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AWeyl solution describing two Schwarzschild black holes is considered. We focus on the Z2 invariant

solution, with Arnowitt-Deser-Misner mass MADM ¼ 2MK, where MK is the Komar mass of each black

hole. For this solution the set of fixed points of the discrete symmetry is a totally geodesic submanifold.

The existence and radii of circular photon orbits in this submanifold are studied, as functions of the

distance 2L between the two black holes. For L ! 0 there are two such orbits, corresponding to r ¼
3MADM and r ¼ 2MADM in Schwarzschild coordinates. As the distance increases, it is shown that the two

photon orbits approach one another and merge when MK ¼ ’L, where ’ is the golden ratio. Beyond this

distance there exist no circular photon orbits. The two null orbits delimit a forbidden band for timelike

circular orbits, which is interpreted in terms of optical geometry. For large L, timelike circular orbits are

allowed everywhere, as in the analogous Newtonian problem. The analysis is generalized by considering a

Z2 invariant Weyl solution with an array of N black holes and also by charging the black holes, which

connects the Weyl solution to a Majumdar-Papapetrou spacetime.
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I. INTRODUCTION

Euler’s three-body problem is a soluble special case of
the general three-body problem, in which a test particle
moves in the gravitational field of two gravitational
sources—point masses—which are fixed in space. It is
Liouville integrable since, besides the energy and one
component of the angular momentum, there is a third
constant of motion (see e.g. [1,2]; see [3] for a hyperbolic
space version of the problem which is still integrable). A
natural relativistic generalization of this problem is to
consider the motion of test particles in a Weyl solution
describing two Schwarzschild black holes, which are kept
in equilibrium due to a strut in between them. For this
problem there is no known analogue to Euler’s constant
(see [4] for a discussion about this point); equivalently,
there is no known separability for the geodesic equations.
Generic geodesics, therefore, have to be studied numeri-
cally. For the special case in which the two black holes
have equal mass, there is, however, a 1þ 2 dimensional
totally geodesic submanifold in which geodesics are
Liouville integrable. In particular, it is straightforward to
derive all circular causal orbits.

Regular (on and outside an event horizon) static black
holes in vacuum general relativity do not admit causal
circular geodesics below a certain critical radius, which
lies outside the event horizon. Below this radius, the an-
gular momentum term in the radial equation of motion,
usually centrifugal (with respect to the black hole), be-
comes centripetal, making equilibrium impossible. This
change in character of the angular momentum term has a

geometric interpretation in terms of optical geometry [5]:
define ‘‘outwards’’ as the direction in which fixed point
sets of the optical geometry’s isometry group (spheres)
increase their proper size; then, the angular momentum
term is always outwards. Similar considerations may be
made about stationary black holes. However, in this case
the optical geometry is a Randers-Finsler rather than
Riemannian geometry, making the interpretation more
subtle [6].
In this paper we show that the optical geometry of the

aforementioned relativistic Euler’s three-body problem is
richer than the standard one of the Schwarzschild black
hole. To be concrete, let the two black holes in the Weyl
solution considered have equal massMK and separation 2L
between them. This choice of masses implies that there is a
discrete Z2 symmetry of the solution. The set of fixed
points of this discrete symmetry is a totally geodesic sub-
manifold, N . The optical geometry of this submanifold
then has the following feature: for sufficiently small but
nonzero L the notion of outwards, defined as above,
changes continuously twice, rather than just once. This
means that, onN , there is an annulus-like region in which
outwards means a decreasing radial Weyl canonical coor-
dinate. The boundaries of this annular region are the loci of
two circular photon orbits, and the region itself is a forbid-
den band for timelike circular geodesics, which are al-
lowed everywhere outside this band. As L increases, the
two boundaries of the annular region approach one another
and coalesce whenMK ¼ ’L, where ’ is the golden ratio.
For larger L, N admits no circular photon orbits and
timelike circular geodesics are allowed everywhere, just
as in the Z2 symmetric Euler’s three-body problem.
Considering a Weyl solution with an array of N, rather

