORY

A. Data model

As an IFT example on the sphere� ¼ S2, involving two
interacting uncertainty fields, we investigate the so-called
fnl theory of local non-Gaussianities in the CMB tempera-
ture fluctuations. This problem has currently a high scien-
tific relevance due to the strongly increasing availability of
high fidelity CMB measurements, which permit one to
constrain the physical conditions at very early epochs of
the Universe. The relevant references for this topic were
provided in Sec. I C 5.
On top of the very uniform CMB sky with a mean

temperature TCMB, small temperature fluctuations on the

level of �TfI;E;Bgobs =TCMB � 10�f5;6;7g are observed or ex-

pected in total intensity (Stokes I) and in polarization E
and B modes, respectively. The weak B modes are mainly
due to the lensing of E modes and some unknown level of

FIG. 5 (color online). Information gain density [the integrands
of Eqs. (118) and (119)] for the two reconstruction examples
presented, the only weakly nonlinear one (top panel, and Fig. 1)
and the strongly nonlinear one (bottom panel, and Fig. 2). The
renormalization result for T ¼ 1 [Eq. (119)], and the zero- and
first-order perturbative results [Eq. (118)] are shown. The infor-
mation gain depends on the observational sensitivity as well as
the actual data. The latter influence is stronger in the nonlinear
regime and disappears in linear inference problems.

FIG. 6 (color online). Differential information gain density for
the two reconstruction examples presented, the only weakly
nonlinear one (top panel, and Fig. 1) and the strongly nonlinear
one (bottom panel, and Fig. 2).
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gravity waves. We will disregard them in the following.
These CMB temperature fluctuations are believed and
observed to follow mostly a Gaussian distribution.
However, inflation predicts some level of non-
Gaussianity. Some of the secondary anisotropies imprinted
by the LSS of the Universe via CMB lensing, the integrated
Sachs-Wolfe and the Rees-Sciama effects should also have
imprinted non-Gaussian signatures [215,216]. The primor-
dial, as well as some of the secondary CMB temperature
fluctuations are a response to the gravitational potential
initially seeded during inflation. Since we are interested in
primordial fluctuations, we write

d � �TfI;Egobs =TCMB ¼ R’þ n; (121)

where ’ is the three-dimensional, primordial gravitational
potential, and R is the response on it of a CMB instrument,
observing the induced CMB temperature fluctuations in
intensity and E-mode polarization. These are imprinted by
a number of effects, like gravitational redshifting, the
Doppler effect, and anisotropic Thomson scattering. In
the case that the data of the instrument are foreground
cleaned and deconvolved all-sky maps (assuming the
data processing to be part of the instrument) the response,
which translates the 3D gravitational field into temperature
maps, is well known from CMB theory and can be calcu-
lated with publicly available codes like CMBFAST, CAMB,
and CMBEASY (see Sec. I C 5). The precise form of the
response does not matter for a development of the basic
concept and can be inserted later.

Finally, the noise n subsumes all deviation of the mea-
surement from the signal response due to instrumental and
physical effects, which are not linearly correlated with the
primordial gravitational potential, such as detector noise,
remnants of foreground signals, but also primordial gravi-
tational wave contributions to the CMB fluctuations.

The small level of non-Gaussianity expected in the CMB
temperature fluctuations is a consequence of some non-
Gaussianity in the primordial gravitational potential.
Despite the lack of a generic non-Gaussian probability
function, many of the inflationary non-Gaussianities
seem to be well described by a local process, which taints
an initially Gaussian random field,� - Pð�Þ ¼ Gð�;�Þ
(with the� covariance� ¼ h��yið�Þ), with some level of

non-Gaussianity. A well controllable realization of such a
tarnishing operation is provided by a slightly nonlinear
transformation of � into the primordial gravitational po-
tential ’ via

