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A Lifshitz point is described by a quantum field theory with anisotropic scale invariance (but not

Galilean invariance). In [8], gravity duals were conjectured for such theories. We construct analytically a

black hole that asymptotes to a vacuum Lifshitz solution; this black hole solves the equations of motion of

some simple (but somewhat strange) extensions of the models of [8]. We study its thermodynamics and

scalar response functions. The scalar wave equation turns out to be exactly solvable. Interestingly, the

Green’s functions do not exhibit the ultralocal behavior seen previously in the free Lifshitz scalar theory.
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I. INTRODUCTION

A great deal of progress has been made in the study of
quantum field theories and their holographic duals. The
possible scope of this enterprise is not yet clear; for ex-
ample, the correspondence seems to extend to some sys-
tems without Lorentz invariance. Recently, attempts have
been made to apply the holographic principle to study
condensed matter systems near a critical point (for reviews,
see [1,2]). There are many scale-invariant field theories
that are not Lorentz invariant, which are of interest in
studying such critical points. In such a theory, time and
space can scale differently, i.e., t ! �zt, ~x ! �~x under
dilatation. The relative scale dimension of time and space,
z, is called the ‘‘dynamical exponent.’’. Such a scale in-
variance is exhibited by a Lifshitz theory, which we will
take to mean an anisotropic scale-invariant theory that is
not Galilean invariant. The following Gaussian action pro-
vides a simple example of a (free) Lifshitz theory in d
space dimensions:

S½�� ¼
Z

ddxdt½ð@t�Þ2 � Kðr2�Þ2�: (1.1)

This action describes a fixed line parametrized by K, and
the dynamical exponent is z ¼ 2. This theory describes the
critical behavior of, e.g., quantum dimer models [3]. In
many ways, the d ¼ 2, z ¼ 2 version of the theory (1.1) is
like a relativistic boson in 1þ 1 dimensions.1 The scaling
behavior of the ground-state entanglement entropy for this
class of theories was studied recently in [5,6]. This analysis
also supports the similarity with 2d conformal field theory
(CFT), in that a universal leading singular behavior is
found.

In the free theory, the boson has logarithmic correlators

h�ðxÞ�ð0Þi �
Z

d!d2k
1

!2 � k4
ei

~k� ~x�i!t � lnx: (1.2)

As in the familiar d ¼ z ¼ 1 case, the operators of definite
scaling dimension are not the canonical bose field itself,
but rather its exponentials and derivatives. In connection
with quantum dimer models, the bose field is a height
variable constructed from the dimer configuration, and
the exponentials of the bose field are order parameters
for various dimer-solid orderings [3]. At zero temperature,
the logarithmic behavior of the correlator of the bose fields
implies that the two-point function of the order parameter
decays as a power law. However, the equal-time correlators
at finite temperature are ultralocal in the infinite-volume
limit [7]: they vanish at any nonzero spatial separation. In
[7], it was suggested that this might be a mechanism for the
kind of local criticality (scaling in frequency, but not
momentum) seen in the strange metal phase of the cuprates
and in heavy fermion materials. One is led to wonder
whether this property should is shared by interacting
Lifshitz theories, and whether the Lifshitz scaling is suffi-
cient to produce this behavior. In [7] the addition of per-
turbative interactions was shown to lead to a finite
correlation length; these perturbations violate the Lifshitz
scaling. Below we will show that interactions which pre-
serve the Lifshitz scaling need not give ultralocal behavior.
Gravity solutions with Lifshitz-type scale invariance

were found in [8]. They found that the following family
of metrics, parametrized by z, provide a geometrical de-
scription of Lifshitz-like theories (with z as the dynamical
exponent):

ds2 ¼ L2

�
� dt2

r2z
þ d~x2 þ dr2

r2

�
; (1.3)

where ~x denotes a d-dimensional spatial vector.2 For d ¼
2, this metric extremizes the following action:

1Similar statements apply whenever z ¼ d. However, con-
structing a rotation-invariant, local spatial kinetic operator that
scales like p2d is tricky for d � 2k for integer k. We note in
passing that the existence of such theories seem to be suggested
by the calculations of [4]. 2This metric appeared previously in [9].
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S ¼ 1

2

Z
d4xðR� 2�Þ

� 1

2

Z
ðFð2Þ ^ ?Fð2Þ þ Fð3Þ ^ ?Fð3ÞÞ

� c
Z

Bð2Þ ^ Fð2Þ; (1.4)

where Fð2Þ ¼ dAð1Þ, Fð3Þ ¼ dBð2Þ, and � is the four-

dimensional cosmological constant. They computed the
two-point function for the case when z ¼ 2 and showed
that it exhibits power law decay. They also studied the
holographic renormalization group flow for this case and
found that AdS4 is the only other fixed point of the flow.
Lifshitz vacuum solutions were shown to be stable under
perturbations of the bulk action in [10].

In this paper we shall study a black hole solution, which
asymptotes to the Lifshitz spacetime with d ¼ 2, z ¼ 2. In
Sec. II, an analytical solution for a black hole that asymp-
totes to the planar Lifshitz spacetime is written down. We
present several actions whose equations of motion it sol-
ves; they all involve some matter sector additional to (1.4).
Section III presents an analysis of the thermodynamics of
this black hole. In Sec. IV, we solve the wave equation for a
massive scalar field in this background; surprisingly, this
equation is exactly solvable. We use this solution to calcu-
late the two-point functions of boundary operators in
Sec. V.

Since we found the solution described in this paper,
some related work has appeared. Reference [11] constructs
a black hole solution in a related background with slightly
different asymptotics. Danielsson and Thorlacius [12]
found numerical solutions of black holes in global
Lifshitz spacetime. Interestingly, these are solutions to
precisely the system studied by [8], with no additional
fields. Related solutions were found by [13,14].
Reference [15] found solutions of type IIB supergravity
that are dual to Lifshitz-like theories with spatial anisot-
ropy and z ¼ 3=2; these solutions have a scalar field that
breaks the scaling symmetry. To our knowledge, a string
embedding of z ¼ 2 Lifshitz spacetime is still not known;
obstacles to finding such an embedding are described in
[16].

II. BLACK HOLE SOLUTION

A. Vacuum solution

The tensor fields in [8] can be rewritten as one massive
gauge field. The Chern-Simons-like coupling is respon-
sible for the mass. A familiar example is that of a 2-form
field strength F and a 3-form field strength H in five
dimensions with L ¼ F ^ ?FþH ^ ?H þ F ^H: this
gives the same equation of motion as L ¼ F ^ ?Fþ A2.
In the four-dimensional case studied in [8], the dual of the
3-form field strength in four dimensions is a scalar field ’.
Then

B2 ^ F2 ¼ �F3 ^ A1 þ bdy terms

¼ � ? d’ ^ A1 ¼ � ffiffiffi
g

p
@�’A�: (2.1)

The action then reduces to

F2 ^ ?F2 þ ð@’þ AÞ2; (2.2)

and ’ shifts under the A gauge symmetry, and we can fix it
to zero, and this is just a massive gauge field.3 Hence, the
zero-temperature Lifshitz metric

ds2 ¼ �dt2

r2z
þ d~x2 þ dr2

r2
(2.3)

is a solution of gravity in the presence of cosmological
constant and a massive gauge field, and the gauge field
mass ism2 ¼ dz. The bulk curvature radius has been set to
one here and throughout the paper; in these units, the

cosmological constant is � ¼ � z2þðd�1Þzþd2

2 . The gauge

field profile is A ¼ �r�zdt (in the r coordinate with the
boundary at r ¼ 0), and the strength of the gauge field is
(for d ¼ 2)

�2 ¼ 8
z2 þ z� 2

zðzþ 2Þ :

We note in passing that the Schrödinger spacetime is a
solution of the same action with a different mass for the
gauge field and a different cosmological constant [17,18].
Therefore, we find the perhaps-unfamiliar situation where
the same gravitational action has solutions with very differ-
ent asymptopia. Another recent example where this hap-
pens is ‘‘chiral gravity’’ in three dimensions, which has
asymptotically anti-de Sitter (AdS) solutions as well as
various squashed and smushed and wipfed solutions [19].
Given this fact, one might expect that the Lifshitz space-

time can be embedded into the same type IIB truncations as
the Schrödinger spacetime (see [20,21] and especially
[22]). However, the scalar equation of motion is not sat-
isfied by the Lifshitz background since F2 is nonzero.

