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We evaluate the Casimir energy and force for a massive fermionic field in the geometry of two parallel

plates on background of Minkowski spacetime with an arbitrary number of toroidally compactified spatial

dimensions. The bag boundary conditions are imposed on the plates and periodicity conditions with

arbitrary phases are considered along the compact dimensions. The Casimir energy is decomposed into

purely topological, single plate and interaction parts. With independence of the lengths of the compact

dimensions and the phases in the periodicity conditions, the interaction part of the Casimir energy is

always negative. In order to obtain the resulting force, the contributions from both sides of the plates must

be taken into account. Then, the forces coming from the topological parts of the vacuum energy cancel out

and only the interaction term contributes to the Casimir force. Applications of the general formulae to

Kaluza-Klein-type models and carbon nanotubes are given. In particular, we show that for finite-length

metallic nanotubes, the Casimir forces acting on the tube edges are always attractive, whereas for

semiconducting-type ones, they are attractive for small lengths of the nanotube and repulsive for large

lengths.
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I. INTRODUCTION

A key feature of most high energy theories of funda-
mental physics, including supergravity and superstring
theories, is the presence of compact spatial dimensions.
From an inflationary point of view, universes with compact
spatial dimensions, under certain conditions, should be
considered a rule rather than an exception [1]. The models
of a compact universe with nontrivial topology may play an
important role by providing proper initial conditions for
inflation (for physical motivations of considering compact
universes see, also, [2]). There has been a large activity to
search for signatures of nontrivial topology by identifying
ghost images of galaxies, clusters, or quasars. Recent
progress in observations of the cosmic microwave back-
ground provides an alternative way to observe the topology
of the Universe [3]. If the scale of periodicity is close to the
particle horizon scale then the changed appearance of the
microwave background sky pattern offers a sensitive probe
of the topology. An interesting application of the field
theoretical models with compact dimensions recently ap-
peared in nanophysics [4]. The long-wavelength descrip-
tion of the electronic states in graphene can be formulated
in terms of the Dirac-like theory in three-dimensional
spacetime with the Fermi velocity playing the role of speed
of light (see, e.g., Ref. [5]). Single-walled carbon nano-
tubes are generated by rolling up a graphene sheet to form a
cylinder and the background spacetime for the correspond-
ing Dirac-like theory has topology R2 � S1.

In quantum field theory, the boundary conditions im-
posed on fields along compact dimensions change the
spectrum of vacuum fluctuations. The resulting energies
and stresses are known as topological Casimir effect (for
the topological Casimir effect and its role in cosmology see
[6–11] and references therein). In the Kaluza-Klein-type
models, this effect has been used as a stabilization mecha-
nism for moduli fields which parametrize the size and the
shape of the extra dimensions. The Casimir energy can also
serve as a model of dark energy needed for the explanation
of the present accelerated expansion of the universe (see
[12] and references therein). In addition to its fundamental
interest the Casimir effect, it also plays an important role in
the fabrication and operation of nano- and micro-scale
mechanical systems (see, for instance, [13]).
The effects of the toroidal compactification of spatial

dimensions on the properties of quantum vacuum for vari-
ous spin fields have been discussed by several authors (see,
for instance, [6–11,14–16] and references therein). The
combined effect of extra compactified dimensions and
boundaries on the Casimir energy in the classical configu-
ration of two parallel plates has been recently considered in
[17] for a scalar field and in [18] for the electromagnetic
field. The Casimir energy and forces in braneworld models
have been evaluated in Ref. [19] by using both dimensional
and zeta function regularization methods. Local Casimir
densities in these models were considered in Ref. [20]. The
Casimir effect in higher dimensional generalizations of the
Randall-Sundrum model with compact internal spaces has
been investigated in [21]. In the present paper, we inves-
tigate the Casimir effect for a massive fermionic field in the
geometry of two parallel plates on background of space-
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time with an arbitrary number of toroidally compactified
spatial dimensions. Wewill assume generalized periodicity
conditions along the compact dimensions with arbitrary
phases and Massachusetts Institute of Technology bag
boundary conditions on the plates. This problem in back-
ground of four-dimensional Minkowski spacetime with
trivial topology has been considered in [22] for a massless
field and in [23] for the massive case (see, also, [6]). For
arbitrary number of dimensions, the corresponding results
are generalized in Refs. [24,25] for the massless and mas-
sive cases, respectively. The Casimir problem for fermions
coupled to a static background field in one spatial dimen-
sion is investigated in [26]. The interaction energy density
and the force are computed in the limit that the background
becomes concentrated at two points. The fermionic
Casimir effect for parallel plates with imperfect bag
boundary conditions modeled by �-like potentials is
studied in [27].

This paper is organized as follows. In the next section,
we specify the eigenfunctions and the eigenmodes for the
Dirac equation in the region between the plates assuming
the bag boundary conditions on them. In Sec. III, by using
the Abel-Plana-type summation formula, we present the
Casimir energy in the region between the plates as the sum
of pure topological, single plate and interaction parts. In
Sec. IV, we consider the Casimir force acting on the plates.
In Sec. V, we evaluate the Casimir energy and forces by
making use of the generalized zeta function technique. An
alternative representation of the single plate part of the
Casimir energy is also given. The special case of topology
RD�1 � S1 is discussed in Sec. VI. In Sec. VII, we give
applications of general formulae to the Casimir effect for
electrons in finite-length carbon nanotubes within the
framework of -3dimensional Dirac-like model. The main
results of the paper are summarized in Sec. VIII.