’ðxÞ ¼ �ðxÞ þ fnlð�2ðxÞ � h�2ðxÞið�ÞÞ (122)

for any x. The parameter fnl controls the level and nature of
non-Gaussianity via its absolute value and sign, respec-
tively. This means that our data model reads

d ¼ Rð�þ fð�2 � �̂ÞÞ þ n; (123)

where we dropped the subscript of fnl. In the following we

assume the noise n to be Gaussian with covariance N ¼
hnnyiðnÞ and define as usual M ¼ RyN�1R for notational

convenience.14

B. Spectrum, bispectrum, and trispectrum

The nonlinearity of the relation between the hidden
Gaussian random field � and the observable gravitational
potential ’ [Eq. (122)] imprints non-Gaussianity into the
latter. In order to be able to extract the value of the non-
Gaussianity parameter f from any data containing infor-
mation on ’, we need to know its statistic at least up to the
four-point function, the trispectrum, which we briefly de-
rive with IFT methods.
To that end, it is convenient to define a ’-moment

generating function Z½J� and its logarithm

logZ½J� ¼ log
Z

D�Pð�ÞeJy’ð�Þ

¼ 1

2
Jyð��1 � 2cfJÞ�1J � ðfJÞy�̂
� 1

2
Tr½logð1� 2�cfJÞ�: (124)

This permits one to calculate via J derivatives [see
Eqs. (32)–(35)] the mean

�’ ¼ h’ið�Þ ¼ 0; (125)

the spectrum (or covariance)

Cð’Þxy ¼ h’x’yicð�Þ ¼ hð’� �’Þxð’� �’Þyið�Þ
¼ �xy þ 2fx�

2
xyfy; (126)

the bispectrum15

14Non-Gaussian noise components are in fact expected and
would need to be included into the construction of an optimal
fnl reconstruction. However, currently we aim only at outlining
the principles and we are furthermore not aware of a traditional
fnl estimator constructed while taking such noise into account.
And finally, we show at the end how to identify some of such
non-Gaussian noise sources by producing fnl maps on the
sphere, which can morphologically be compared to known fore-
ground structures, like our Galaxy.
15Since the bispectrum contains most of the non-Gaussianity
signature, we also provide its Fourier-space version, which is
well known for the fnl model [217]. The bispectrum for f ¼
const, expressed in terms of the ’ covariance reads

Bð’Þxyz ¼ 2f½Cð’Þxy C
ð’Þ
yz þ Cð’Þxz C

ð’Þ
zy þ Cð’Þyx C

ð’Þ
xz � þOðf3Þ:

Fourier transforming this yields

Bð’Þk1k2k3
¼ 2fð2�Þ3�ðk1 þ k2 þ k3Þ½Pðk1ÞPðk2Þ þ Pðk2ÞPðk3Þ
þ Pðk3ÞPðk1Þ� þOðf3Þ;

where PðkÞ is the power spectrum of ’, which is identical to that
of � up to Oðf2Þ.

INFORMATION FIELD THEORY FOR COSMOLOGICAL . . . PHYSICAL REVIEW D 80, 105005 (2009)

105005-25



Bð’Þxyz ¼ hð’� �’Þxð’� �’Þyð’� �’Þzið�Þ ¼ h’x’y’zicð�Þ
¼ 2½�xyfy�yz þ�yzfz�zx þ�zxfx�xy�
þ 8�xyfy�yzfz�zxfx; (127)

and the trispectrum

Tð’Þxyzu ¼ hð’� �’Þxð’� �’Þyð’� �’Þzð’� �’Þuið�Þ
¼ �xy�zu þ�xz�yu þ�xu�yz þ h’x’y’z’uicð�Þ
¼ ½18�xy�zu þ 2�xyfy�yzfz�zu

þ�xyfy�yzfz�zufu�uxfx:� þ 23 perm (128)

of the gravitational potential. Since we will investigate the
possibility of a spatially varying non-Gaussianity parame-
ter at the end of this section, we keep track of the spatial
coordinate of f, but for the time being read fx ¼ f.

The spectrum, bispectrum, and trispectrum of our CMB
measurement can easily be calculated from the gravita-
tional spectrum and bispectrum, respectively:

CðdÞ ¼ RCð’ÞRy þ N; BðdÞn̂1n̂2n̂3
¼ Rn̂1xRn̂2yRn̂3zB

ð’Þ
xyz;

TðdÞn̂1n̂2n̂3n̂4
¼ Rn̂1xRn̂2yRn̂3zRn̂3uT

ð’Þ
xyzu þ ½ðRCð’ÞRy

þ 1
8NÞn̂1n̂2Nn̂3n̂4 þ 23 permutations�; (129)

where n̂ denotes the unit vector on the sphere, and we have
made use of the assumption of the noise being Gaussian
and independent of the signal. In case the noise itself has a
bi- or trispectrum, or there is a signal dependent noise, e.g.
due to an incorrect instrument calibration, then more terms
have to be added to the expressions. The usually quoted
formulas [204,217–219] can be obtained from Eq. (129) by
applying spherical harmonic transformations.