B. Black hole solution

We shall now study a black hole in four dimensions that
asymptotically approaches the Lifshitz spacetime with z ¼
2. We first observe that there is such a black hole in a
system with a strongly-coupled scalar (i.e., a scalar without
kinetic terms). The action is

S1 ¼ 1

2

Z
d4xðR� 2�Þ

�
Z

d4x

�
e�2�

4
F2 þm2

2
A2 þ ðe�2� � 1Þ

�
: (2.4)

A solution of this system is

3This was also observed in [11].
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� ¼ � 1

2
logð1þ r2=r2HÞ; A ¼ f=r2dt

ds2 ¼ �f
dt2

r2z
þ d~x2

r2
þ dr2

fr2
;

(2.5)

with

f ¼ 1� r2

r2H
:

Note that the metric has the same simple form as in the RG
flow solution [Eq. (4.1) of [8]].

We can get the same contributions to the stress tensor as
from the scalar without kinetic terms from several more
reasonable systems. One such system is obtained by adding
a second massive gauge field B, which will provide the
same stress energy as the scalar. It has a slightly unfamiliar
action:

S2 ¼ 1

2

Z
d4xðR� 2�Þ

�
Z

d4x

�
1

4
B2dA2 þm2

A

2
A2 þ 1

4
dB2 �m2

B

2
ð1�B2Þ

�
;

(2.6)

where A, B are 1-forms, and m2
A ¼ 4 and m2

B ¼ 2. The
solution looks like B ¼ BðrÞdr, A ¼ AðrÞdt and the metric
is same as (2.5). In the solution, the scalar functions take
the form

BðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
grr

�
1þ r2

r2H

�s
; AðrÞ ¼ �fr�zdt:

Note that BðrÞ is not gauge trivial (even though its field
strength vanishes) because of the mass term. Since BðrÞ
asymptotes to 1, the effective gauge coupling of the field A
is not large at the boundary.

The system with a strongly-coupled scalar in (2.4) is not
equivalent to the system (2.6) with two gauge fields. For
example, there are solutions of (2.4) where the scalar has a
profile that depends both on r and x; such configurations do
not correspond to solutions of (2.6).

It is not clear whether the solution written above is
stable. We leave the analysis of the stability of such solu-
tions to small perturbations to future work. As weak evi-
dence for this stability, we show in the next section that
these black holes are thermodynamically stable.

Another action with this Lifshitz black hole (2.5) as a
solution is

S3 ¼ 1

2

Z
d4x

�
R� 2�� 1

2
dB2 � ð@�� BÞ2 �mAA

2

� 1

2
e�2�F2 � Vð�Þ

�
; (2.7)

where Vð�Þ ¼ 2e�2� � 2. In the solution, the metric and
gauge field A take the same form as in (2.5). The other

fields are

e�2� ¼ 1þ r2

r2H
; B ¼ d�:

Note that the action (2.7) is not invariant under the
would-be gauge transformation

B ! Bþ d�; � ! �þ�;

because of the coupling to F2 � 4 (the sum of the gauge
kinetic term and the potential term).4 We are not bothered
by this: it means that in quantizing the model, mass terms
for the fluctuations B will be generated; however, such a
mass term is already present.
We would also like to point out that in the three systems

S1;2;3 described above, the stress-energy tensor of the fields
with local propagating degrees of freedom satisfy the

dominant energy condition, i.e., Tð�;A;BÞ
�� ð¼ R�� � ð12Rþ

�Þg��Þ satisfies the following:
Ttt

Txx

¼ Ttt

Tyy

>�1 and
Ttt

Trr

>�1:

Hence, there are no superluminal effects in the bulk. This is
basically a consequence of the fact that the squared masses
of the gauge fields are positive.