than two, black holes along a line, which is still invariant
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under a Z2 discrete symmetry, leads to two cases. For N
even (odd), we essentially recover the optical geometry of
the N ¼ 2 (N ¼ 1) case. We shall also consider charged
black holes in Einstein-Maxwell theory, by using a solution
generating technique [7] that allows the introduction of a
charge parameter in Weyl solutions. For black holes, the
charge parameter is the ratio of charge to mass, which is the
same for all the black holes in the solution. In this case, as
we increase the charge for fixed L, MK, the proper area of
the forbidden band increases; for L ¼ 0, this area diverges
as we reach extremality, as a consequence of the infinite
‘‘throat’’ developed by extremal black holes. Keeping the
charge and MK fixed, the area of the forbidden band
decreases as L is increased, just as for the uncharged
case, becoming zero at some maximum value of L.

This paper is organized as follows. After a brief discus-
sion of the Newtonian Euler’s three-body problem in
Sec. II, we describe in Sec. III A the Weyl solutions that
shall be used in the relativistic version of the problem, as
well as the circular null and timelike orbits. In Sec. III B the
charged case is considered. In Sec. IV the interpretation of
the forbidden band for timelike circular orbits is given in
terms of optical geometry. In Sec. V we briefly discuss the
case of multiple black holes. We close with some final
remarks.

II. THE NEWTONIAN VERSION

In Euler’s three-body problem, a.k.a. the two-center
Kepler problem (see e.g. [8]), with both masses equal to
M, the motion of a test particle moving in the symmetry
plane between the two masses obeys�

d�

dt

�
2 ¼ 2E� Vð�Þ; Vð�Þ ¼ J2

�2
� 4Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ L2
p ; (1)

where � is a radial cylindrical coordinate, E, J are the
energy and angular momentum per unit mass, and L is the
distance from either mass to the symmetry plane. We shall
use geometrized units throughout. Circular orbits are seen
by extremizing the potential. They obey

J2

2M
¼ �4

ð�2 þ L2Þ3=2 : (2)

This equation has a solution for any �, given L andM. The
angular momentum J goes to zero (infinity) as � ! 0
(� ! 1)—Fig. 1. Thus circular orbits exist for any radial
distance in the symmetry plane. This is therefore the
behavior we expect in the relativistic version of the prob-
lem for large L=M, and indeed it is the behavior we shall
find. The behavior for small L=M will, however, be quite
different.

In the relativistic problem that shall be considered in the
next section, the Newtonian gravitational potential of one
or multiple rods (rather than pointlike masses) of mass M,
infinitesimal width, and mass density % plays an important

role, since it is a key ingredient in the construction of Weyl
solutions describing one or multiple black holes. Let us
remark that, as a Newtonian problem, the passage from
point particles to two equal rods, aligned with the direction
of separation, does not alter the previous conclusion: in the
symmetry plane, circular orbits still exist at any radial
distance from the symmetry axis.

III. THE RELATIVISTIC VERSION

A. Uncharged case

Weyl geometries [9,10] in four spacetime dimensions
admit two commuting, mutually orthogonal Killing vector
fields. In vacuum, the metric may always be written in the
form

ds2 ¼ �e2Uð�;zÞdt2 þ e�2Uð�;zÞ½e2kð�;zÞðd�2 þ dz2Þ
þ �2d�2�: (3)

The vacuum Einstein equations, R�� ¼ 0, reduce to a

harmonic equation in an auxiliary Euclidean three-space,
E3, in cylindrical coordinates ð�; z; �Þ,

�E3U ¼ 0; (4)

and two partial differential equations for kð�; zÞ,
@zk ¼ 2�@�U@zU; @�k ¼ �½ð@�UÞ2 � ð@zUÞ2�; (5)

which become line integrals once the solution forUð�; zÞ is
known.