C. CMB Hamiltonian

Although we are not interested in the auxiliary field�, it
is nevertheless very useful for its marginalization to define
its Hamiltonian, which is

Hf½d;��¼� logðGð�;�ÞGðd�Rð�þfð�2� �̂ÞÞ;NÞÞ

¼ 1

2
�yD�1�þH0� jy�þX4

n¼0

1

n!
�ðnÞ½�; . . . ;��; with D�1¼��1þRyN�1R���1þM;

j¼RyN�1d; �ð0Þ ¼ jyðf�̂Þþ1

2
ðf�̂ÞyMðf�̂Þ; �ð1Þ ¼�ðf�̂ÞyM and j0 ¼ j��ð1Þy;

�ð2Þ ¼�2cfj0; �ð3Þxyz¼ðMxyfy�yzþ5 permutationsÞ; �ð4Þxyzu¼ 1

2
ðfx�xyMyz�zufuþ23 permutationsÞ; (130)

and H0 collects all terms independent of � and f. The last
two tensors should be read without the Einstein sum con-
vention, but with all possible index permutations. Note,
that this is a nonlocal theory for � in case that either the
noise covariance or the response matrix is nondiagonal,
yielding a nonlocal M and therefore nonlocal interactions
�ð3Þ and �ð4Þ.

We should note that Babich [220] derived the now tradi-
tional fnl estimator from a very similar starting point, the
log probability for ’. The difference of the resulting esti-
mators is not due to the slightly different approaches
(Hf½d; ’� versus Hf½d;��), but because of the frequentist
and Bayes statistics he and we use, respectively.

In case that the noise as well as the response is diagonal
in position space, as it is often assumed for the instrument
response of properly cleaned CMB maps, and is also
approximately valid on large angular scales, where the
Sachs-Wolfe effect dominates, we haveNxy ¼ �2

nðxÞ�ðx�
yÞ, R ¼ �3 [215] for the total intensity fluctuations, and
thus Mxy ¼ 9��2n ðxÞ�ðx� yÞ, if we restrict the signal

space to the last-scattering surface, which we identify
with S2. This permits one to simplify the Hamiltonian to

Hf½d;�� ¼ 1

2
�yD�1�þH0 � jy�þX4

n¼0

1

n!
�yn�n;

with D�1 ¼ ��1 þ 9d��2n ;

j0 ¼ j� �1 ¼ 3ð3�̂f� dÞ=�2
n;

�0 ¼ 3ð�̂=�2
nÞy

�
3

2
f2�̂� fd

�
; �2 ¼ �2fj0;

�3 ¼ 54f=�2
n; and �4 ¼ 108f2=�2

n: (131)

The numerical coefficients of the last two terms may look
large, however, these coefficients stand in front of terms of
typically �3 � 10�15, and �4 � 10�20, which ensures
their well behavedness in any diagrammatic expansion
series.
For later usage, we define the Wiener-filter reconstruc-

tion of the gravitational potential as m0 ¼ Dj.

D. fnl evidence and map making

Since we are momentarily not interested in reconstruct-
ing the primordial fluctuations, but to extract knowledge on
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fnl, we marginalize the former by calculating the log evidence logPðdjfÞ up to quadratic order in f:

(132)

We have made use of the fact that the logarithm of the
partition sum is provided by all connected diagrams, and
that j0 contains a term of the order Oðf0Þ, �ð2Þ and �ð3Þ
contain terms of the order Oðf1Þ, and �ð4Þ one of the order
Oðf2Þ, so that they can appear an unrestricted number of
times, twice and once in diagrams of order up to Oðf2Þ,
respectively. Since only fourth-order interactions are in-
volved, an implementation in spherical-harmonics space
may be feasible using the only fourth-order C coefficients
[Eq. (B3)], which can be calculated computer algebrai-
cally. Finally, we recall

(133)

Although f is not known, the expressions in Eq. (132)
proportional to f and f2 can be calculated separately,
permitting one to write down the Hamiltonian of f if a
suitable prior PðfÞ is chosen,

Hd½f� � � logðPðdjfÞPðfÞÞ
¼ ~H0 þ 1

2f
y ~D�1fþ ~jyfþOðf3Þ; (134)

where we collected the linear and quadratic coefficients
into ~j and ~D�1. It is obvious that the optimal f estimator to
lowest order is therefore

mf ¼ hfið�;fjdÞ ¼ ~D ~j; (135)

and its uncertainty variance is just

hðf�mfÞðf�mfÞyið�;fjdÞ ¼ ~D: (136)

