
Black hole solutions in string theory with Gauss-Bonnet curvature correction

Kei-ichi Maeda,1,2,* Nobuyoshi Ohta,3,† and Yukinori Sasagawa1,‡

1Department of Physics, Waseda University, Shinjuku, Tokyo 169-8555, Japan
2Advanced Research Institute for Science and Engineering, Waseda University, Shinjuku, Tokyo 169-8555, Japan

3Department of Physics, Kinki University, Higashi-Osaka, Osaka 577-8502, Japan
(Received 2 September 2009; published 23 November 2009)

We present the black hole solutions and analyze their properties in the superstring effective field theory

with the Gauss-Bonnet curvature correction terms. We find qualitative differences in our results from

those obtained in the truncated model in the Einstein frame. The main difference in our model from the

truncated one is that the existence of a turning point in the mass-area curve, the mass-entropy curve, and

the mass-temperature curve in five and higher dimensions, where we expect a change of stability. We also

find a mass gap in our model, where there is no black hole solution. In five dimensions, there exists a

maximum black hole temperature and the temperature vanishes at the minimum mass, which is not found

in the truncated model.

DOI: 10.1103/PhysRevD.80.104032 PACS numbers: 04.20.Cv, 04.50.�h, 04.60.Cf, 04.70.Dy

I. INTRODUCTION

A black hole always absorbs the ambient matter, and the
mass increases in time classically. However, if we take into
account the quantum effect, a black hole will emit the
Hawking radiation and evaporate away. It behaves as a
thermal object. Of course, such a quantum effect can be
ignored for astrophysical black holes. On the other hand,
for microscopic black holes, the situation drastically
changes. The black hole loses its mass by the radiation
and may vanish. When the mass approaches the Planck
mass, however, the semiclassical approach is no longer
valid. To know what happens at the end of evaporation,
i.e., to answer the questions such as ‘‘What is the final state
of black hole?’’ or ‘‘Does a naked singularity appear?’’, we
may need to study it by quantum gravity.

One of the most promising candidates for the quantum
theory of gravity is the string theory, which may also
provide us a unified theory of fundamental interactions
(the so-called ‘‘theory of everything’’) [1]. String theory
is, however, still in a developing stage and may not yet be
able to treat strong gravitational phenomena such as a
black hole directly. Hence, we shall study black holes in
the effective field theory including string quantum correc-
tion terms. The field theory limit of the string theories leads
to a ten-dimensional supergravity theory at the lowest
derivative level. In addition, it is known that quantum
effect gives higher curvature correction terms. There are
five string theories in ten dimensions, which are related
with each other via dualities. The curvature correction
terms depend on the type of string theory. In the heterotic
string theory, the lowest corrections are described by the
second-order curvature term, i.e., the so-called Gauss-

Bonnet term [2]. On the other hand, in type II string theory,
the fourth-order curvature terms appear as the lowest [3].
The Gauss-Bonnet term is known as the second-order

Lovelock gravity. The Lovelock theory is a higher curva-
ture generalization of Einstein gravity. Its field equations
contain terms up to the second-order derivatives of the
metric functions, and the second-order derivative terms
are linear [4,5]. The n-th order of Lovelock gravity is
constructed by the Euler density in the 2n dimensional
spacetime. Hence, n-th terms with n � ½ðD� 1Þ=2� con-
tribute to the field equations. The black hole solution in the
theory with the Gauss-Bonnet term or with the Lovelock
action has been analyzed in the models in many works
[6,7].
A dilaton field also plays an important role in the string

theory as a dynamical field. Hence, dilatonic models have
been studied intensively in the context of string theory. The
black hole solution in such a dilatonic theory was studied
in [8,9]. The black hole solution with the Riemann curva-
ture squared correction term coupled to dilaton was first
studied by the linear perturbation approach [10]. When the
Gauss-Bonnet term couples to a dilaton, it contributes to
the dynamical equations even in four dimensions. Full
study of this case requires numerical evaluation, and has
been made in [11–16].
In the string frame, the Einstein-Hilbert curvature term