FIG. 1. Radial distance � of circular orbits in the symmetry
plane of the two-center Kepler problem, as a function of their
angular momentum, J. The two equal masses, which we set to
unity, have separation 2L, and various values of L have been
used. Observe that circular orbits exist for any �.
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A solution with two black holes is obtained by taking
Uð�; zÞ to be the potential of two finite rods of zero width
and linear density % ¼ 1=2.1 The rods are placed at � ¼ 0
and in the intervals z 2 ½a1; a2� and z 2 ½a3; a4�. Then

e2Uð�;zÞ ¼ ðR1 � �1ÞðR3 � �3Þ
ðR2 � �2ÞðR4 � �4Þ ; (6)

where we have introduced the quantities

Rk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ �2k

q
; �k � z� ak: (7)

Introducing further

Yij � RiRj þ �i�j þ �2; (8)

the solution of (5), given (6), is

e2kð�;zÞ ¼ Y43Y21Y41Y32

4Y42Y31R1R2R3R4

: (9)

An integration constant could be added to k. We have
chosen this constant to be zero. With this choice, identify-
ing the azimuthal coordinate with standard period ��
�þ 2�, the metric is smooth, on the symmetry axis for
z < a1 and z > a4. For � ¼ 0 and a2 < z < a3 there is a
conical excess, given by

� ¼ 2�ðe�kð�¼0;a2<z<a3Þ � 1Þ ¼ 2�
ða4 � a3Þða2 � a1Þ
ða4 � a1Þða3 � a2Þ :

(10)

The vacuum solution described by (3), (6), and (9) is
actually a three-parameter family of solutions. Physically,
the three parameters may be taken to be the two black hole
masses and the distance between them. The black hole
masses may be computed as Komar integrals:

M1 ¼ 1

8�

Z
S1

?d� ¼ a2 � a1
2

;

M2 ¼ 1

8�

Z
S2

?d� ¼ a4 � a3
2

;

(11)

where � is the dual one-form to the timelike Killing vector
field @=@t and the two-surfaces Si correspond to the loca-
tion of the two finite rods in Weyl coordinates. An asymp-
totic expansion shows that the Arnowitt-Deser-Misner
mass is

MADM ¼ M1 þM2: (12)

For the distance, we shall take the coordinate distance in
Weyl coordinates

2L ¼ a3 � a2: (13)

This is a monotonic function of the proper distance

�z ¼
Z a3

a2

ffiffiffiffiffiffiffi
gzz

p
dz; (14)

and, in this sense, its variations are a good measure of
proper distance variations.
In order to have a totally geodesic submanifold, we

require M1 ¼ M2 � MK ¼ MADM=2. We also choose a
symmetric coordinate system: a2 ¼ �L and a3 ¼ L. The
proper distance between the two black holes may then be
expressed as

�z ¼ 8LðMADM þ LÞ2
ðMADM þ 2LÞ2 E

�
L

LþMADM

�
; (15)

where EðxÞ is a complete elliptic integral of the second
kind. It follows that z ¼ 0 is a totally geodesic submani-
fold, which has an induced metric given by (3) with z ¼ 0.
Geodesics in this submanifold obey

e2kð�;0Þ _�2 ¼ E2 �
�
e2Uð�;0Þm2 þ e4Uð�;0Þ J

2

�2

�
; (16)

where the dot represents a derivative with respect to an
affine parameter and we have introduced the energy E and
angular momentum J for a particle of mass m.