II. EIGENFUNCTIONS AND EIGENMODES

We consider a quantum fermionic field c on back-
ground of (Dþ 1)-dimensional flat spacetime with spatial
topology Rpþ1 � ðS1Þq, pþ qþ 1 ¼ D. The correspond-
ing line element has the form

ds2 ¼ dt2 �XD
l¼1

ðdzlÞ2; (1)

where �1< zl <1, l ¼ 1; . . . ; pþ 1, and 0 � zl � Ll

for l ¼ pþ 2; . . . ; D. We assume that along the compact
dimensions the field obeys boundary conditions

c ðt; zp; zpþ1; zq þ LlelÞ ¼ e2�i�lc ðt; zp; zpþ1; zqÞ; (2)

with constant phases 0 � �l < 1. In (2), zp ¼ ðz1; . . . ; zpÞ
and zq ¼ ðzpþ2; . . . ; zDÞ denote the coordinates along un-

compactified and compactified dimensions, respectively, el
is the unit vector along the direction of the coordinate zl,
l ¼ pþ 2; . . . ; D. The periodicity conditions for untwisted

and twisted fermionic fields are obtained from (2) as
special cases with �l ¼ 0 and �l ¼ 1=2, respectively. As
we will see below, special cases �l ¼ 0, 1=3, 2=3 are
realized in nanotubes.
In this paper, we are interested in the Casimir effect for

the geometry of two parallel plates placed at zpþ1 ¼ 0 and
zpþ1 ¼ a. On the plates the field obeys the MIT bag
boundary condition:

ð1þ i��n�Þc ¼ 0; zpþ1 ¼ 0; a; (3)

where �� are the Dirac matrices and n� is the normal to the

boundaries. In the (Dþ 1)-dimensional spacetime, the

Dirac matrices are ND � ND matrices with ND ¼
2½ðDþ1Þ=2�, where the square brackets mean the integer
part of the enclosed expression. We will assume that these
matrices are given in the chiral representation:

�0 ¼ 1 0
0 �1

� �
; �� ¼ 0 ��

��þ
� 0

� �
;

� ¼ 1; 2; . . . ; D;

(4)

with the relation ���
þ
� þ ���

þ
� ¼ 2���. In the discus-

sion below, we consider the region between the plates 0 �
zpþ1 � a, where we have n� ¼ ��pþ1

� for the plate at

zpþ1 ¼ 0 and n� ¼ �pþ1
� for zpþ1 ¼ a.

The dynamics of the field is governed by the Dirac
equation

i��@�c �mc ¼ 0: (5)

The positive- and negative-frequency solutions to this
equation can be presented as

c ðþÞ
� ¼ A�e

�i!t ’
�i�þ � r’=ð!þmÞ

� �
;

c ð�Þ
� ¼ A�e

i!t i� � r	=ð!þmÞ
	

� �
;

(6)

where � ¼ ð�1; . . . ; �DÞ, ! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
p þ k2pþ1 þ k2

q þm2
q

.

The spinors in (6) are given by the expressions

’ ¼ eikk�zk ð’þeikpþ1z
pþ1 þ ’�e�ikpþ1z

pþ1Þ;
	 ¼ e�ikk�zk ð	þeikpþ1z

pþ1 þ 	�e�ikpþ1z
pþ1Þ;

(7)

with kk ¼ ðkp;kqÞ and kp ¼ ðk1; . . . ; kpÞ, kq ¼
ðkpþ2; . . . ; kDÞ. The eigenvalues for the components of

the wave vector along the compactified dimensions are
determined from the periodicity conditions (2):

kq ¼ ð2�ðnpþ2 þ �pþ2Þ=Lpþ2; . . . ; 2�ðnD þ �DÞ=LDÞ;
npþ2; . . . ; nD ¼ 0;�1;�2; . . . : (8)

For the components along the uncompactified dimensions,
one has �1< kl <1, l ¼ 1; . . . ; p.
From the boundary condition on the plate at zpþ1 ¼ 0,

we find the following relations between the spinors in (7)
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’þ ¼ �mð!þmÞ þ k2pþ1 � kpþ1�pþ1�
þ
k � kk

ðm� ikpþ1Þð!þmÞ ’�;

	� ¼ �mð!þmÞ þ k2pþ1 � kpþ1�
þ
pþ1�k � kk

ðmþ ikpþ1Þð!þmÞ 	þ;

(9)

where �k ¼ ð�1; . . . ; �p; �pþ2; . . . ; �DÞ. We will assume

that they are normalized in accordance with ’þ�’� ¼
	þþ	þ ¼ 1. As a set of independent spinors, we will take

’� ¼ wð�Þ and 	þ ¼ wð�Þ0, wherewð�Þ,� ¼ 1; . . . ; ND=2,
are one-column matrices having ND=2 rows with the ele-

ments wð�Þ
l ¼ �l�, and w

ð�Þ0 ¼ iwð�Þ. Now the set of quan-

tum numbers specifying the eigenfunctions (6) is
� ¼ ðk; �Þ. From the boundary condition at zpþ1 ¼ a, it
follows that the eigenvalues of kpþ1 are roots of the tran-

scendental equation

ma sinðkpþ1aÞ=ðkpþ1aÞ þ cosðkpþ1aÞ ¼ 0: (10)

All these roots are real. We will denote the positive
solutions of Eq. (10) by 
n ¼ kpþ1a, n ¼ 1; 2; . . . . For

a massless field we have 
n ¼ �ðn� 1=2Þ. Note that
Eq. (10) does not contain the parameters of the compact
subspace and is the same as in the corresponding problem
on the topologically trivial Minkowski spacetime (see [6]).

The normalization coefficient A� in (6) is determined

from the orthonormalization condition

Z
dzk

Z a

0
dzpþ1c ð�Þþ

� c ð�Þ
�0 ¼ ���0 : (11)

Here, the symbol ���0 is understood as the Dirac delta

function for continuous indices and the Kronecker delta for
discrete ones. Substituting the eigenfunctions (6) into this
condition, one finds

A2
� ¼ !þm

4ð2�Þp!aVq

�
1� sinð2kpþ1aÞ

2kpþ1a

��1
; (12)

where Vq ¼ Lpþ2 � � �LD is the volume of the compact

subspace.

III. CASIMIR ENERGY

For the spatial topology Rpþ1 � ðS1Þq, the vacuum en-
ergy (per unit volume along the directions z1; . . . ; zp) in the
region between the plates is given by the following mode
sum:

Epþ1;q ¼ �ND

2

Z dkp

ð2�Þp
X

nq2Zq

X1
n¼1

!; (13)

where nq ¼ ðnpþ1; . . . ; nDÞ and

!2 ¼ k2
p þ k2nq

þ 
2
n=a

2 þm2;

k2nq
¼ XD

l¼pþ2

½2�ðnl þ �lÞ=Ll�2:
(14)

Of course, the expression on the right-hand side of Eq. (13)
is divergent. We will assume that some cutoff function is
present, without writing it explicitly. For the further evalu-
ation of the Casimir energy, we apply to the sum over n in
Eq. (13) the Abel-Plana-like summation formula

X1
n¼1

�fð
nÞ
1� sinð2
nÞ=ð2
nÞ ¼ � �mafð0Þ

2ðmaþ 1Þ þ
Z 1

0
dzfðzÞ

� i
Z 1

0
dt

fðitÞ � fð�itÞ
tþma
t�ma e

2t þ 1
:

(15)

This formula is obtained as a special case of the summation
formula derived in Ref. [28] by using the generalized Abel-
Plana formula (see, also, Ref. [29]). Note that we have the
relation

1� sinð2
nÞ
2
n

¼ 1þ ma

ðmaÞ2 þ 
2
n

: (16)

By taking into account Eq. (16), we apply the summa-
tion formula (15) with the function

fðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2

pa
2 þm2

nq
a2

q �
1þ ma

ðmaÞ2 þ z2

�
; (17)

where we have introduced the notation

m2
nq

¼ k2nq
þm2: (18)

This allows one to present the Casimir energy in the
decomposed form

Epþ1;q ¼ aEð0Þ
pþ1;q þ 2Eð1Þ

pþ1;q þ �Epþ1;q; (19)

where

Eð0Þ
pþ1;q ¼ �ND

2

Z dkpþ1

ð2�Þpþ1

X
nq2Zq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
pþ1 þm2

nq

q
(20)

is the Casimir energy (per unit volume along the directions
z1; . . . ; zpþ1) in the topology Rpþ1 � ðS1Þq when the
boundaries are absent. The part

Eð1Þ
pþ1;q ¼ �ND

4�

Z dkp

ð2�Þp
X

nq2Zq

�
��

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þm2

q

þm
Z 1

0
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ k2k þm2

q
m2 þ z2

�
(21)

is the Casimir energy for a single plate (when the other
plate is absent) in the half space. The last term in Eq. (19)
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�Epþ1;q ¼ �ND

�

Z dkp

ð2�Þp
X

nq2Zq

Z 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
pþm2

nq

p dz

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � k2

p �m2
nq

q
ðzþmÞe2az þ z�m

�
aðz�mÞ � m

zþm

�

(22)

is the interaction part. This term is finite for all nonzero
distances between the plates and the cutoff function can be
removed safely. Note that the single plate part of the
Casimir energy does not depend on the separation between
the plates and hence will not contribute to the Casimir
force.

The pure topological part (20) is investigated in our
previous paper [16]. After the renormalization, this part
is presented in the form

Eð0Þ
pþ1;q ¼ 2NDVq

XD
j¼pþ2

ð2�Þ�ðjþ1Þ=2

VD�jþ1L
j
j

� X1
n¼1

cosð2�n�jÞ
njþ1

X
nD�j2ZD�j

fðjþ1Þ=2ðnLjmnD�j
Þ;

(23)

where we have defined

m2
nD�j

¼ XD
l¼jþ1

½2�ðnl þ �lÞ=Ll�2 þm2: (24)

Here, and in the discussion below, we use the notation

f�ðxÞ ¼ x�K�ðxÞ: (25)

An alternative expression for the topological part is ob-
tained by using the zeta function technique (see below). In
particular, the topological part of the Casimir energy is
positive for untwisted fields (�l ¼ 0) and is negative for
twisted fields (�l ¼ 1=2).

A. Single plate part

Now, let us consider the single plate part in the Casimir
energy, given by formula (21). First, we note that this part
vanishes for a massless field. This is directly seen by taking
into account that in the limit m ! 0, the second term in
braces of (21) gives nonzero contribution which cancels
the first term. For the further evaluation of the single plate
part for a massive field, we apply to the sum over npþ2 in

Eq. (21) the Abel-Plana summation formula in the form
[30]

Xþ1

npþ2¼�1
fðjnpþ2 þ �pþ2jÞ

¼ 2
Z 1

0
dxfðxÞ þ i

Z 1

0
dx

X

¼�1

fðixÞ � fð�ixÞ
e2�ðxþi
�pþ2Þ � 1

: (26)

The part with the first term on the right of this formula
gives the Casimir energy for a single plate in the case of
topology Rpþ2 � ðS1Þq�1. As a result, we obtain the fol-
lowing recurrence formula

"ð1Þpþ1;q ¼ "ð1Þpþ2;q�1 þ �pþ2"
ð1Þ
pþ1;q; (27)

where mnq�1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2nq�1

þm2
q

and we have introduced the

vacuum energy per unit volume of the compact subspace

"ð1Þpþ1;q ¼ Eð1Þ
pþ1;q=Vq. In Eq. (27), the term

�pþ2"
ð1Þ
pþ1;q ¼ � 2NDLpþ2

ð2�Þp=2þ2Vq

X1
n¼1

cosð2�n�pþ2Þ
ðnLpþ2Þpþ2

X
nq�12Zq�1

�
�
�

2
fp=2þ1ðnLpþ2mnq�1

Þ

�
Z 1

mnq�1

dx
m

x2 � k2nq�1

xfp=2þ1ðnLpþ2xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 �m2

nq�1

q
�

(28)

is the part induced by the compactness of the direction
zpþ2. In deriving this formula, we have used the integration
formula

Z
dkp

Z 1ffiffiffiffiffiffiffiffiffiffiffi
k2
pþc2

p dzðz2 � k2
p � c2Þðsþ1Þ=2fðzÞ

¼ �p=2�ððsþ 3Þ=2Þ
�ððpþ sþ 3Þ=2Þ

Z 1

c
dxxðx2 � c2Þðpþsþ1Þ=2fðxÞ:

(29)

This formula is obtained by integrating over the angular

part of kp, changing the integration variable to y ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 � k2

p � c2
q

, and introducing polar coordinates in the

ðjkpj; yÞ-plane.
After the recurring application of formula (27), the

Casimir energy for a single plate is presented in the form

Eð1Þ
pþ1;q ¼ VqE

ð1Þ
D;0 þ Eð1;cÞ

pþ1;q: (30)

Here, Eð1Þ
D;0 is the Casimir energy per unit volume along the

directions z1; . . . ; zD�1 for a single plate in Minkowski
spacetime with trivial topology and the second term

Eð1;cÞ
pþ1;q ¼ Vq

XD
j¼pþ2

�j"
ð1Þ
j�1;Dþ1�j (31)

is the topological part. The latter is finite and in the
corresponding expression, the cut-off function can be re-

moved. The renormalization is needed for the term Eð1Þ
D;0

only.
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B. Interaction part

By using Eq. (29), the interaction part of the Casimir
energy is presented in the form