is also coupled to the dilaton field. So usually we perform a
conformal transformation to find the Einstein frame, in
which the Einstein-Hilbert curvature term does not couple
to the dilaton field. When we study a black hole in the
Einstein frame, only the Gauss-Bonnet term is taken into
account as the quantum correction, but some additional
terms appear through a conformal transformation com-
pared with the string frame. It is not so obvious which
frame is to be used in investigating solutions where strong
gravitational effects become strong such as black holes. It
is certainly natural to take the action in the string frame in
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string theory, and then it is important to check if the above
additional terms make any difference in the results. In this
paper, we analyze black hole solutions in the effective
action in the Einstein frame equivalent to that in the string
frame, and compare the results with those in the truncated
effective action, i.e., the model only with the Gauss-Bonnet
term as the correction. Black hole solutions in the four-
dimensional string frame are examined in the context of
black hole—string transition in [17].

This paper is organized as follows: In Sec. II, we present
the effective action which we discuss in this paper, and
perform a conformal transformation to obtain the descrip-
tion in the Einstein frame. We also define our truncated
model. In Sec. III, we write down the basic equations for a
spherically symmetric and static spacetime in the dilatonic
Einstein-Gauss-Bonnet theory, and give the boundary con-
dition for the regular black hole horizon. We transform the
variables in the string frame to those in the Einstein frame
in Sec. IV. In Sec. V, we introduce the thermodynamical
variables. We then show our numerical results in Sec. VI.
In Sec. VII, we briefly summarize the truncated dilatonic
Einstein-Gauss-Bonnet model. We present the basic equa-
tions and the boundary conditions on the black hole hori-
zon. We compare our results in the dilatonic Einstein-
Gauss-Bonnet theory with those in the truncated one in
Sec. VIII. The concluding remarks are made in Sec. IX.

II. EFFECTIVE ACTIONAND ITS TRUNCATION IN
THE EINSTEIN FRAME

In this paper, we focus on the Einstein-Gauss-Bonnet
gravity coupled to a dilaton field. The effective action of
the heterotic string theory in the string frame is given by

S S ¼ 1

2�2
D

Z
dDx̂

ffiffiffiffiffiffiffi�ĝ
p

e�2�̂ðR̂þ 4ðr̂ �̂Þ2 þ �2R̂
2
GBÞ;
(2.1)

where �2
D is theD-dimensional gravitational constant, �̂ is

a dilaton field,

R̂ 2
GB ¼ R̂2 � 4R̂��R̂

�� þ R̂����R̂
����; (2.2)

is the Gauss-Bonnet curvature term, and �2 ¼ �0=8 is its
coupling constant.
In the string frame, the dilaton field couples to the Ricci

scalar curvature nonminimally. Hence, we perform a con-
formal transformation

g�� ¼ exp½�2�2�̂�ĝ��; (2.3)

where �2 ¼ 2
D�2 , in order to find the Einstein-Hilbert

action. The action in the Einstein frame is given by

SE ¼ 1

2�2
D

Z
dDx

ffiffiffiffiffiffiffi�g
p �

R� 1

2
ðr�Þ2

þ �2e
���ðR2

GB þF ½r�;R�Þ
�
; (2.4)

where we have introduced � ¼ 2��̂ [18]. R and R2
GB are

the Ricci scalar curvature and the Gauss-Bonnet curvature
term with respect to the Einstein-frame metric g��, respec-

tively. Because we have the Gauss-Bonnet term, if we start
from the effective action in the string frame, there appears
the additional complicated term F in the Einstein frame,
which is given by

F ½r�;R� ¼ 4ðD� 3Þ�R��r�r��� 2ðD� 3Þ�2R��ðr��Þðr��Þ � 2ðD� 3Þ�Rr2�� 1

2
ðD� 3Þ4�2Rðr�Þ2

� ðD� 2Þ3�2ðr�r��Þ2 þ ðD� 2Þ3�2ðr2�Þ2 þ ðD� 2Þ3�3ðr��Þðr��Þðr�r��Þ
þ 1

2
ðD� 2ÞðD� 3Þ2�3ðr2�Þðr�Þ2 þ 1

16
ðD� 1Þ4�4½ðr�Þ2�2

¼ DðD� 3Þ�2G��r�r��þ 1

2
ðD� 1Þ3�3ðr2�Þðr�Þ2 þ 1

16
ðD� 1Þ4�4½ðr�Þ2�2 þ ðsurface termÞ; (2.5)