1. Circular photon orbits

From (16), circular null geodesics are determined by the
extrema of the potential

Vð�Þ ¼ e4Uð�;0Þ

�2

¼ 1

�2

�
Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ �2
p

MADM þ Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMADM þ LÞ2 þ �2
p �

4
: (17)

For L ¼ 0, i.e. the single black hole limit, making the
coordinate transformation

� ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2MADM

r

s
; (18)

the potential becomes

VðrÞ ¼ 1

r2

�
1� 2MADM

r

�
: (19)

This is the effective potential for photons in a
Schwarzschild black hole and in Schwarzschild coordi-
nates. It has the well-known extremum at r ¼ 3MADM.
Another solution for a constant r photon orbit is r ¼
2MADM, corresponding to the null geodesic generator of
the horizon. Thus, in Weyl coordinates we have two ex-
trema, for L ¼ 0, at

�CNO1
ðL ¼ 0Þ ¼ 0; �CNO2

ðL ¼ 0Þ ¼ ffiffiffi
3

p
MADM:

(20)

For L � MADM, Vð�Þ has no extrema, since it is approxi-

1This particular choice is required to avoid curvature singu-
larities at the rod positions.
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mately Vð�Þ � 1=�2. The interpolation between these two
behaviors is as follows (Fig. 2). As L grows, the two
extrema (20) approach one another, in both coordinate
and proper distance, and merge for L ¼ Lmax. Beyond
this value of L, Vð�Þ has no extrema. To see the value of
Lmax, observe that the extrema of (17) are given by

fð�;MADM; LÞ ¼ 1

2
;

fð�;MADM; LÞ � MADM þ LffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMADM þ LÞ2 þ �2
p � Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ �2
p :

(21)

To solve for � it is convenient to introduce x2 �
�2=ðMADM þ LÞ2 and y � MADM=L. Then the last equa-
tion becomes

1

2
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2ð1þ yÞ2p : (22)

Take (22) to define a curve y ¼ yðxÞ, between x ¼ 0 and

x ¼ ffiffiffi
3

p
; at these values of x, y ! 1. These two ‘‘points’’

of the curve correspond to �CNO1
and �CNO2

given in (20).

Constant y slices of the curve have two solutions for y >
ymin, one solution for y ¼ ymin, and no solution for y <
ymin. To determine ymin, it is convenient to introduce

	 � ð1þ yminÞ2=3: (23)

Then, differentiating (22), extremizing yðxÞ with respect to

x, and replacing back into (22) gives the quadratic equation

	2 � 3	þ 1 ¼ 0; (24)

whose only solution leading to a positive ymin is

	 ¼ 1þ ’; ’ �
ffiffiffi
5

p þ 1

2
: (25)

’ is the golden ratio. Using the recurrence property of the
golden ratio,

’nþ1 ¼ ’n þ ’n�1; (26)

we arrive at ymin ¼ 2’, and therefore at

MK ¼ ’Lmax , Lmax ¼ �MK; � �
ffiffiffi
5

p � 1

2
; (27)

where � is the golden ratio conjugate. Thus, quite strik-
ingly, the two null circular orbits merge when the ratio
between the Komar mass of either black hole and the
semidistance between them is the golden ratio. This merg-
ing happens for the Weyl radial coordinate

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ ’

p
MK: (28)

2. Circular timelike orbits

The significance of the circular photon orbits described
in the last subsection can be seen by considering circular
timelike orbits. From (16) these are obtained by extremiz-

FIG. 2. Left panel: Effective potential for (i) L ¼ 0, which has two extrema at �CNO1
ðL ¼ 0Þ ¼ 0 and �CNO2

ðL ¼ 0Þ ¼ ffiffiffi
3

p
MADM;

(ii) L ¼ MK=3, for which the two extrema have moved closer to one another; and (iii) L ¼ Lmax ¼ �MK ¼ MK=’, for which the two
extrema have merged. We have fixedMK ¼ 1 in the plots. Right panel: Radial coordinate � of the photon circular orbits as a function
of L.
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ing the potential

Vð�Þ ¼ e2Uð�;0Þ þ J2
e4Uð�;0Þ

�2

¼
�

Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 þ �2

p
MADM þ Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMADM þ LÞ2 þ �2

p �
2 þ J2

�2

�
Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ �2
p

MADM þ Lþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMADM þ LÞ2 þ �2
p �

4
; (29)

where J is now the angular momentum per unit mass. The extrema of this potential are given by

fð�;MADM; LÞ ¼ 1

2þ ðJ�Þ�2½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðMADM þ LÞ2 þ �2
p þMADM þ L�2½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

L2 þ �2
p � L�2

: (30)

In Fig. 3 we display the solution of Eq. (30) for �, in terms
of J, for fixed values of L. One observes that for L <
Lmax ¼ 1=’ there is a forbidden band for timelike circular
geodesics, which is the region between the two photon
circular orbits. This behavior should be contrasted with
that exhibited in Fig. 1 for the Newtonian case and is
illustrated in Fig. 4.