�Epþ1;q ¼ �ð4�Þ�ðpþ1Þ=2ND

�ððpþ 3Þ=2Þ
X

nq2Zq

Z 1

mnq

dz

� ðz2 �m2
nq
Þðpþ1Þ=2

ðzþmÞe2az þ z�m

�
aðz�mÞ � m

zþm

�
:

(32)

From here it follows that this part is always negative and it
is a monotonically increasing function of a. Equation (32)
can also be written in the following equivalent form

�Epþ1;q ¼ �ð4�Þ�ðpþ1Þ=2ND

�ððpþ 1Þ=2Þ
� X

nq2Zq

Z 1

mnq

dzzðz2 �m2
nq
Þðp�1Þ=2

� ln

�
1þ z�m

zþm
e�2az

�
: (33)

For a massless fermionic field from here we find

�Epþ1;q ¼ ð2�Þ�p=2�1ND

ð2aÞpþ1

X
nq2Zq

X1
n¼1

ð�1Þn
npþ2

fp=2þ1ð2anknq
Þ;

(34)

where the function f�ðxÞ is defined by Eq. (25).
Let us consider the asymptotic behavior of the interac-

tion part in the Casimir energy at small and large separa-
tions between the plates. In the limit Ll � a, the main
contribution comes from large values of nl, l ¼
pþ 2; � � � ; D, and we can replace the summation by the
integration:

P
nq2Zq ! R

dnq. By making use of the inte-

gration formula (29) with p ! q, we find

�Epþ1;q � Vq�ED;0

¼ �Vq

ð4�Þ�D=2ND

�ðD=2Þ
Z 1

m
dzzðz2 �m2ÞD=2�1

� ln

�
1þ z�m

zþm
e�2az

�
: (35)

In this formula, �ED;0 is the interaction part of the fermi-

onic Casimir energy per unit volume along the directions
z1; . . . ; zD�1 for two parallel plates inD-dimensional space
with trivial topology (see Refs. [6,23] for the case D ¼ 3
and Ref. [25] for general D). Note, that for a massless field
we have

�ED;0 ¼ � NDð1� 2�DÞ
ð4�ÞðDþ1Þ=2aD

�ððDþ 1Þ=2Þ�ðDþ 1Þ; (36)

where �ðxÞ is the Riemann zeta function.

Now, let us consider the limit Ll 	 a. In this case, and
for �l ¼ 0, the main contribution comes from the zero
mode with nq ¼ 0 and �Epþ1;q=ND coincides with the

corresponding result for the Casimir effect in topologically
trivial ðpþ 1Þ-dimensional space: �Epþ1;q �
ND�Epþ1;0=Npþ1, where �Epþ1;0 is given by

formula (35) with the replacement D ! pþ 1. In this
case, the contribution of the nonzero modes is exponen-
tially suppressed. For �l � 0, the zero mode is absent.
Assuming that am is fixed, to the leading order we have

�Epþ1;q � � NDe
�2ac0

2ð4�aÞðpþ1Þ=2 c
ðpþ1Þ=2
0 ; (37)

where

c20 ¼
XD

l¼pþ2

ð2��la=LlÞ2; �l ¼ minð�l; 1� �lÞ:

(38)

In this case, the interaction part of the Casimir energy is
exponentially suppressed.
In the discussion above, we have considered the region

between the plates. The plates divide the background space
into three regions: zpþ1 < 0, 0< zpþ1 < a, and zpþ1 > a.
The vacuum energy in the regions zpþ1 < 0 and zpþ1 > a
is obtained from the results given above in the limit a !
1. In this limit, the interaction part vanishes and we have

Epþ1;q ¼ aEð0Þ
pþ1;q þ Eð1Þ

pþ1;q; zpþ1 < 0;

zpþ1 > a;
(39)

with the topological and single plate parts given by
Eqs. (23) and (30).

IV. THE CASIMIR FORCE

The total vacuum energy in the region 0 � zl � cl, l ¼
1; . . . ; p, 0 � zpþ1 � a will be Epþ1;qc1 � � � cp and the

volume of this region is V ¼ c1 � � � cpaVq. The vacuum

stress at zpþ1 ¼ 0þ is given by

Ppþ1;qð0þÞ ¼ � @

@V
Epþ1;qc1 � � � cp

¼ Pð0Þ
pþ1;q þ �Ppþ1;q; (40)

where we have introduced the notations

Pð0Þ
pþ1;q ¼ �Eð0Þ

pþ1;q

Vq

; �Ppþ1;q ¼ � 1

Vq

@

@a
�Epþ1;q:

(41)

The vacuum stress at zpþ1 ¼ a� is given by the same

expression. The term Pð0Þ
pþ1;q does not depend on the sepa-

ration between the plates and is the pure topological part of
the vacuum force. The term �Ppþ1;q is induced by the

presence of the second plate and determines the interaction
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force between the plates. Using the formula for �Epþ1;q,

for this part we find

�Ppþ1;q ¼ � 2ð4�Þ�ðpþ1Þ=2ND

�ððpþ 1Þ=2ÞVq

X
nq2Zq

Z 1

mnq

dz

� z2ðz2 �m2
nq
Þðp�1Þ=2

zþm
z�m e

2az þ 1
: (42)

Now, we see that �Ppþ1;q < 0, independent of the bound-

ary conditions imposed on the field along the compactified
dimensions and hence the interaction forces between the
plates, are always attractive. For a massless fermionic field
we have

�Ppþ1;q ¼ � 2ND

ð2�Þp=2þ1Vq

X
nq2Zq

X1
n¼1

� fp=2þ1ð2anknq
Þ � fp=2þ2ð2anknq

Þ
ð�1Þnð2anÞpþ2

: (43)

For small separations between the plates Ll � a, we
replace the summation over nq by the integration. In the

way similar to that we have used for the Casimir energy, it
can be seen that in the leading order the interaction force
coincides with the corresponding result for parallel plates
on background of D-dimensional space with trivial topol-
ogy:

�Ppþ1;q � �PD;0

¼ � 2ND

ð4�ÞD=2�ðD=2Þ
Z 1

m
dz

z2ðz2 �m2ÞD=2�1

zþm
z�m e

2az þ 1
:

(44)

The contribution of the nonzero modes is exponentially
small. For the massless field we have

�PD;0 ¼ � NDð1� 2�DÞ
ð4�ÞðDþ1Þ=2aDþ1

�ððDþ 1Þ=2Þ�ðDþ 1Þ:
(45)

This result can also be directly obtained from Eq. (36).
For large interplate separations Ll 	 a and for �l ¼ 0,

the main contribution comes from the zero mode nq ¼ 0.

