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There exists a paradox in quantum field theory: substituting a field configuration, which solves a subset

of the field equations into the action, and varying it is not necessarily equivalent to substituting that

configuration into the remaining field equations. We take the S4 and Freund-Rubin–like instantons as two

examples to clarify the paradox. One must match the specialized configuration field variables with the

corresponding boundary conditions by adding appropriate Legendre terms to the action. Some comments

are made regarding exceptional degenerate cases.
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I. INTRODUCTION

It is well known in quantum field theory that all field
equations can be derived from an action principle. A field
configuration satisfying the field equations is called a
classical solution.

By substituting into the action a field configuration,
which solves a subset of the field equations, the action
becomes a functional of the remaining fields. This ‘‘re-
duced action’’ would describe the partial theory in the
classical background of the substituted field configuration.
One also expects that varying the reduced action would
result in the same field equations for the remaining varia-
bles as those derived from the original complete action.

However, the situation is not so simple. A paradox exists
in the literature over the fact that substituting a field
configuration, which solves a subset of the field equations
into the action, and varying it is not necessarily equivalent
to substituting the same field configuration into the remain-
ing field equations [1].

A similar problem was already encountered earlier in
general relativistic cosmology, where imposition of sym-
metry on the action was found not necessarily to give the
correct field equations [2], i.e., imposing symmetry does
not necessarily commute with deriving the field equations
from an action principle. The reason for the failure is that
the symmetry imposition may interfere with the require-
ment of vanishing variations at the boundary, and hence
boundary terms cannot be assumed to vanish.

This problem is very disturbing for quantum field theory.
Scientists have never been lucky enough to have an ulti-
mate theory with the first try. Instead, they usually consider
the known regime as a classical background, which corre-
sponds to the configuration in the substitution. If the above
substitution leads to an incorrect reduced action for the
remaining variables, then it is simply hopeless to make any
progress based on the reduced action of the partial theory.
A typical example of this is the consideration of quantum
fields in curved spacetime, in which the metric is assumed

to be a solution of the Einstein equations. In the mid-1970s,
even though little was known about quantum gravity, some
very important progress was made in quantum fields in
curved spacetime; the discovery of the Hawking radiation
in the black hole background is a prime example.
In this paper, we use two examples to show that this

paradox can be clarified. These two examples are the S4

instanton and the Freund-Rubin cosmological models. The
paper can be thought of as a generalization of a previous
paper [3]. We shall discuss the problem of zero value of the
cosmological constant in Sec. II. In Sec. III, the 4-sphere
model will be studied. Section IV will be devoted to the
Freund-Rubin models. We summarize and conclude this
paper in Sec. V.

II. THE COSMOLOGICAL CONSTANT PROBLEM

The most notable example of this confusion had been
associated with the cosmological constant problem in
quantum cosmology [4]. The issue has been dealt with in
the separate publication due to its special importance [3].
However, it is instructive to give a brief review here. To
show that the cosmological constant is probably zero,
Hawking considered a cosmological model created from
an S4 seed instanton with the Euclidean action [4]
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where R is the scalar curvature of the spaceM of 4 metrics,
and �0 represents the contributions of ‘‘the bare cosmo-
logical constant’’ and the ground states of all matter fields.
Here, the contribution from a rank 3 antisymmetric tensor
gauge field A��� is singled out. It arises naturally in N ¼ 8

supergravity in four dimensions [5]. F is the field strength
of A���. We use Planck units in which c ¼ G ¼ k ¼ @ ¼
1.
The field configuration [1,4]ffiffiffi

g
p

F���� ¼ ð4!Þ�1=2������ (2)
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F���� ¼ ð4!Þ�1=2 ffiffiffi
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with an arbitrary constant � solves the gauge field equation

F����
;� ¼ 0: (4)

Substituting this solution (2) and (3) into the action (1), one
can see that the F2 term behaves like an effective cosmo-
logical constant

�eff ¼ ��2; (5)

and the total cosmological constant is �total ¼ �0 þ�eff .

For �total, the radius of S4 is ð3=�totalÞ1=2, and the action is
�3�=�total. Here, it is assumed that �total is positive. The
action is the negative of entropy of the created de Sitter
spacetime. The relative creation probability of the
Universe is the exponential of the negative of the action
[6]. It follows that the most probable configurations will be
those with very small values of �total, and nature will
automatically select the right value of � for this.
Therefore, Hawking concluded [4]: ‘‘the cosmological
constant is probably zero.’’