B. Charged case

Let us start by recalling that in a Reissner-Nordström
black hole, the circular null orbits are found as extrema of
the potential

VðrÞ ¼ 1

r2

�
1� 2MADM

r
þ q2M2

ADM

r2

�
; (31)

in standard Schwarzschild-type coordinates, where q is the
charge to mass ratio of the black hole. Extremizing this
potential gives the location of the circular null orbit outside
the horizon

rCNO2
¼ 3MADM

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3MADM

2

�
2 � 2q2M2

ADM

s
; (32)

whereas the second null orbit, with constant radial coor-
dinate, relevant for our analysis is located at the horizon

rCNO1
¼ MADM þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

ADM � q2M2
ADM

q
: (33)

Thus, the forbidden band for circular timelike orbits exists
for all black holes in the Reissner-Nordström family. In the
extremal case, this band acquires the special property of

FIG. 3. Radial coordinate � of the circular timelike orbit as a
function of the angular momentum per unit mass J, for various
values of L and fixing MK ¼ 1. One observes that there is a
forbidden region � 2 ½�CNO1

; �CNO2
�, for L � Lmax, where

�CNOi
are the radii of the two circular null orbits. The timelike

orbits approach the photon orbits for J ! 1, from either side.

FIG. 4 (color online). Illustration of the behavior of circular
photon orbits (dotted lines) in the double-Schwarzschild solu-
tion. For L ¼ 0, the two circular photon orbits sit at r ¼ 3MADM

(in Schwarzschild coordinates) and at the horizon (top diagram).
As L increases these two photon orbits approach one another
(middle diagram) and merge as L ¼ �MK is approached (bot-
tom diagram). The two photon orbits delimit the forbidden
annular region for circular timelike orbits (colored region).
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having infinite area, since the horizon, at r ¼ MADM ¼
rCNO1

, is at an infinite proper radial distance from any point

with radial coordinate r >MADM, which is the case for r ¼
2MADM ¼ rCNO2

.

In order to consider two charged Reissner-Nordström
black holes, we shall now discuss charged Weyl solutions.
The background fields are

ds2 ¼ �e2
�Uð�;zÞdt2 þ e�2 �Uð�;zÞ

� ½e2kð�;zÞðd�2 þ dz2Þ þ �2d�2�;
A ¼ �
ð�; zÞdt: (34)

The electrovacuum Einstein-Maxwell equations

R�� ¼ 2ðF��F�
� � 1

4g��F�	F
�	Þ; D�F

�� ¼ 0

(35)

give rise to the set of equations

�E3
�U ¼ e�2 �U½ð@�
Þ2 þ ð@z
Þ2�;

�E3
 ¼ 2½@�
@� �Uþ @z
@z �U�;
(36)

and

@zk ¼ 2�@� �U@z �U� 2�e�2 �U@�
@z
;

@�k ¼ �½ð@� �UÞ2 � ð@z �UÞ2� � �e�2 �U½ð@�
Þ2 � ð@z
Þ2�:
(37)

This set of equations is more involved than Eqs. (4) and (5),
in particular because there is no longer a linear equation to
be solved. However, if one takes

e2
�Uð�;zÞ ¼ 1� 2

q

ð�; zÞ þ 
ð�; zÞ2; (38)

where q is a constant, and


ð�; zÞ ¼ qð1� e2Uð�;zÞÞ
1� e2Uð�;zÞ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ð1þ e2Uð�;zÞÞ

; (39)

the Einstein-Maxwell equations for (34) reduce to exactly
Eqs. (4) and (5) [7]. Thus we take Uð�; zÞ and kð�; zÞ to be
the same as in the uncharged case, (6) and (9). The back-
ground (34) will then describe a double Reissner-
Nordström solution, wherein both black holes have the
same charge to mass ratio q.