III. LIFSHITZ BLACK HOLE THERMODYNAMICS

The Hawking temperature and entropy can be calculated
using the near-horizon geometry. The Hawking tempera-
ture is the periodicity of the Euclidean time direction in the
near-horizon metric (proportional to the surface gravity),
i.e., T ¼ �

2� jr¼rH , with

�2 ¼ �1
2ravbrbv

a;

where v ¼ @t. Hence,

T ¼ 1

2�r2H
: (3.1)

The entropy of the black hole is

S ¼ Area of Horizon

4GN

¼ LxLy

4G4r
2
H

: (3.2)

We shall now evaluate the free energy, internal energy, and
pressure by calculating the on-shell action and boundary
stress tensor. In order to renormalize the action, it is
essential to add counterterms that are intrinsic invariants
of the boundary (see [23]).

4We note that this quantity does vanish on the solution of
interest.
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Consider the following gravitational action:

S ¼ 1

2

Z
M
d4x

ffiffiffi
g

p �
R� 2�� e�2�

4
F2 �m2

A

2
A2 � Vð�Þ

�

�
Z
@M

d3x
ffiffiffiffi
�

p ðK þ cNe
�2�n�A�F��Þ

þ 1

2

Z
@M

d3x
ffiffiffiffi
�

p ð2c0 � c1�� c2�
2Þ

þ 1

2

Z
@M

d3x
ffiffiffiffi
�

p ððc3 þ c4�ÞA2 þ c5A
4Þ: (3.3)

The second line of (3.3) contains extrinsic boundary terms:
the Gibbons-Hawking term, and a ‘‘Neumannizing term,’’
which changes the boundary conditions on the gauge field.
The last line of (3.3) describes the intrinsic boundary
counterterms.5 In the above expression, we have set
8�G ¼ 1. We have written the analysis in terms of S1
(2.4); the analysis can be adapted for S2 (2.6) by simply
replacing � in (3.3) by � 1

2 logB
2. If Neumann boundary

conditions are imposed on the gauge field, then cN ¼ 1 and
ci ¼ 0 for i � 3. Similarly, cN ¼ 0, if the Dirichlet bound-
ary condition is imposed on the gauge field.

The boundary stress tensor resulting from (3.3) is

T�� ¼ K�� �
�
K � c0 þ 1

2
c1�þ 1

2
c2�

2

�
���

þ e�2�

2
ðnrA�@rA� þ nrA�@rA� � nrA�@rA

����Þ
þ ðc3 þ c4�þ 2c5A

2ÞA�A�

� 1

2
ðc3 þ c4�þ c5A

2ÞA2���: (34)

The values of ci are determined by demanding that the
action is ‘‘well behaved.’’. The action is well behaved if the
variation of the action vanishes on shell and if the residual
gauge symmetries of the metric are not broken. The values
of ci, which make the action well defined, also render finite
the action and boundary stress tensor (please see the
Appendix). Implementing this procedure, we find for the
energy density, pressure and free energy

E ¼ P ¼ �F ¼ 1

2
TS ¼ LxLy

2r4H
: (3.5)

Satisfying the first law of thermodynamics (in the Gibbs-
Duhem form E þ P ¼ TS) is a nice check on the sensi-

bility of our solution, since it is a relation between near-
horizon (T, S) and near-boundary (E, P ) quantities.
Recently, [24] described an alternative set of boundary

terms for asymptotically Lifshitz theories. They do not
include the Neumannizing term, but instead include an

intrinsic but nonanalytic
ffiffiffiffiffiffiffiffiffiffiffiffiffi
A�A�

p
term.

IV. SCALAR RESPONSE

In this section, we study a probe scalar in the black hole
background (2.5). The scalar can be considered a proxy for
the mode of the metric coupling to Tx

y .