However, Duff showed that, after substituting the con-
figuration into the Einstein equation, which is derived from
the complete action (1), the Einstein equation reads

G�� ¼ ��2g�� ��0g
��: (6)

Comparing the reduced action and substituted field Eq.
(6), one finds the total cosmological constant appearing in
the action is not the same as that appearing in the field
equation [1]. What we truly observe is in (6).

This dilemma can be resolved by choosing the right
representation for the wave function of the Universe at
the equator of the instanton, where the quantum transition
from the Euclidean regime S4 to the Lorentzian regime dS4

occurs. The instanton should not be simply considered as
S4; it must be considered as a union of a southern hemi-
sphere joined to its time reversal, the northern hemisphere.
The action (1) corresponds to the boundary condition that
A��� is given at the equator between the two hemispheres

for the creation probability calculation. However, A��� is

the wrong representation, which suffers a discontinuity
across the equator. Here, we have set A��� to be regular

in each hemisphere. Therefore, one has to use the right
representation, its conjugate variable

ffiffiffi
g

p
F����, which is

continuous across the equator. The representation trans-
formation is carried out by adding a Legendre term to the
action (1)

ILegendre ¼ �
Z
�SþN

dS�A���F
����; (7)

where �SþN denotes the two equator boundaries for both
the southern and northern hemispheres.

The total action is
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where the second equality is obtained by taking divergence
of the Legendre term and using the gauge field Eq. (4).
Substituting (2) and (3) into (8) yields

Itotal ¼ �
Z
M
dx4

�
g1=2

16�
ðR� 2�0Þ þ 1

8
g1=2�2

�
: (9)

Apparently, varying the action (9) with respect to the
gravitational field will result in the same Einstein Eq. (6).
Therefore, Duff’s dilemma about the cosmological con-
stant is dispelled, and Hawking’s argument is completely
proven [3].
Two decades after the publication of Hawking’s paper,

many people believe that the cosmological constant is
not zero. Therefore, Duff’s paradox has remained long
forgotten.

III. THE 4-SPHERE MODEL

However, the paradox as a whole has not been resolved.
If one is dealing with the simple S4 instanton without any
boundary, instead of the southern hemisphere joined to the
northern hemisphere of S4 in the above quantum creation
scenario, then it seems that there is no reason to reject the
representation A���. Even for the representation

ffiffiffi
g

p
F����,

it seems that no Legendre term has to be added, since there
seems to be no boundary in the S4 instanton model.
Therefore, the dilemma still persists.
Now, let us study this simple S4 model with the action

(1). As one derives the Einstein and gauge field equations
from the action, it is implicitly assumed that the metric g��

and the gauge potential A��� are independent variables. In

varying the action, one imposes the condition that A��� is

fixed at the boundary.
There is no boundary for the metric of the S4 model.

People may wonder why we should bother with the bound-
ary value problem here. The point is that the gauge poten-
tial is involved. Since one has to use at least two patches to
cover the manifold for the gauge potential, the Legendre
term should arise from the boundary between the patches
under some circumstances. In fact, here we are not par-
ticularly interested in varying the action with respect to the
gauge field; it has been done, and the solution (2) was
already found for (4). The key point is that the boundary
term for the gauge field is also crucial for our main moti-
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vation, the next step: varying the reduced action with
respect to the remaining variable, the gravitational field.

For convenience, the reduced action obtained from sub-
stituting (2) and (3) into (1) can be written as follows:

I ¼ �
Z
M
dx4

�
g1=2

16�
ðR� 2�0Þ � 1

8
g�1=2�̂2

�
; (10)

where �̂ � g1=2�. Now, one can vary the reduced action
(10) with respect to the gravitational field under the con-
dition that A��� is fixed. The condition is equivalent to

F���� being fixed, i.e, �̂ is fixed using (3). Here, for

simplicity, the minisuperspace ansatz is imposed. This
results in the Einstein Eq. (6), as expected.

One can equally vary the reduced action with respect to
the gravitational field under the condition that the conju-
gate variable

ffiffiffi
g

p
F���� is fixed. It is noted that the variablesffiffiffi

g
p

F���� and F���� are not equivalent in the presence of a

gravitational field. Here, we are using g�� and
ffiffiffi
g

p
F���� as

independent variables. For consistency, one has to change
the boundary condition correspondingly, that is, add a
proper Legendre term to the action.