The study of circular null geodesics will follow that of
the uncharged case,mutatis mutandis; they will be given by
the extrema of the potential

Vð�Þ ¼ e4
�Uð�;0Þ

�2

¼ e4Uð�;0Þ

�2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
1� e2Uð�;0Þ þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p ð1þ e2Uð�;0ÞÞ

�
4
;

(40)

where eUð�;0Þ may be read off from (17). Such extrema
obey

fð�;MADM; LÞ ¼ 1

2
� Q

Qþ e�2Uð�;0Þ ; (41)

where

Q � 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2
p : (42)

The result for the radii of the photon circular orbits in
terms of the distance L for various values of the charge is
shown in Fig. 5, where we used the coordinate R �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
. The first feature we wish to emphasize is that,

as L is increased for fixed charge, the two photon orbits
approach one another, just as for the uncharged case, and
coalesce for a maximum value of L. Thus, the forbidden
band for timelike circular orbits exists for all possible
values of the charge, for sufficiently small L. The second
feature we want to mention is that, fixing L, MK and
increasing the charge, the forbidden band has a larger
area. For L ¼ 0 this area diverges as extremality is ap-
proached, as mentioned above. In Fig. 6 we exhibit an
example with L � 0.
In the extremal case, for which the solution is com-

pletely regular on and outside the event horizon, the analy-
sis may also be done using the Majumdar-Papapetrou
[11,12] form of the solution:

FIG. 5. Radial coordinates of the photon circular orbits, R ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
, in terms of the distance L for various values of the

charge Q defined by (42).
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ds2 ¼ � dt2

Hð�; zÞ2 þHð�; zÞ2ðd�2 þ �2d�2 þ dz2Þ;

A ¼ � dt

Hð�; zÞ ; (43)

where

Hð�; zÞ ¼ 1þ MKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ðz� LÞ2p þ MKffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ ðzþ LÞ2p : (44)

In this extremal case, circular null orbits exist in the z ¼ 0
submanifold as long as the equation

ð�2 þ L2Þ3=2 ¼ 2MKð�2 � L2Þ (45)

has solutions for real and positive �, which for fixedMK is
possible when L obeys

L � Lmax �
�
2

3

�
3=2

MK: (46)

IV. INTERPRETATION: OPTICAL GEOMETRY

A D dimensional static geometry with an SOðD� 1Þ
isometry group may always be expressed by the line ele-
ment

ds2 ¼ gttðRÞdt2 þ gRRðRÞdR2 þ g��ðRÞd�D�2; (47)

where d�D�2 is the line element on the ðD� 2Þ-sphere.
The optical geometry is the effective spatial geometry seen
by light rays:

ds2optical ¼
gRRðRÞ
jgttðRÞjdR

2 þ g��ðRÞ
jgttðRÞj d�D�2; (48)

defined where gttðRÞ< 0.
For the spacetime (47), the radial equation of motion of a

particle with mass, energy, and angular momentum (m, E,
J, respectively) is

jgttðRÞjgRRðRÞ _R2 ¼ E2 � jgttðRÞj
�
m2 þ J2

g��ðRÞ
�
: (49)