In this limit, Vq�Ppþ1;q=ND coincides with the corre-

sponding result for the Casimir effect in ðpþ
1Þ-dimensional space: �Ppþ1;q � ND�Ppþ1;0=ðNpþ1VqÞ,
where �Ppþ1;0 is given by formula (44) with D ! pþ 1.

If �l � 0 and am is fixed, the interaction force is exponen-
tially suppressed

�Ppþ1;q � �NDc
ðpþ3Þ=2
0 e�2ac0

ð4�aÞðpþ1Þ=2Vq

; (46)

with c0 defined by Eq. (38).
If the quantum field lives in all regions, in considering

the total forces acting on the plate, we should also take into

account the force acting on the sides zpþ1 ¼ 0� and
zpþ1 ¼ aþ . The corresponding forces per unit surface

are equal to Pð0Þ
pþ1;q and they are directed along the positive/

negative direction of the axis zpþ1 in the case Pð0Þ
pþ1;q >

0=Pð0Þ
pþ1;q < 0. Now, we see that the topological parts of the

force acting from the left-hand and right-hand sides of the
plate compensate and the resulting force is determined by
(42). This force is attractive for all interplate separations.
There are physical situations [bag model, finite-length
carbon nanotubes (see below)], where the quantum field
is confined to the interior of some region and there is no
field outside. For the problem under consideration, if the
quantum field is confined in the region between the plates,
the total Casimir force acting per unit surface of the plate is
determined by Eq. (40) and the pure topological part con-
tributes as well. At large distances, this part dominates and
the corresponding forces tend to increase/decrease the

distance between the plates when Pð0Þ
pþ1;q > 0=Pð0Þ

pþ1;q < 0.

In particular, Pð0Þ
pþ1;q < 0 for untwisted fields and Pð0Þ

pþ1;q >

0 for twisted fields. Hence, if the quantum field is confined
in the region between the plates, for untwisted fields the
Casimir forces are attractive for all separations. For twisted
fields, these forces are attractive for small distances and
they are repulsive at large distances.

V. ZETA FUNCTION APPROACH

In this section, for the evaluation of the vacuum energy
in the region 0 � zpþ1 � a, we will use the zeta function
technique [7,31]. This allows one to obtain alternative
representations for the pure topological and single plate
parts in the Casimir effect. Instead of the divergent ex-
pression on the right of Eq. (13), we consider the finite
quantity

Epþ1;qð�; sÞ ¼ ��2sþ1 ND

2

Z dkp

ð2�Þp
X

nq2Zq

X1
n¼1

� ðk2
p þm2

nq
þ 
2

n=a
2Þ�s; (47)

where the arbitrary mass scale � is introduced in order to
keep the dimensionality of the expression. Performing the
integration over kp, we find

Epþ1;qð�; sÞ ¼ ��2sþ1 ND�ðs� p=2Þ
2ð4�Þp=2�ðsÞ

X
nq2Zq

X1
n¼1

� ðm2
nq

þ 
2
n=a

2Þp=2�s: (48)

The computation of the Casimir energy requires the
analytic continuation of Epþ1;qð�; sÞ to the value s ¼
�1=2. The starting point of our consideration is the repre-
sentation of the partial zeta function as a contour integral in
the complex plane z:
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X1
n¼1

ðm2
nq

þ 
2
n=a

2Þp=2�s ¼ 1

2�i

Z
C
dzðz2=a2 þm2

nq
Þp=2�s

� d

dz
ln

�ðma=zÞ sinzþ cosz

1þma

�
;

(49)

where C denotes a closed counterclockwise contour en-
closing all zeros 
n. We assume that the contour C is made
of a large semicircle (with radius tending to infinity) cen-
tered at the origin and placed to its right, plus a straight part
overlapping the imaginary axis and avoiding the points
�imnq

a by small semicircles in the right half plane.

When the radius of the large semicircle tends to infinity,
the corresponding contribution vanishes for Re s > ðpþ
1Þ=2. Assuming that ðpþ 1Þ=2< Re s < p=2þ 1, from
(49) we find the following integral representation for the
regularized vacuum energy:

Epþ1;qð�; sÞ ¼ � ð4�Þ�p=2�2sþ1ND

2�ðsÞ�ð1� sþ p=2Þ
X

nq2Zq

�
Z 1

mnq

dzðz2 �m2
nq
Þp=2�s

� d

dz
ln

�ðm=zÞ sinhðazÞ þ coshðazÞ
1þma

�
: (50)

Now, we decompose the logarithmic term in this expres-
sion as

d

dz
ln

�ðm=zÞ sinhðazÞ þ coshðazÞ
1þma

�

¼ aþ d

dz
lnð1þm=zÞ þ d

dz
ln

�
1þ z�m

zþm
e�2az

�
:

(51)

As a result, we have the following decomposition of the
generalized zeta function:

Epþ1;qð�; sÞ ¼ aEð0Þ
pþ1;qð�; sÞ þ 2Eð1Þ

pþ1;qð�; sÞ
þ �Epþ1;qð�; sÞ; (52)

where the first, second, and third terms on the right-hand
side come from the corresponding terms in Eq. (51). The
interaction term �Eð�; sÞ in Eq. (52) is finite at the physi-
cal point s ¼ �1=2 and gives the result (33):
�Epþ1;qð�;�1=2Þ ¼ �Epþ1;q. Below, we will be focused

on the pure topological and single plate parts.

First, let us consider the term Eð0Þ
pþ1;qð�; sÞ. This term is

the regularized vacuum energy in the topology Rpþ1 �
ðS1Þq without boundaries. In this term, the integration
over z is done explicitly and we find

Eð0Þ
pþ1;qð�;sÞ ¼��2sþ1ND�ðs�ðpþ 1Þ=2Þ

2ð4�Þðpþ1Þ=2�ðsÞ
X

nq2Zq

mpþ1�2s
nq

:

(53)

Further analytic continuation of this expression to the
physical point s ¼ �1=2 is done by using the extended
Chowla-Selberg formula [32]. The corresponding result is
given by the expression [16]:

Eð0Þ
pþ1;q ¼

NDm
Dþ1Vq

ð2�ÞðDþ1Þ=2
X0

mq2Zq

cosð2�mq ��qÞ

� fðDþ1Þ=2ðmgðLq;mqÞÞ
ðmgðLq;mqÞÞDþ1

; (54)

where we have used the notation

gðLq;mqÞ ¼
� XD
i¼pþ2

L2
i m

2
i

�
1=2

: (55)

The prime on the summation sign in Eq. (54) means that
the term mq ¼ 0 should be excluded from the sum.