As emphasized earlier, for the gauge potential A���, it is

impossible to cover the manifold S4 by one patch. We can
decompose the manifold into two parts: a small ball B and
S4 � B, which we denote as A. Following the above pro-
cedures, the Legendre term is

ILegendre ¼ �
Z
@Aþ@B

dS�A���F
����: (11)

One can use the gauge field Eq. (4) to reduce the Legendre
surface term to a divergence term as in (8). Here, we set
A��� to be regular in A and B, respectively. There is an

unavoidable discontinuity of the potential across the
boundary between them. It turns out that the contributions
of the Legendre terms are ��2VB=4 and ��2VA=4, where
VB and VA are their volumes. The total contribution of
these two Legendre terms for the instanton is ��2VS4=4.

Now, we can let B shrink to a point, then the contribu-
tions of B to both the volume and boundary terms of the
action tend to zero, and we can discard them. In any case,
the total action for S4 is (8) and (9). This is the same as that
in the model for the cosmological constant problem. The
Einstein equation can be derived from the reduced action in
the same way.

Indeed, a byproduct of the above argument is that we
have proven that it is impossible to regularly express A���

for the whole S4 in one piece or a single gauge. Otherwise,
the Legendre term would vanish after shrinking, and this
would lead to a contradiction. Therefore, even though S4

has no boundary, the inevitable singularity of A��� leads to

the Legendre term.
In the following, for simplicity, we use gauge freedom to

force the singularity to be located at the center of B. This is

also true for the Snðn � 2Þ model with a rank (n� 1)
antisymmetric tensor Abelian gauge field.
In summary, we covered S4 by the two patches: A and B.

For the gauge potential, one can only cover it by at least
two arbitrary patches. If we use the representation A���,

then we have to tolerate the discontinuities across the
boundaries of these patches. If we prefer using the repre-
sentation

ffiffiffi
g

p
F���� to avoid these discontinuities, then we

have to add the Legendre terms, whose total contribution
takes the same form as (11), where @Aþ @B is replaced by
all of these boundaries. The total action remains the same
as (8). Our choice is just for simplicity. There is no topol-
ogy change when one lets B shrink to a point. The same
arguments apply to the next model. However, for the wave
function of the Universe, only the representation

ffiffiffi
g

p
F����

can be used.

IV. THE FREUND-RUBIN MODELS

Next, turn to a more complicated model, the Freund-
Rubin–like instanton [7]. This model has been used to
investigate dimensionality of spacetime in quantum cos-
mology [8]. The spacetime manifold M is described by a
product of two spheres Ss � Sn�s. Apparently, the S4

model is a special case with n ¼ s ¼ 4. The seed for
quantum creation of a black hole or a codimension-2
braneworld [9] is an instanton of topology Ss � S2, where
S2 can be a distorted sphere with some conical singular-
ities. It is trivial to generalize our discussion to this case.
For simplicity, we shall only consider the Freund-Rubin–
like instanton, and the action takes the form

I ¼ �
Z
M
dxng1=2

�
1

16�
ðR� 2�Þ � 1

2s
F2

�

� 1

8�

Z
@M

dxn�1h1=2K; (12)

where R is the scalar curvature of M, K is the extrinsic
curvature of the boundary @M with induced metric hij,� is

the cosmological constant, and F is the field strength of a
rank �s� 1 antisymmetric Abelian tensor A�1����s�1

. We

shall use the ansatz that all indices of nonvanishing F
components should reside in Ss. The Euclidean action is
obtained via an analytic continuation from the Lorentzian
action. There is some overall sign ambiguity in the action.
The ambiguity can be eliminated by the following consid-
eration. In order for the primordial fluctuations to take the
ground states allowed by the Heisenberg uncertainty prin-
ciple [10], the term associated with the scalar curvature of
the external factor spacetime must be negative. But this
ambiguity will not affect our discussion.
Similarly, the gauge field equation is

F�1����s
;�s

¼ 0; ð1 � �i � nÞ; (13)

and under the ansatz, the solutions must take the form
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F�1����s ¼
� ðs!gÞ�1=2���1����s ð1 � �i � sÞ
0 otherwise;

(14)

where g is the metric determinant of the product space, and
� is an arbitrary constant. It follows that

F�1����s
¼

� ðs!gn�sÞ�1=2ðgsÞ1=2���1����s
ð1 � �i � sÞ

0 otherwise;

(15)

where gs and gn�s are the metric determinants of the factor
spaces.