So far, we have assumed f to have a single universal
value. However, we can also permit f to vary spatially, or
on the sphere of the sky. In the latter case one would
expand f as

fðxÞ ¼Xlmax

l¼0

Xl
m¼�l

flmYlmðx̂Þ (137)

up to some finite lmax. Then one would recalculate the
partition sum, now separately for terms proportional to
flm and flmfl0m0 , which are then sorted into the vector
and matrix coefficients of ~j and ~D�1, respectively, and
according to

~jðlmÞ ¼ dHd½f�
dflm

��������f¼0
; and

~D�1ðlmÞðl0m0Þ ¼
d2Hd½f�
dflmdfl0m0

��������f¼0
: (138)

f-map making can then proceed as described above in
spherical-harmonics space. Comparing the resulting map
in angular space to known foreground sources, as our
Galaxy, the level of non-Gaussian contamination due to
their imperfect removal from the data may be assessed.

E. Comparison to traditional estimator

We conclude this chapter with a short comparison to
traditional fnl estimators. To our knowledge, the most
developed estimator in the literature is based on the
CMB bispectrum, which is the third order correlation
functions of the data, e.g. [220,221], and references in
Sec. I C 5. The IFT based filter presented here contains
terms which are up to fourth order in the data, and therefore
can be expected to be of higher accuracy since both meth-
ods are supposed to be optimal. Kogo and Komatsu [219]
note that the CMB trispectrum should contain significant
information on f2nl, and may be superior to non-Gaussianity

detection compared to the bispectrum on small angular
scales. However, since the trispectrum is insensitive to
the sign of fnl, its actual usage as a proxy is a bit more
subtle. In the IFT estimator, any term proportional to f2nl
enters the inverse of the propagator ~D, and therefore the
trispectrum seems to unfold its fnl-estimation power
mostly in combination with the bispectrum, which drives ~j.
Under which conditions does the traditional estimator

emerge from the IFT one? There are three conceptual
differences between the estimators, in that the IFT filter
can handle inhomogeneous non-Gaussianity, correct for
CMB sky and exposure chance coupling, and is unbiased
with respect to the posterior.
The traditional estimator is usually written as

" ¼ 1

N

Z
dxAðxÞB2ðxÞ ¼ 1

N
my0�

�1m2
0; (139)

where B ¼ Dj ¼ m0 is the Wiener-filter reconstruction of
the gravitational potential, A ¼ ��1B is the same, just
additionally filtered by the inverse power spectrum, and
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N is a normalization constant [202]. This is fixed by the
condition that the estimator should be unbiased with re-
spect to all gravitational potential and noise realizations,

N ¼ hmy0��1m2
0iðd;�jf¼1Þ

¼ Bð’Þxyzjf¼1½ðMDÞxu��1uv ðDMÞvyðDMÞvz�
¼ 2½�xy�yz þ�yz�zx þ�zx�xy�
� ½ðMDÞxu��1uv ðDMÞvyðDMÞvz�: (140)

The first difference between the estimators is obvious, in
that the IFT estimator can handle a spatially varying fðxÞ.
Therefore, we will only regard spatially constant nonline-
arity parameters in the following. Since no CMB experi-
ment is able to measure the monopole temperature
fluctuation, the response to any spatially homogeneous
signal is zero. This means, in the Fourier basis, that
Rn̂;k¼0 ¼ 0 and therefore jk¼0 ¼ Mk¼0;k0 ¼ 0. Thus, we

find for a universe with homogeneous statistics (�̂k�0 ¼
0) that �ð0Þ ¼ �ð1Þ ¼ 0, j0 ¼ j, and �ð2Þ ¼ �2fĵ, which
reduces the number of diagrams we have to calculate.

The IFT estimator is driven by the f-information source
~j, which is given by all diagrams which contain terms
linear in f. There are four of them, yielding

(141)

where we used M ¼ D�1 ���1 in order to combine the
two tree and the two loop diagrams into the first and second
terms, respectively. The term resulting from the tree dia-
grams is actually identically to the unnormalized tradi-
tional estimator " [Eq. (139)].