Now, we turn to the part Eð1Þ
pþ1;qð�; sÞ which is the

regularized vacuum energy in the half-space induced by
a single plate. In the corresponding integral representation,
we expand lnð1þm=zÞ in powers of m=z and integrate
over z explicitly. This leads to the result

Eð1Þ
pþ1;qð�; sÞ ¼ � �2sþ1ND

8ð4�Þp=2�ðsÞ

� X1
l¼1

ml �ððl� pÞ=2þ sÞ
ð�1Þl�ðl=2þ 1Þ

X
nq2Zq

mp�2s�l
nq

:

(56)

The application to the multiseries over nq of the extended

Chowla-Selberg formula allows one to present

Eð1Þ
pþ1;qð�; sÞ as the sum of two parts:

Eð1Þ
pþ1;qð�; sÞ ¼ VqE

ð1Þ
RDð�; sÞ þ Eð1;cÞ

pþ1;qð�; sÞ: (57)

Here, the term

Eð1Þ
RDð�; sÞ ¼ ��2sþ1NDm

D�2s�1

8ð4�ÞðD�1Þ=2�ðsÞ
X1
l¼1

ð�1Þl

� �ðsþ ðlþ 1�DÞ=2Þ
ð�1Þl�ðl=2þ 1Þ (58)

is the corresponding quantity in the case of trivial topology

RD. The topological term Eð1;cÞ
pþ1;qð�; sÞ is finite at the

physical point s ¼ �1=2 and the topological part of the
vacuum energy for a single plate has the form
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Eð1;cÞ
pþ1;q ¼ Eð1;cÞ

pþ1;qð�;�1=2Þ

¼ NDm
DVq

4ð2�ÞD=2

X1
l¼1

2�l=2ð�1Þl
�ðl=2þ 1Þ

� X0

mq2Zq

cosð2�mq ��qÞfðl�DÞ=2ðmgðLq;mqÞÞ;

(59)

where we have used the relation f��ðxÞ ¼ x�2�f�ðxÞ.
Note, that we can write the function cosð2�mq � �qÞ on
the right of formula (59) in the form of the productQ

D
i¼pþ2 cosð2�mi�iÞ. The equivalence of two representa-

tions (30) and (59) for the topological part in the Casimir
energy for a single plate can be seen by making use of the
relation [16]

X
mq�12Zq�1

cosð2�mq�1 � �q�1Þfðl�DÞ=2ðmgðLq;mqÞÞ

¼ ð2�Þðq�1Þ=2Lpþ2

Vqm
D�l

X
nq�12Zq�1

fðp�lÞ=2þ1ðmpþ2Lpþ2mnq�1
Þ

ðmpþ2Lpþ2Þp�lþ2
;

(60)

and the formula

2

�

Z 1

1
dx

c

x2 � 1þ c2
xfp=2þ1ðbxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

¼ X1
l¼0

2�l=2ð�1Þl
�ðl=2þ 1Þ ðbcÞ

lfðp�lÞ=2þ1ðbÞ; (61)

valid for 0 � c � 1.

VI. SPECIAL CASE OF TOPOLOGY

By taking into account the importance of special case
p ¼ D� 2, q ¼ 1 in Kaluza-Klein models and in carbon
nanotubes, in this section we consider it separately. For the
later convenience, the parameters of the compactified di-
mension we will denote by LD ¼ L and �D ¼ �. The
corresponding formulae for the separate parts in the
Casimir energy take the form

Eð0Þ
D�1;1 ¼

2NDL
�D

ð2�ÞðDþ1Þ=2
X1
n¼1

cosð2�n�Þ
nDþ1

fðDþ1Þ=2ðmnLÞ;

Eð1;cÞ
D�1;1 ¼

NDm
DL

2ð2�ÞD=2

X1
n¼1

cosð2�n�ÞX1
l¼1

2�l=2ð�1Þl
�ðl=2þ 1Þ

� fðl�DÞ=2ðmnLÞ;

�ED�1;1 ¼ �ð4�Þ�ðD�1Þ=2ND

�ððD� 1Þ=2Þ
Xþ1

l¼�1

�
Z 1

ml

dzzðz2 �m2
l ÞðD�3Þ=2

� ln

�
1þ z�m

zþm
e�2az

�
; (62)

where we have introduced the notation

m2
l ¼ ½2�ðlþ �Þ=L�2 þm2: (63)

An equivalent representation of the single plate part is
obtained from Eqs. (28) and (31).
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FIG. 1. The Casimir energy of a massless fermionic field in four-dimensional space with topology R3 � S1 as a function of the
interplate distance and the length of the compact dimension. The left-hand/right-hand panel corresponds to untwisted/twisted fields,
respectively.
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For the massless case, these formulae are simplified to

Eð0Þ
D�1;1 ¼

NDL
�D

�ðDþ1Þ=2 �ððDþ 1Þ=2Þ X1
n¼1

cosð2�n�Þ
nDþ1

;

�ED�1;1 ¼ ð2�Þ�D=2ND

ð2aÞD�1

Xþ1

l¼�1

X1
n¼1

ð�1Þn
nD

� fD=2ð4�njlþ �ja=LÞ; (64)

and the single plate part vanishes. In Fig. 1, we have
presented the Casimir energy ED�1;1 for a massless fermi-

onic field in the simplest Kaluza-Klein model with D ¼ 4
as a function of the interplate distance and the length of the
internal space measured in units of a fixed length a0. The
left-hand panel corresponds to the untwisted field (� ¼ 0)
and the right one is for the twisted field (� ¼ 1=2). For
large interplate separations, the pure topological part domi-
nates and the Casimir energy is a linear function of a. At
small distances, the interaction part is dominant and the
Casimir energy behaves as a�D.