A. Exact solution of the scalar wave equation

Consider a scalar field 	 of mass m in the black hole
background (2.5).6

Let u � r2

r2H
. Fourier expand

	 ¼ X
k

	kðuÞe�i!tþi ~k� ~x:

The wave equation takes the form

0 ¼ uð�fk2 þ u!2Þ þm2f

4f2u2
	kðuÞ � 1

fu
	0

kðuÞ þ	00
k ðuÞ;

where k2 � ~k2. Near the horizon, the incoming (� ) and
outgoing (þ ) waves are

	k � ð1� uÞ�i!=2:

The solutions near the boundary at u ¼ 0 are

	k � u1�ð1=2Þ
ffiffiffiffiffiffiffiffiffi
4þm2

p
:

The exact solution to the wave equation is 	kðuÞ ¼
f�i!=2u1�ð1=2Þ

ffiffiffiffiffiffiffiffiffi
m2þ4

p
GkðuÞ with

GkðuÞ ¼ A12F1ðaþ; bþ;cþ; uÞu
ffiffiffiffiffiffiffiffiffi
m2þ4

p

þA22F1ða�; b�;c�; uÞ (4.1)

and

5The most general combination of counterterms, which do not
vanish at the boundary, is

1

2

Z
@M

d3x
ffiffiffiffi
�

p ð2c00 þ c01�þ c02�2Þ

þ 1

2

Z
@M

d3x
ffiffiffiffi
�

p ððc03 þ c04�ÞðA2 � 1Þ þ c05ðA2 � 1Þ2Þ;
which has the same form as (3.3).

6In the following we have set both the bulk radius of curvature
and the horizon radius to one. This means that frequencies and
momenta are ‘‘gothic’’ [25], i.e., measured in units of rH . Note
that since z ¼ 2, ! needs two factors of rH to make a dimen-
sionless quantity.
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ða�; b�;c�Þ �
�
� i!

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4

p

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 �!2 þ 1

p

þ 1

2
;� i!

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4

p

2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 �!2 þ 1

p
þ 1

2
;1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4

p
;u

�
:

We emphasize that this is the exact solution to the scalar
wave equation in this black hole; such a solution is un-
available for the AdSd>3 black hole. The difference is that
the equation here has only three regular singular points,
whereas the AdS5 black hole wave equation has four. This
is because in the AdS5 black hole, the emblackening factor
is f ¼ 1� u2, which has two roots, whereas ours is just
f ¼ 1� u.

The other example of a black hole with a solvable scalar
wave equation is the Banados, Teitelboim, Zanelli (BTZ)
black hole in AdS3 [26].7 The origin of the solvability in
that case is the fact that BTZ is an orbifold of the zero-
temperature solution. This is not the origin of the solvabil-

ity in our case—this black hole is not an orbifold of the
zero-temperature solution. This may be seen by comparing
curvature invariants: they are not locally diffeomorphic.
More simply, if the black hole were an orbifold, it would
solve the same equations of motion as the vacuum solution.
The fact that we were forced to add an additional matter
sector (such as � or B�) to find the black hole solution

immediately shows that they are not locally diffeomorphic.
Now we ask for the linear combination of (4.1), which is

ingoing at the horizon. In terms of � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þm2

p
, � �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�!2 � k2
p

, this is the combination with

A1

A2

¼ �ð�1Þ� �ð�Þ
�ð��Þ

�ð12 ð1� i!� �� �ÞÞ
�ð12 ð1� i!þ �� �ÞÞ

� �ð12 ð1� i!� �þ �ÞÞ
�ð12 ð1� i!þ �þ �ÞÞ : (4.2)

In the massless case, one of the hypergeometric func-
tions in (4.1) specializes to a Meijer G function, and the

solution is 	k ¼ u2f�i!=2GkðuÞ with

GkðuÞ ¼ c22F1

�
� i!

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 �!2 þ 1

p
þ 3

2
;� i!