The terms resulting from the loop diagrams vanish for an
homogeneous M, which a CMB experiment with uniform
exposure and constant noise could produce. In case of an
inhomogeneous M, which is the more realistic case, the
loop term does not vanish and corrects for chance correla-
tions between the CMB realization (as seen through j) and
the noise and response structure of the experiment (as
encoded in M and D). Creminelli et al. [222] already
pointed out that such a linear correction term is necessary
in case of an inhomogeneous sky coverage.

Anyhow, the second difference between the estimators is
that the IFT based one applies a correction for chance
correlations of CMB sky and sky exposure and the tradi-
tional one does not. This term is absent in the traditional
estimator since the latter was constructed as the optimal
estimator which is third order in the data. This excluded the
loop term, which is linear in the data.

An inclusion of this term into the traditional estimator is
straightforward and actually done by the more recent fnl
measurements [223]. The normalization constant N is

unaffected by this, since the expectation value of the loop
term averaged over all possible signal realization is zero.
This brings us to the third difference between the esti-

mators, the different normalization. The traditional estima-
tor is normalized by a data independent constantN , where
the IFT estimator is normalized by a data dependent term

(142)

where only the first three diagrams are data independent
and �f is the variance of the prior, which we assume to be

PðfÞ ¼ Gðf; �2
fÞ. The detailed expressions for the differ-

ent diagrams can be found in Appendix C. For both esti-
mators, the traditional and the IFTone, the normalization is
supposed to guarantee unbiasedness, however, with respect
to different probability distributions.
The traditional estimator is unbiased in the frequentist

sense, for an average over all signal f and data realizations.
However, the IFT estimator is unbiased in the Bayesian
sense, with respect to the posterior, the probability distri-
bution of all signals given the data. Since the data are
given, and not assumed to vary any more after the obser-
vation is performed, it can and should affect the normal-
ization constant, which encodes the sensitivity of our non-
Gaussianity estimation.
The reason for the IFT normalization constant (or

f propagator) to be data dependent can be understood as
follows. There are data realizations which are better suited
to reveal the presence of non-Gaussianities than others,
even if they have identical ~j. Such a dependence of the
detectability of an effect on the concrete data realization is
common in nonlinear Baysian inference, and was even
more prominent in the example of the reconstruction of a
log-normal density field in Sec. V.

VII. SUMMARYAND OUTLOOK

Starting with fundamental information theoretical con-
siderations about the nature of measurements, signals,
noise, and their relation to a physical reality given a model
of the Universe or the system under consideration, we
reformulated the inference problem in the language of
IFT. IFT is actually a statistical field theory. The informa-
tion field is identified with a spatially distributed signal,
which can freely be chosen by the scientist according to
needs and technical constraints. The mathematical appara-
tus of field theory permits one to deal with the ensemble of
all possible field configurations given the data and prior
information in a consistent way.
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With this conceptual framework, we derived the
Hamiltonian of the theory, showed that the free theory
reproduces the well-known results of the Wiener-filter
theory, and presented the Feynman rules for nonlinear,
interacting Hamiltonians in general, and, in particular,
cases. The latter are information fields over Fourier- and
spherical harmonics spaces for inference problems in Rn

and S2, respectively. Our ‘‘philosophical’’ considerations
permitted one to argue why the resulting IFTs are usually
well normalized, but often nonlocal. Since the propagator
of the theory is closely related to the Wiener filter, for
which nowadays efficient numerical algorithms exist as
image reconstruction and map-making codes, and the in-
formation source term is usually a noise weighted version
of the data, the necessary computational tools are at hand
to convert the diagrammatic expressions into well-
performing algorithms.

Furthermore, we provided the Boltzmann-Shannon in-
formation measure of IFT based on the Helmholtz free
energy, thereby highlighting the embedding of IFT in the
framework of statistical mechanics.

As examples of the IFT recipe, two concrete IFT prob-
lems with cosmological motivation were discussed, which
are also thought of as blueprints for other inference prob-
lems. The first was targeting at the problem of reconstruct-
ing the spatially continuous cosmic LSSmatter distribution
from discrete galaxy counts in incomplete galaxy surveys.
The resulting algorithm can also be used for image recon-
struction with low-number photon statistics, e.g. in low-
dose x-ray imaging.

The second example was the design of an optimal
method to measure or constrain any possible local non-
linearities in the CMB temperature fluctuations. This may
serve as a blueprint for statistical monitoring of the line-
arity of a signal amplifier.

We conclude here with a short outlook on some prob-
lems that are accessible to the presented theory.