In the special case under consideration for the interac-
tion part of the Casimir force, we have the formula

�PD�1;1 ¼ � 2ð4�Þ�ðD�1Þ=2ND

�ððD� 1Þ=2ÞLD

� Xþ1

l¼�1

Z 1

ml

dz
z2ðz2 �m2

l ÞðD�3Þ=2
zþm
z�m e

�2az þ 1
: (65)

In the massless case, this formula takes the form

�PD�1;1 ¼ � 2ND

ð2�ÞD=2L

Xþ1

l¼�1

X1
n¼1

� fD=2ðyÞ � fD=2þ1ðyÞ
ð�1Þnð2anÞD

��������y¼4�njlþ�ja=L
: (66)

In Fig. 2, we have plotted the ratio L�P3;1=�P3;0 versus

a=L for different values of the parameter �. As it already
has been explained before, only in the case of untwisted
field the Casimir force at large separations tends to the
corresponding force (up to the factor related to the number
of polarizations) for the model where the compactified
dimensions are absent. For other cases, the force is expo-
nentially suppressed at large separations which is clearly
seen in Fig. 2.

VII. APPLICATIONS TO FINITE-LENGTH
NANOTUBES

For a number of planar condensed matter systems, the
fermionic excitations in the long-wavelength regime are
described by the Dirac-like model. Awell-known example
is the graphene. In this section, we specify the general
results given above for the electrons on a graphene sheet
rolled into a cylindrical shape (carbon nanotube). The
carbon nanotube is characterized by its chiral vector Ch ¼
nwa1 þmwa2, where a1 and a2 are the basis vectors of the
hexagonal lattice of graphene and nw,mw are integers. The

circumference length of the nanotube is given by L ¼
jChj ¼ ag

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2w þm2

w þ nwmw

p
, with ag ¼ ja1j ¼ ja2j ¼

2:46 �A being the lattice constant. Zigzag nanotubes corre-
spond to the special case Ch ¼ ðnw; 0Þ, and for armchair
nanotubes one has Ch ¼ ðnw; nwÞ. All other cases corre-
spond to chiral nanotubes. The electron properties of car-
bon nanotubes can be either metallic or semiconductorlike
depending on the manner the cylinder is obtained from the
graphene sheet. In the case nw �mw ¼ 3qw, qw 2 Z, the
nanotube will be metallic. When nw �mw � 3qw, the
nanotube will be semiconductor with an energy gap in-
versely proportional to the diameter. In particular, the arm-
chair nanotube is metallic and the ðnw; 0Þ zigzag nanotube
is metallic if and, only if, nw is an integer multiple of 3.
The electronic band structure of a carbon nanotube close

to the Dirac points shows a conical dispersion EðkÞ ¼
vFjkj, where k is the momentum measured relative to
the Dirac points and vF represents the Fermi velocity.
The latter plays the role of speed of light. The correspond-
ing low-energy excitations can be described by a pair of
two-component spinors, which are composed of the Bloch
states residing on the two different sublattices of the hon-
eycomb lattice of the graphene sheet. The corresponding
Fermi velocity is given by vF ¼ 3ta=2 (vF � 108 cm=s in
graphene), where t is the nearest neighbor hopping energy.
The Dirac-like model is valid, provided that the cylinder
circumference is much larger than the interatomic spacing.
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FIG. 2 (color online). The ratio of the fermionic Casimir force
for two parallel plates in the space with topology R3 � S1 to the
standard Casimir force in R3, for a massless field, as a function
of a=L. The values on each of the curves correspond to those of
the parameter �.
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For typical nanotubes, the corresponding ratio can be
between 10 and 20 and this approximation is adequate
[4,5].

For a carbon nanotube, D ¼ 2 and we have the spatial
topology R1 � S1 with the compactified dimension of the
length L. We will assume that the nanotube has finite-
length a. As the D ¼ 2 Dirac field lives on the cylinder
surface, it is natural to impose bag boundary conditions (3)
on the cylinder edges which ensure the zero fermion flux
through these edges. The additional confinement of the
fermionic field along the tube axis leads to the change of
the ground state energy. The corresponding expressions for
the Casimir energy and force are obtained from the for-
mulae of the previous section taking D ¼ 2. Here, by
taking into account that in the presence of an external
magnetic field an effective mass term is generated for the
fermionic excitations, we consider the general case of
massive spinor field. The formulae for a massless case,
appropriate for carbon nanotubes in the absence of external
fields, will be given separately.

In order to specify the boundary condition along the
compactified dimension, we note that for the ðnw;mwÞ
nanotube the phase factor in the wave function has the

form ei½m1þðnw�mwÞ=3�’, where ’ is the angular coordinate
along the compact dimension and m1 is an integer. From
here it follows that for metallic nanotubes, the periodic
boundary condition (� ¼ 0) is realized. For semiconductor
nanotubes, depending on the chiral vector, there are two
classes of inequivalent boundary conditions corresponding
to � ¼ 1=3 (nw �mw ¼ 3qw þ 2) and � ¼ 2=3 (nw �
mw ¼ 3qw þ 1). In the expressions for the pure topologi-
cal parts of the Casimir energy and force the phase, �
appears in the form cosð2�n�Þ. Hence, these quantities are
the same for � ¼ 1=3 and � ¼ 2=3. As the boundary
induced parts have the structure

Pþ1
l¼�1 fðjlþ �jÞ, the

same property holds for these parts.
In the case D ¼ 2, the general formulae for the separate

parts of the Casimir energy from the previous section take
the form (N ¼ 2)

Eð0Þ
1;1 ¼

1

�L2

X1
n¼1

ð1þmnLÞ cosð2�n�Þ e
�mnL

n3
;

Eð1;cÞ
1;1 ¼ m2L

2�

X1
n¼1

cosð2�n�ÞX1
l¼1

2�l=2ð�1Þl
�ðl=2þ 1Þ fl=2�1ðnLmÞ;

�E1;1 ¼ � 1

�

Xþ1

l¼�1

Z 1

0
dz

� ln

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þm2

l

q
�mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þm2
l

q
þm

e�2a
ffiffiffiffiffiffiffiffiffiffiffi
z2þm2

l

p �
: (67)

For the Casimir force acting on the edges of the tube, we
have

P1;1 ¼ � 1

�L3

X1
n¼1

ð1þmnLÞ cosð2�n�Þ e
�mnL

n3

� 2

�L

Xþ1

l¼�1

Z 1

0
dzz

�
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þm2
l

q
þmffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z2 þm2
l

q
�m

e2a
ffiffiffiffiffiffiffiffiffiffiffi
z2þm2

l

p
þ 1

��1
: (68)

In the massless case for the total Casimir energy and the
stresses, we find the formulae