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 �!2 þ 1

p
þ 3

2
; 3; u

�

þ c1G
2;0
2;2 u

�������� 1
2 ði!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 �!2 þ 1

p
� 1Þ; 12 ði!þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�k2 �!2 þ 1

p
� 1Þ

�2; 0

 !
:

In this solution, the coefficient of c1 (the Meier-G function)
is purely ingoing at the horizon.

B. Correlators of scalar operators

In the previous section we wrote the solution for the
wave equation in this black hole for a scalar field with an
arbitrary mass. As mentioned earlier, the BTZ black hole
also shares this property of having a scalar wave equation
whose solutions are hypergeometric. Hence, one might
expect that the two-point function of scalar operators in a
Lifshitz-like theory to have a form that is similar to that of
2D CFTs.

The momentum space correlator for a scalar operator of
dimension � ¼ �� is determined from the ratio of the
non-normalizable and normalizable parts of the solution.
The asymptotic behavior of the solution in (4.1) is

	� u�þ=2ðA1 þOðuÞÞ þ u��=2ðA2 þOðuÞÞ: (4.3)

Hence, the retarded Green’s function (two-point function)
is

Gretð!; ~kÞ ¼ �A1

A2

¼ ð�1Þ� �ð�Þ
�ð��Þ

�ð12 ð1� i!� �� �ÞÞ
�ð12 ð1� i!þ �� �ÞÞ

� �ð12 ð1� i!� �þ �ÞÞ
�ð12 ð1� i!þ �þ �ÞÞ ; (4.4)

with � and � defined above Eq. (4.2). Note that the corre-
lator has a form very similar to that of a 2D CFT. It would
be nice to know the precise connection between z ¼ 2
Lifshitz-like theories in 2þ 1 D with 2D CFTs that is
responsible for this similarity. Note that the poles of the
retarded Green’s function do not lie on a straight line in the
complex frequency plane, as they do for 2D CFTs.
Next, we would like to see whether the correlators

exhibit ultralocal behavior at finite temperature as ob-
served in the free scalar Lifshitz theory [7]. We find that
the Green’s function is not ultralocal—this removes the
possibility that Lifshitz-symmetric interactions require ul-
tralocal behavior.
We will now calculate the two-point function of a scalar

operator of dimension � ¼ 4 at finite temperature. In this
case, the correlator is given by the coefficient of r4 in the
asymptotic expansion of the solution near r ¼ 0. Kachru7Another example, in two dimensions, is [27].
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et al. [8] showed that the correlator exhibits a power law
decay at zero temperature.

We can evaluate this correlator by extracting the coeffi-
cient of the u2 term (note that u / r2) in the asymptotic

expansion of the solution of the massless scalar wave
equation. The behavior of the solution near u ¼ 0 is

	ðu; ~k;!Þ ¼ 1� u

4
ð ~k2 þ 2i!Þ � u2

64
ðð ~k2Þ2 þ 4!2Þ

�
�3þ 2c

�
1

2
ð�1þ i!�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k2 �!2

q
Þ
�

þ 2c

�
1

2
ð�1þ i!þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k2 �!2

q
Þ
�
þ 2�E þ 2 lnu

�
þOðu3Þ; (4.5)

where �E is Euler’s constant, c is the digamma function. The behavior of the solution in the Euclidean black hole can be
obtained by replacing ! by �ij!j. The choice of the negative sign gives the solution, which is ingoing at the horizon, as
appropriate to the retarded correlator [25]. Henceforth, we shall work with the solution for the Euclidean case. The
correlator is the sum of the two digamma functions. All other terms in the coefficient of u2 are contact terms. Hence, the
correlator in momentum space is

hOð�!;� ~kÞOð!; ~kÞi / ðð ~k2Þ2 � 4!2Þ
�
c

�
1

2
ð�1þ j!j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k2 þ!2

q
Þ
�
þ c

�
1

2
ð�1þ j!j þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ~k2 þ!2

q
Þ
��

:

(4.6)