Many signal inference problems involve the reconstruc-
tion of fields without precisely known statistics. Some
coefficients in the IFT Hamiltonians may only be phe-
nomenological in nature, and therefore have to be derived
from the same data used for the reconstruction itself. This
more intricate interplay of parameter and information field
can also be incorporated into the IFT framework, as wewill
show with a subsequent work.

For cosmological applications, along the lines started in
this work, clearly more realistic data models need to be
investigated. For example, to understand the response in
galaxy formation to the underlying dark-matter distribu-
tion in terms of a realistic, statistical model, to be used in
constructing the corresponding IFT Hamiltonian for a
dark-matter information field, detailed higher-order corre-
lation coefficients have to be distilled from numerical
simulations or semianalytic descriptions. Also the CMB
Hamiltonian may benefit from the inclusion of remnants

from the CMB foreground subtraction process, permitting
one to gather more solid evidence on fundamental parame-
ters which are hidden in the CMB fluctuations, like the
amplitude of non-Gaussianities.
Furthermore, there exist a number of more or less heu-

ristic algorithms for inverse problems, which have proven
to serve well under certain circumstances. Reverse engi-
neering of their implicitly assumed priors and data models
may permit one to understand better for which conditions
they are best suited, as well as how to improve them in case
these conditions are not exactly met.
Finally, we are very curious to see whether and how the

presented framework may be suitable to inference prob-
lems in other scientific fields.
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APPENDIX A: NOTATION

We briefly summarize our notation of functions in posi-
tion and Fourier space.
A real, but in principle also complex function fðxÞ over

the n-dimensional space is regarded as a vector f in a
discrete and finite-dimensional, or continuous and
infinite-dimensional Hilbert space. f will denote this vec-
tor, independently of the momentarily chosen function
basis, be it the real space fðxÞ ¼ hxjfi or the Fourier basis

fðkÞ ¼ hkjfi ¼
Z

dx fðxÞeik�x: (A1)

Here, the volume integration usually is performed only
over a finite domain with volume V. This leads to the
convention for the origin of the delta function in k space,

�ð0Þ ¼ V

ð2�Þn ; (A2)

and also to a Fourier-transformation operator F ¼ jkihxj,
with Fkx ¼ eikx, and its inverse Fy ¼ jxihkj, with Fyxk ¼
e�ikx. The dagger is used to denote transposed and com-
plex conjugated objects. We have ðFyFÞxy ¼ 1xy as well as

ðFFyÞkk0 ¼ 1kk0 for the following definition of the scalar
product of two functions f and g in real and Fourier space:

INFORMATION FIELD THEORY FOR COSMOLOGICAL . . . PHYSICAL REVIEW D 80, 105005 (2009)

105005-29



fyg ¼ hfjgi ¼
Z

dx f�ðxÞgðxÞ ¼
Z dk

ð2�Þn f
�ðkÞgðkÞ;

(A3)

where the asterisk denotes complex conjugation. The sta-
tistical power spectrum of f is denoted by PfðkÞ ¼
hjfðkÞj2iðfÞ=V.

We also introduce for convenience the position-space
componentwise product of two functions

ðfgÞðxÞ � fðxÞgðxÞ; (A4)

which also permits compact notations like

ðlogfÞðxÞ ¼ logðfðxÞÞ; ðf=gÞðxÞ ¼ fðxÞ=gðxÞ; (A5)

and alike. The componentwise product should not be con-
fused with the tensor product of two vectors ðfgyÞðx; yÞ ¼
fðxÞg�ðyÞ.

The diagonal components of a matrix M in position-
space representation form a vector which we denote by

M̂ ¼ diagxM; with M̂x ¼ Mxx: (A6)

Similarly, a diagonal matrix in position-space representa-
tion, whose diagonal components are given by a vector f,
will be denoted by

f̂ ¼ diagxf with f̂xy ¼ fx1xy: (A7)

Thus, ^̂M ¼ M if and only if M is diagonal, and
^̂f ¼ f

always.
In our notation a multivariate Gaussian reads

G ðs; SÞ ¼ 1

j2�Sj1=2 exp

�
� 1

2
syS�1s

�
: (A8)

Here, S ¼ hssyiðsÞ denotes the covariance tensor of the

Gaussian field s, which is drawn from PðsÞ ¼ Gðs; SÞ. If
s is statistically homogeneous, S is fully described by the
power-spectrum PsðkÞ:

Skk0 ¼ ð2�Þn�ðk� k0ÞPsðkÞ;
S�1kk0 ¼ ð2�Þn�ðk� k0ÞðPsðkÞÞ�1:

(A9)

The Fourier representation of the trace of a Fourier-
diagonal operator,

Tr ðAÞ ¼
Z

dxAxx ¼ V
Z dk

ð2�Þn PAðkÞ; (A10)

is very useful in combination with the following expression
for the determinant of a Hermitian matrix:

logjAj ¼ TrðlogAÞ: (A11)

Furthermore, we usually suppress the dependency of
probabilities on the underlying model I and its parameters
� in our notation, i.e., instead of Pðsj�; IÞwe just write PðsÞ
or Pðsj�Þ depending on our focus. Here � ¼ ðS;N; R; . . .Þ
contains all the parameters of the model, which are as-
sumed to be known within this work.

APPENDIX B: FEYNMANRULES ON THE SPHERE

Here, we provide the Feynman rules on the sphere. The
real-space rules are identical to those of flat spaces, with
just the scalar product replaced by the integral over the
sphere, etc. In case the problem at hand has an isotropic
propagator, which only depends on the distance of two
points on the sphere, but not on their location or orienta-
tion, the propagator is diagonal if expressed in spherical
harmonics YlmðxÞ. Thanks to the orthogonality relation of
spherical harmonics, we have for x; y 2 S2

ðYYyÞxy ¼
X
lm

YlmðxÞY�lmðyÞ ¼ �ðx� yÞ ¼ ð1Þxy; (B1)

and

ðYyYÞðl;mÞðl0;m0Þ ¼
Z

dxY�lmðxÞYl0m0 ðxÞ ¼ �ll0�mm0

¼ ð1Þðl;mÞðl0;m0Þ: (B2)

Therefore, we can just insert real-space identity matrices
1 ¼ YYy in between any expression in the real-space
diagrammatic expression and assign Yy to the right, and
Y to the left term of it. This way we find the spherical-
harmonics Feynman rules, which are very similar to the
Fourier-space ones, in that they also require directed
propagator lines for proper angular-momentum conserva-
tion. For a theory with only local interactions, these read
(1) An open end of a line has external (not summed)

angular-momentum quantum numbers ðl; mÞ.
(2) A line connecting momentum ðl; mÞ with momen-

tum ðl0; m0Þ corresponds to a propagator between
these momenta: Dðl;mÞðl0;m0Þ ¼ CDðlÞ�ll0�mm0 , where

CDðlÞ is the angular power spectrum of the
propagator.

(3) A data-source vertex is ðjþ J � �1Þðl; mÞ, where
ðl; mÞ is the angular momentum at the data end of
the line.

(4) A vertex with quantum number ðl0; m0Þ with nin
incoming and nout outgoing lines (nin þ nout > 1)
with momentum labels ðl1; m1Þ � � � ðlnin ; mninÞ andðl01; m01Þ � � � ðl0nout ; m0noutÞ, respectively, is given by

��mðl0; m0ÞCðl
0
1
;m0

1
Þ���ðl0nout ;m0nout Þ

ðl0;m0Þ���ðlnin ;mnin
Þ , where C will be de-

fined in Eq. (B3).
(5) An internal vertex has internal (summed) angular-

momentum quantum numbers ðl0; m0Þ. Summation

means a term
P1

l0¼0
P

l0
m¼�l0 in front of the

expression.
(6) The expression gets divided by the symmetry factor

of its diagram.
The interaction structure in spherical-harmonics space is
complicated due to the nonorthogonality of powers and
products of the spherical harmonic functions, compared to
the Fourier-space case, where any power or product of
Fourier-basis functions is again a single Fourier-basis
function.
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The spherical structure is encapsulated in the coeffi-
cients

C
ðl0
1
;m0

1
Þ���ðl0nout ;m0nout Þ

ðl0;m0Þ���ðlnin ;mnin
Þ �

Z
dx

�Ynin
i¼0

Ylimi
ðxÞ
��Ynout

i¼1
Y�l0im0iðxÞ

�
;

(B3)

which can be expressed in terms of sums and products of
Wigner coefficients, thanks to the relations Y�lmðxÞ ¼
Yl;�mðxÞ,

Yl1m1
ðxÞYl2m2

ðxÞ ¼X
lm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2l1 þ 1Þð2l2 þ 1Þð2lþ 1Þ

4�

s

� l1 l2 l

m1 m2 m

 !
YlmðxÞ

l1 l2 l

0 0 0

 !
;

(B4)

and the orthogonality relation in Eq. (B2), to be applied
successively in this order. Because of this complication, it
is probably most efficient to calculate propagation in
spherical-harmonics space, but to change back to real
space for any interaction vertex of high order.