Circular null orbits are therefore determined by the ex-
trema of the potential

VðRÞ ¼ jgttðRÞj
g��ðRÞ ; (50)

which is both the coefficient of the angular momentum
term in (49) and the inverse of the proper radius squared of
the sphere line element in the optical geometry. This
potential pushes the test particle in the direction of increas-
ing proper size of the spheres in the optical geometry. We
dub this direction as outwards. If it coincides with our
naı̈ve notion of outwards, the angular momentum term
may still be interpreted as a centrifugal term, as in flat
space. Timelike circular orbits are only possible in a region
where this term and the mass term in (49) originate forces
in opposite directions.
For a single Schwarzschild black hole of mass M, cir-

cular timelike orbits are possible for r > 3M in
Schwarzschild coordinates. Thus they are forbidden, out-
side the horizon, for 2M � r � 3M. In this case, the
optical geometry is

ds2optical ¼
dr2

ð1� 2M=rÞ2 þ
r2

1� 2M=r
d�2: (51)

The proper size (area) of the two-sphere is therefore A ¼
4�=VðrÞ, where the potential VðrÞ is given by (19). The
area increases with r for r > 3M, but decreases for
2M � r � 3M—Fig. 7 (left panel). Thus the ‘‘centrifugal
force’’ points towards the black hole, for 2M � r � 3M.
Since the mass term is always attractive towards the black
hole, there can be no circular timelike orbits in the region
2M � r � 3M.
For the double-Schwarzschild solution the optical ge-

ometry in the symmetry plane is

ds2optical ¼ e�4Uð�;0Þ½e2kð�;0Þd�2 þ �2d�2�: (52)

The proper size (perimeter) of the � circle is therefore

given by L ¼ 2�=
ffiffiffiffiffiffiffiffiffiffiffi
Vð�Þp

, where the potential Vð�Þ is
given by (17). The forbidden band for circular timelike
orbits is the region wherein the radial coordinate decreases
outwards, and therefore, the centrifugal force becomes

FIG. 6.
ffiffiffiffiffiffiffiffi
g��

p
as a function of �, for fixed MK ¼ 1, L ¼ 0:5,

and two values of the charge. The vertical lines correspond to the
radii of the null circular orbits, and the shaded region corre-
sponds to the area of the forbidden band for timelike circular
orbits divided by 2�. In the Q ¼ 0:99 case the exterior circular
photon orbit is outside the � range. Observe that the area
increases with the charge.
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directed towards the symmetry axis—Fig. 7 (right panel)—
preventing again the existence of timelike circular orbits.

V. MULTIPLE BLACK HOLES

We shall now consider a Weyl solution with N un-
charged black holes. Then (6) is replaced by

e2Uð�;zÞ ¼ ðR1 � �1ÞðR3 � �3Þ
ðR2 � �2ÞðR4 � �4Þ . . .

ðR2N�1 � �2N�1Þ
ðR2N � �2NÞ : (53)

This function Uð�; zÞ describes the Newtonian potential of
N rods of infinitesimal width and mass density % ¼ 1=2,

located at � ¼ 0 and with a z coordinate in the intervals,
respectively,

½a1; a2�; ½a3; a4�; . . . ; ½a2N�1; a2N�: (54)

Imposing

an ¼ �a2Nþ1�n; n ¼ 1; . . . ; 2N; (55)

the geometry still admits a discrete Z2 symmetry, of which
z ¼ 0 is a fixed point set. Then, the circular null orbits in
this totally geodesic submanifold are obtained by extrem-
izing the potential

Vð�Þ ¼ e4Uð�;0Þ

�2
¼ 1

�2

�ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a21

q
þ a1Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a23

q
þ a3Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a22

q
þ a2Þð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a24

q
þ a4Þ

. . .
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a22N�1

q
þ a2N�1Þ

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a22N

q
þ a2NÞ

�
2
; (56)

which yields the condition

X2N
n¼1

ð�1Þnanffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ a2n

p ¼ 1: (57)

We set

a2n � a2n�1 ¼ 2MK; a2nþ1 � a2n ¼ 2L;

n ¼ 1; . . . ; N;
(58)

such that the coordinate distance between any two con-
secutive black holes is 2L and their Komar mass is MK. In
Fig. 8 we have plotted the radial coordinate of circular null
orbits versus L, for various numbers of black holes. For N
even, the behavior is quite similar to that discussed forN ¼
2. Moreover,

lim
N!þ1Lmax ¼ MK: (59)