After dropping the contact terms, the above expression can
be written as follows:

hOð�!;� ~kÞOð!; ~kÞi / X1
n¼1

An;

where

A n ¼ ð2n� 3Þ þ j!j
ð2n� 3Þ2 þ 2j!jð2n� 3Þ þ k2 � 1

¼ anþ j ! j
a2n þ 2an j ! j þk2 � 1

:

We can now calculate the correlators in coordinate space
by performing the Fourier transform of the above expres-
sion. This is given by

Dðj ~xj; tÞ ¼ ½ð4@2t � ðr2Þ2Þ�X
n

F n; (4.7)

where Dðj ~xj; tÞ is the two-point function and

X
n

F n ¼
X
n

Z
kdkd!d


anþ j ! j
a2n þ 2an j ! j þk2 � 1=4

� eikj ~xj cos
þi!t: (4.8)

The short distance (r 	 rH) behavior of the equal-time
correlator is

Dðj ~xj 	 rH; 0Þ ¼ ½ð4@2t � ðr2Þ2ÞF �t¼0;j ~xj!0 / 1

j ~xj8 :
(4.9)

As a check, we note that, the short distance behavior of this
expression reproduces the zero-temperature answer j ~xj�8

found in [8].
The long distance (j ~xj 
 rH) behavior is

Dðj ~xj 
 rH; 0Þ ¼ ½ð4@2t � ðr2Þ2ÞF �t¼0;j ~xj!1

/ e�
ffiffi
2

p j ~xj=rH

j ~xj3=2 : (4.10)

The correlator is not ultralocal, unlike the thermal corre-
lator in free scalar Lifshitz theory.8

V. OUTLOOK

An important defect of our work that cannot have
avoided the reader’s attention is the fact that the matter
content that produces the stress-energy tensor for this black
hole is unfamiliar and contrived. There is no physical
reason why terms such as A2B2 should not be added. In
our defense, a perturbation analysis in the coefficient of
such terms indicates that a corrected solution can be
constructed.
It is not clear how to embed such solutions in a UV-

complete gravity theory; a stringy description is not known
yet even for the zero-temperature case. Such a description
would help in finding specific Lifshitz-like field theories
with gravity duals. It would be nice to understand the
connection (if it exists) between the Lifshitz spacetime
and non-Abelian Lifshitz-like gauge theories [28,29].

8The dependence on j!j does lead to remnants of ultralocal
behavior (extended in time, but localized in space).
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APPENDIX: REGULARIZING THE ACTION AND
BOUNDARY STRESS TENSOR

In this Appendix, we will show that the on-shell action
and boundary stress tensor can be rendered finite by mak-
ing the action well behaved, i.e., the action is stationary on
shell under an arbitrary normalizable variation of the bulk
fields, and the boundary terms in the action must not break
the residual gauge symmetries of the metric.
We will first find the constraints imposed by finiteness of

the free energy, internal energy and pressure on ci.
The free energy of the boundary theory is

�F ¼ Sonshell
�

¼ 1

2
LxLy

�
64cN � 8c0 þ 16c1 þ 8c2 þ 6c3 þ 16c4 � 15c5

32r4H
� 32þ 4c1 þ 8c0 þ 6c3 þ 2c4 � 5c5

16�2r2H

þ 24þ 2c3 � c5 � 8cN þ 8c0
8�4

�
; (A1)

where � is inverse temperature. We must set�c5 þ 24� 8cN þ 8c0 þ 2c3 ¼ 0 and�c1 � 8� 2c0 � 3=2c3 � 1=2c3 þ
5=4c5 ¼ 0 to get rid of the divergences in the on-shell action. Further, finiteness of the boundary stress tensor and
conformal ward identities impose more constraints on the counterterms.