APPENDIX C: fnl PROPAGATOR

We provide in the following the individual terms of the
fnl propagator in Eq. (142). The individual diagrams are all
Oðf2Þ and are given here for the case f ¼ 1:

, (C1)

, (C2)

(C3),

(C4)

, (C5)

, (C6)

, (C7)

, (C8)

, (C9)

,

(C10)

,
(C11)

, (C12)

. (C13)

We used here the conventions m ¼ Dj and ðD2Þxy ¼
ðDxyÞ2 and remind one that �ð0Þ ¼ �ð1Þ ¼ 0, j0 ¼ j,

�ð2Þ ¼ �2fĵ, �ð3Þxyz ¼ ½Mxy�yz þ 5 perm�, and �ð4Þxyzu ¼
1
2 ½�xyMyz�zu þ 23 perm�.
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[156] P. Erdoğdu et al., Mon. Not. R. Astron. Soc. 373, 45
(2006).

[157] Y. Hoffman, in Unveiling Large-Scale Structures Behind
the Milky Way, edited by C. Balkowski and R. C. Kraan-
Korteweg, ASP Conf. Ser. 67 (Astronomical Society of the
Pacific, San Francisco, 1994), p. 185.

[158] S. Zaroubi, in Mapping the Hidden Universe: The
Universe Behind the Mily Way - The Universe in HI,
edited by R. C. Kraan-Korteweg, P. A. Henning, and H.
Andernach, ASP Conf. Ser. 218 (Astronomical Society of
the Pacific, San Francisco, 2000), p. 173.

[159] R. C. Kraan-Korteweg and O. Lahav, Astron. Astrophys.
Rev. 10, 211 (2000).

[160] J. A. Peacock and S. J. Dodds, Mon. Not. R. Astron. Soc.
267, 1020 (1994).

[161] M. S. Vogeley and A. S. Szalay, Astrophys. J. 465, 34
(1996).

[162] S. Zaroubi, I. Zehavi, A. Dekel, Y. Hoffman, and T. Kolatt,
Astrophys. J. 486, 21 (1997).

[163] M. Tegmark, Phys. Rev. Lett. 79, 3806 (1997).
[164] D. J. Eisenstein and W. Hu, Astrophys. J. 511, 5 (1999).
[165] G. Efstathiou, J. R. Bond, and S.D.M. White, Mon. Not.

R. Astron. Soc. 258, 1P (1992).
[166] E. F. Bunn, D. Scott, and M. White, Astrophys. J. 441, L9

(1995).
[167] M.A. Janssen and S. Gulkis, in The Infrared and

Submillimetre Sky after COBE, edited by M. Signore
and C. Dupraz, NATO ASIC Proc. 359 (Kluwer
Academic Publishers, Dordrecht, The Netherlands,
1992), pp. 391–408.

[168] E. F. Bunn, K. B. Fisher, Y. Hoffman, O. Lahav, J. Silk,
and S. Zaroubi, Astrophys. J. 432, L75 (1994).

[169] K. Maisinger, M. P. Hobson, and A.N. Lasenby, Mon. Not.
R. Astron. Soc. 290, 313 (1997).

[170] M. Tegmark, Phys. Rev. D 56, 4514 (1997).
[171] M. Tegmark, Astrophys. J. 480, L87 (1997).
[172] S. Dodelson, Astrophys. J. 482, 577 (1997).
[173] M. P. Hobson, A.W. Jones, A. N. Lasenby, and F. R.

Bouchet, Mon. Not. R. Astron. Soc. 300, 1 (1998).
[174] P. Natoli, G. de Gasperis, C. Gheller, and N. Vittorio,

Astron. Astrophys. 372, 346 (2001).
[175] O. Doré, R. Teyssier, F. R. Bouchet, D. Vibert, and S.

Prunet, Astron. Astrophys. 374, 358 (2001).

[176] R. Stompor et al., Phys. Rev. D 65, 022003 (2001).
[177] B. D. Wandelt, D. L. Larson, and A. Lakshminarayanan,

Phys. Rev. D 70, 083511 (2004).
[178] H. K. Eriksen, I. J. O’Dwyer, J. B. Jewell, B. D. Wandelt,
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