The Einstein equation is

G�� ¼ 8�	�� ��g��; (16)

where the stress tensor is

	�� ¼ F�
�1����s�1

F�1����s�1� � 1

2s
F�1����s

F�1����sg��: (17)

From the Einstein equation, one can derive the scalar
curvatures of the factor spaces

Rs ¼ ðn� s� 1Þ8� ��2

n� 2
þ 2s�

n� 2
; (18)

Rn�s ¼ �ðs� 1Þðn� sÞ8� ��2

sðn� 2Þ þ 2ðn� sÞ�
n� 2

; (19)

where �� � ðgn�sÞ�1=2�, and it is noted that �� depends on
the metric of the factor space Sn�s. From these curvatures,
one can derive the radii of the factor spheres.

Now, we substitute the gauge field configuration (14)
and (15) into the action (12); then the reduced action is

I ¼ � 1

16�

Z
M
dxn

�
ðgsÞ1=2ðgn�sÞ1=2ðR� 2�Þ

� 8�

s
ðgsÞ�1=2ðgn�sÞ1=2�̂2

�
; (20)

where �̂ � ðgn�sÞ�1=2ðgsÞ1=2�.
One can easily derive the Einstein equation from (20)

without a boundary term, considering A�1����s�1
or �̂ as the

given independent variable, as we did in the S4 model,

G�� ¼ ��g�� þ 4� ��2g��

s
; ð1 � �; � � sÞ; (21)

G�� ¼ ��g�� � 4� ��2g��

s
; ðsþ 1 � �; � � nÞ;

(22)

which is exactly the same as that derived from the complete
action (12). Equations (18) and (19) are implied by (21)
and (22), of course.

One can also derive these from (20) with the Legendre
term, considering

ffiffiffi
g

p
F�1����s as the independent variable.

As usual, the corresponding Legendre term is

ILegendre ¼ �
Z
ð@ �SsÞ�Sn�s

dS�1
A�2����s

F�1����s ; (23)

where �Ss denotes Ss minus a point where the singularity of
A�1����s�1

is located, as in the S4 model. The integral is over

(the A singularity in Ss)�Sn�s (in the sense of shrinking B
to its center).
Using the gauge field Eq. (13), the Legendre term can be

written as

ILegendre ¼ �
Z
Ss�Sn�s

dxng1=2
F2

s
; (24)

where

F2 ¼ F�1����s
F�1����s ¼ ðgn�sÞ�1�2: (25)

The total action is

Itotal ¼ � 1

16�

Z
M
dxng1=2

�
R� 2�þ 8�

s
F2

�
: (26)

Using (25), one can recast (26) into the form

Itotal ¼ � 1

16�

Z
M
dxn

�
ðgsÞ1=2ðgn�sÞ1=2ðR� 2�Þ

þ 8�

s
ðgsÞ1=2ðgn�sÞ�1=2�2

�
: (27)

Varying the reduced total action (27) with respect to the
metric for the given independent �, one can also derive the
same Einstein Eq. (21) and (22). Nature is always self-
consistent.

V. CONCLUSION

For a general case, if an original solution is extremal to
the original action, then the solution obtained from the
reduced action should be extremal too, as long as we
supplement the action with an appropriate boundary
term. However, if the complete solution is nonextremal
stationary to the original action, then one has to be cau-
tious; the solution that solves the subset of the equations
might trace an orbit with constant action value. Then, the
whole orbit may be the solution set for the reduced action,
and the original solution for the complete action would be
one in the solution set after the substitution. We call this
case degenerate. Since the Euclidean action of gravita-
tional field is not positive definite, one has to pay close
attention to it. However, this issue does not affect our
models due to our choice of variables.
In summary, we have used two models to show that

substituting the configuration into the action and then
varying it is equivalent to substituting it into the field
equation, except for the above degenerate case. The key
point is to identify the variables substituted and provide the
corresponding boundary conditions, which are imple-
mented by adding to the action the proper Legendre terms
needed. In general, the choice of independent variables is
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made based on convenience. The origin of the inconsis-
tency in the earlier literature is the mismatch of the sub-
stituted fields and their boundary conditions. It is believed
that as long as we keep this in mind, everything is con-
sistent and the reduced action is viable for the partial
theory.
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