The internal energy of the boundary theory is

E ¼ �LxLy

ffiffiffiffi
�

p
Tt
t

¼ �LxLy

�
16þ 8c0 � 2c3 þ 3c5 þ 8cN

8�4
� 32þ 8c0 þ 4c1 � 6c3 � 2c4 þ 15c5

16r2H�
2

� 8c0 � 16c1 � 8c2 þ 6c3 þ 16c4 � 45c5 þ 64cN
64r4H

: (A2)

Similarly, the expression for pressure is

P ¼ 1

2
LxLy

ffiffiffiffi
�

p
Ti
i ¼ LxLy

ffiffiffiffi
�

p
Tx
x

¼ 1

2
LxLy

�
64cN � 8c0 þ 16c1 þ 8c2 þ 6c3 þ 16c4 � 15c5

32r4H
� 32þ 4c1 þ 8c0 þ 6c3 þ 2c4 � 5c5

16�2r2H

þ 24þ 2c3 � c5 � 8cN þ 8c0
8�4

�
: (A3)

Note that F ¼ �P , as expected in the grand canonical
ensemble. Hence, the condition for the divergences in
pressure to cancel is the same as the condition for diver-
gences in the on-shell action to cancel. However, finiteness
of energy imposes additional constraints on the counter-
terms. In the case of the Schrödinger black hole, it is not
possible to get rid of the divergence in the energy without
the Neumannizing term [21].

The conformal Ward identity for conservation of the
dilatation current requires zE ¼ dP , and in our discussion
d ¼ z ¼ 2. The residual gauge freedom of the metric is
broken if this condition is not satisfied (see [17]). Note that
making the boundary stress tensor finite does not ensure
this condition. We must set c2 ¼ 7=2 for the conformal

Ward identity to hold. After imposing these conditions, we
find

E ¼ P ¼ �F ¼ LxLy

15� 2c1 � 26cN
16r4H

: (A4)

In order to have a well-defined variational principle, we
must ensure that S ¼ 0 on shell. We shall now determine
the value of c1 using this condition.9 The variation of the
action is

9We have determined the value of c1 for the case where
Dirichlet boundary condition is imposed on the gauge field.
However, the method is general and can be used for other
boundary conditions as well.
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S ¼
Z
bulk

EOMþ 1

2

Z
bdy

d3x
ffiffiffiffi
�

p ½T�
� ��

�

þ ððcN � 1Þe�2�n�F
�� þ ðc3 þ c4�þ 2c5A

2ÞA�Þ
� A� þ cNA

�ðn�e�2�F��Þ
� 1

2
ðc1 þ 2c2�� c4A

2 � 4cNA
�n�F��e

�2�Þ�
�
:

(A5)

The first term vanishes on shell. Therefore, the boundary
terms must also vanish on shell. Let us assume, for conve-
nience that Dirichlet boundary condition is imposed on the
gauge field (cN ¼ 0). Prescribing boundary conditions is
equivalent to prescribing the coefficient of the non-
normalizable mode of the solution. The allowed variations
at the boundary fall faster than the non-normalizable part
of the solution, i.e.,

��
� ¼ ��

�ð1Þr
2 þ ��

�ð2Þr
4 þ . . .

A� ¼ r�2ðA�ð1Þr2 þ A�ð2Þr4 þ . . .Þ
� ¼ r2�ð1Þ þ r4�ð2Þ þ . . .

(A6)

Substituting these expressions in (A5) and using the con-

ditions on ci for energy and pressure to be finite,10 we find

S ¼
Z

d3x

� ffiffiffiffi
�

p
T�
� r2��

�ð1Þ þOðr2ÞA�ð1Þ

þ
�
c2 � c1

r2H

�
ð�1 þOðr2ÞÞ

�
: (A7)

Since E and P are finite, the first term in the integrand
vanishes at the boundary. Hence, c1 ¼ c2 ¼ 7=2 for the
variation of the action to vanish on shell. Using the values
of ci found above in (A4) we get

E ¼ P ¼ �F ¼ LxLy

2r4H
:

After restoring factors of 8�G,

E ¼ P ¼ �F ¼ LxLy

16�Gr4H
¼ � 1

2
T
@F
@T

¼ 1

2
TS:

We have shown that the stress tensor and on-shell action
can be regularized by making the action well behaved, i.e.,
S must vanish on shell, and the counterterms should not
break any residual gauge symmetry.
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