E1;1 ¼ a

�L2

X1
n¼1

cosð2�n�Þ
n3

� 1

2�a

Xþ1

l¼�1

X1
n¼1

ð�1Þn
n2

f1ð4�njlþ �ja=LÞ;

P1;1 ¼ � 1

�L3

X1
n¼1

cosð2�n�Þ
n3

� 1

2�a2L

Xþ1

l¼�1

X1
n¼1

f1ðyÞ � f2ðyÞ
ð�1Þnn2

��������y¼4�njlþ�ja=L
:

(69)

The corresponding expressions for the Casimir energy and
force in finite-length cylindrical nanotubes are obtained
from (69) with additional factor 2 which takes into account
the presence of two sublattices. In standard units, the factor
@vF appears as well. So, for the Casimir force acting per
unit length of the edge of a carbon nanotube, one has

PðCNÞ ¼ 2@vFP1;1, where P1;1 is given by Eq. (69). For

long tubes a=L � 1, the first term on the right is dominant

and we have PðCNÞ � �0:765@vF=L
3 for metallic nano-

tubes and PðCNÞ � 0:34@vF=L
3 for semiconducting ones.

In the limit a=L 	 1, the interaction part is dominant. In
the leading order, the Casimir force does not depend on the

chirality and one has PðCNÞ � �0:144@vF=a
3. In Fig. 3, we

have plotted the Casimir forces acting on the edges of
metallic (left-hand panel) and semiconducting-type
(right-hand panel) carbon nanotube as functions of the
tube length for different values of the fermion mass. As it
is seen, for metallic nanotubes, these forces are always
attractive, whereas for semiconducting-type ones, they are
attractive for small lengths and repulsive for large lengths.
In the discussion above, we have considered bag bound-

ary conditions on the edges of the nanotube. The period-
icity conditions along the axis correspond to the toroidal
compactification of the carbon nanotubes. The Casimir
energies in toroidal nanotubes are investigated in
Ref. [16]. It was shown that the toroidal compactification
of a cylindrical nanotube along its axis increases the
Casimir energy for periodic boundary conditions and de-
creases the Casimir energy for the semiconducting-type
compactifications. Recently, in the last paper of Ref. [13],
the Casimir interaction between two plates resulting from
the quantum fluctuations of the bulk electromagnetic field
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is investigated with one plate being graphene described in
the Dirac model and the other one being an ideal conduc-
tor. The interaction of the electromagnetic field with the
fermion field confined on the graphene sheet is equivalent
to imposing boundary condition for the electromagnetic
field. At large separations, the corresponding force is pro-
portional to the fine structure constant and falls off as the
inverse cube of distance between the plates.

VIII. CONCLUSION

We have investigated the effect of compact spatial di-
mensions on the Casimir energy and force for a massive
fermionic field in the geometry of two parallel plates on
which the field obeys MIT bag boundary condition. Along
the compact dimensions, we have assumed periodicity
conditions (2) with constant phases �l. The eigenvalues
of the wave-vector component normal to the plates are
roots of transcendental Eq. (10). By applying the Abel-
Plana-type summation formula to the corresponding series
in the mode sum for the vacuum energy, we have explicitly
extracted, in a cutoff independent way, the pure topological
part and the contributions induced by the single plates. The
surface divergences in the Casimir energy are contained in
the single plate components only and the remaining inter-
action part is finite for all nonzero interplate distances. The
latter is given by Eq. (33) for a massive field and by
Eq. (34) in the massless case. The interaction part of the
Casimir energy is always negative. We have decomposed
the single plate part in the vacuum energy into two terms:
the first one is the Casimir energy for a single plate in the
trivial topology RD and the second one is the topological
part. The second term is cutoff independent and, in this
way, the renormalization procedure is reduced to that for
the plate in topology RD.

The Casimir forces between the plates have been con-
sidered in Sec. IV. Single plate parts in the Casimir energy
do not depend on the plates separation and do not contrib-
ute to the force. For the region between the plates, the
forces are presented as the sum of topological and interac-
tion parts. In the situations where the quantum field lives
on both sides of the plate, the topological parts are the same
on the left-hand and right-hand sides and the effective force
is determined by the interaction part only. The latter is
given by formulae (42) and (43) for the massive and
massless fields, respectively. With independence of the
lengths of compact dimensions and the phases in the
periodicity conditions, the corresponding force is attractive
and is a monotonic function of the distance. When the field
is confined in the region between the plates, only the
topological part contributes to the resulting force and it
dominates at large separations between the plates. In de-
pendence of the phases in the periodicity conditions, the
corresponding forces can be either attractive or repulsive.
In particular, for untwisted fields, the Casimir forces are
attractive for all separations and for twisted fields these
forces are attractive for small distances and repulsive at
large distances. For small separations, the interaction part
dominates and the Casimir force is attractive. For small
values of the size of the compact subspace and in models
where the zero mode along the internal space is present, the
main contribution to the Casimir force comes from this
mode and the contributions of the nonzero modes are
exponentially suppressed. In this limit, to leading order,
we recover the standard result for the Casimir force be-
tween two plates in (pþ 2)-dimensional Minkowski
spacetime. When the zero mode is absent, the Casimir
forces are exponentially suppressed in the limit of small
size of the internal space.
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FIG. 3 (color online). The fermionic Casimir forces acting on the edges of the metallic (left-hand panel) and semiconducting-type
(right-hand panel) nanotubes as functions of the tube length for different values of the field mass.
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In Sec. V, we have evaluated the Casimir energy by
using an alternative method based on the generalized zeta
function technique. With the combination of the extended
Chowla-Selberg formula, this allowed us to present the
topological part for the geometry of a single plate in an
alternative form given by formula (59). As an illustration
of the general results, in Sec.. VI we have considered a
special model with a single compact dimensions. In
Sec. VII, we specify the general formulae for the model
with D ¼ 2. This model may be used for the evaluation of
the Casimir energy and force within the framework of the
Dirac-like theory for the description of the electronic states
in carbon nanotubes where the role of speed of light is

played by the Fermi velocity. The pure topological part of
the Casimir energy is positive for metallic cylindrical
nanotubes and is negative for semiconducting ones. For
finite-length carbon nanotubes, the Casimir forces acting
on the tube edges are always attractive for metallic nano-
tubes, whereas for semiconducting-type ones they are at-
tractive for small lengths and repulsive for large lengths.
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