For N odd, the behavior is quite similar to that of a single

FIG. 7. Left (right) panel: Proper size of the two-sphere (circle) in the optical geometry of the single (double) Schwarzschild
solution. Defining outwards as the direction in which this size increases, then outwards corresponds to decreasing the radial coordinate
for r < 3MADM (an annulus-like region, when 0< L<�). In the single Schwarzschild case, the optical metric is singular at r ¼ 2M;
for r < 2M, the proper size is negative since VðrÞ< 0. In the double-Schwarzschild case, the annulus-like region lies in between the
two extrema of the curves. We have set the individual black hole masses to unity.
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Schwarzschild black hole, due to the existence of a black
hole in the symmetry plane.

VI. FINAL REMARKS

In this paper we have studied a special case of a relativ-
istic version of Euler’s three-body problem: the circular
orbits of test particles in the symmetry plane of a Z2

invariant Weyl solution describing two (or more) black
holes. We have considered both uncharged and charged
black holes, within Einstein-Maxwell theory. Generically,
these solutions have conical singularities on the symmetry
axis. In the extremal case, however, they become a special
case of the Majumdar-Papapetrou spacetimes, and are
completely regular on and outside the event horizon
[13,14].

For a sufficiently small distance between the two black
holes, there are two circular null geodesics in the symmetry
plane corresponding to the set of fixed points of the Z2

symmetry. The interior one is stable (against perturbations
in the symmetry plane), while the exterior one is unstable.
These orbits delimit a forbidden region for circular time-
like geodesics. In the optical geometry, the proper size of
the SOð2Þ isometry group orbits grows towards the sym-
metry axis, rather than away from it, in this region. This
unusual property is correlated with a physical effect that
may be, heuristically, described as follows: the centrifugal
force becomes directed towards the symmetry axis. Thus, it
cannot balance the gravitational attraction, preventing the
existence of timelike circular orbits.

The existence of a stable circular null geodesic is asso-
ciated with a behavior which may be described as an

‘‘optical-fibre-like’’ or ‘‘waveguide-like’’ geometry.
Photons with sufficiently low energy will be caught in a
potential well in the radial direction, as may be observed in
Fig. 2. Thus, as they move in the � direction, photons will
oscillate between a maximum and a minimum radius. The
waveguide-like geometry may allow light waves to travel
around the � direction without decreasing their amplitude
significantly.2

As the distance between the two black holes is in-
creased, the two null circular orbits approach one another,
eventually coalescing. For the uncharged case this happens
when the ratio between the Komar mass of each black hole
and the semidistance between the black holes is the golden
ratio.
One may ask whether the geodesic equations in the full

spacetime, rather than just the symmetry plane, are
Liouville integrable. That being the case, a follow-up
question would be, for which mass ratios does the integra-
bility property hold? In [17] a similar question was studied
for extremal black holes in Einstein-Maxwell-dilaton the-
ory, for arbitrary dilaton coupling. These authors showed
that the geodesic motion is generically chaotic. There is
only a very special case of integrable motion: when the
dilaton coupling is that of Kaluza-Klein theory. For the
generic case studied herein, of charged Weyl solutions that
may be continuously connected to the extremal black holes
of Einstein-Maxwell theory (therefore with zero dilaton

FIG. 8. Radial coordinates of circular null geodesics for an array of N black holes as a function of L. Left (right) panel: N odd (even).

2In a very different context, this resembles the SOFAR (Sound
Fixing and Ranging) channel [15], in the ocean, which occurs at
the depth where the sound velocity is minimal, and allows the
singing of whales to travel very long distances [16].
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coupling), it seems quite unlikely that the motion may be
integrable. Observe, however, that the uncharged double-
Schwarzschild solution may also be continuously con-
nected to the extremal black holes of Kaluza-Klein theory.
Thus, it would be interesting to understand where, along
this trajectory in the space of solutions, integrability
appears.
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