where G�� is the Einstein tensor. Here, we have used a
concise notation

ðD�mÞn :¼ ðD�mÞðD�m� 1Þ � � � ðD� nÞ; (2.6)

with m and n being some integers (n > m).
This term F has not been sometimes considered in

many literatures when cosmology or black hole solutions
are studied in the Einstein frame [11–16]. However, if we
start with the effective action in the string frame (2.1), there
exists the complicated term (2.5) because the action with
F in the Einstein frame (2.4) is classically equivalent to the
original one. We note that this does not mean that the

theory in the Einstein frame without F is not correct, but
there is an intrinsic ambiguity in the theory. So it is
interesting and important to study if this makes any differ-
ence in the obtained results.
In order to see the effects of this extra term F , we study

a black hole solution in this paper. For this purpose, we
solve two sets of equations; one is a set of equations
including the F term, and the other is that without the F
term. We shall call the former and the latter the dilatonic
Einstein-Gauss-Bonnet (DEGB) theory and the truncated
one (TDEGB), respectively. The action for TDEGB theory
is given by
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S T ¼ 1

2�2
D

Z
dDx

ffiffiffiffiffiffiffi�g
p �

R� 1

2
ðr�Þ2 þ �2e

���R2
GB

�
:

(2.7)

Although one can solve the basic equations of the DEGB
theory in the Einstein frame (2.4), it is easier to solve them
in the string frame (2.1) and to transform the solutions in
the string frame into those in the Einstein frame by the
conformal transformation (2.3). This is the strategy we take
here.

III. DILATONIC EINSTEIN-GAUSS-BONNET
MODEL IN THE STRING FRAME

A. Basic equations in the string frame

First we present the basic equations in the string frame.
To find a black hole solution, we assume a spherically
symmetric and static spacetime, whose metric form is
given by

dŝ2D ¼ �e2�̂dt2 þ e2	̂dr̂2 þ e2�̂d�2
D�2; (3.1)

where �̂, 	̂, and �̂ are functions of the radial coordinate r̂.
d�2

D�2 is the metric of (D� 2)-dimensional unit sphere.
We derive the explicit form of the action with this ansatz as

SS ¼ 1

2�2
D

Z
dDxeŴ�2�̂fe�2	̂½2ðD� 2ÞŶ þ ðD� 2Þ3Â

� 4�̂0�̂0� þ 4e�2	̂�̂02 þ ~�2e
�4	̂½ðD� 4Þ5Â2

þ 4ðD� 4ÞŶ Â�8�̂0�̂0Â�g; (3.2)

where we have introduced three variables Ŷ, Â, and Ŵ by

Ŷ ¼ �ð�̂00 þ �̂02 � �̂0	̂0Þ; Â ¼ e2ð	̂��̂Þ � �̂02;

Ŵ ¼ �̂þ 	̂þ ðD� 2Þ�̂; (3.3)

and dropped the surface term. A prime denotes a derivative
with respect to r̂. For brevity, we have introduced the
rescaled coupling constant as ~�2 :¼ ðD� 2Þ3�2, and in
what follows, we will normalize the variables by it. Taking

variations of the action with respect to �̂, �̂, 	̂, and �̂, we
find the basic equations. Since we are interested in a black
hole solution, it may be convenient to introduce newmetric
functions f and 
 as

ds2 ¼ �f̂ðr̂Þe�2
̂ðr̂Þdt2 þ 1

f̂ðr̂Þdr̂
2 þ r̂2d�2

D�2: (3.4)

Here, we have fixed one metric component as e2�̂ ¼ r̂2 by
using the gauge freedom. Using the new variables and
defining the following variables by

ĥ :¼ r̂ðf̂0 � 2f̂
̂0Þ; (3.5)

X̂ :¼ 1

4f̂2r̂2
½ĥðf̂0r̂� ĥÞ � 2f̂ðĥ0r̂� ĥÞ�; (3.6)

the basic equations are written as

f̂r̂4FSð�̂Þ :¼�2fr̂2½ðD� 2Þ3ð1� f̂Þ � ðD� 2Þðf̂0r̂þ ĥÞ þ 2X̂ f̂ r̂2 þ 2ðf̂0r̂þ ĥÞ�̂0r̂þ 4ðD� 2Þf̂�̂0r̂þ 4f̂ð�̂00 � �̂02Þr̂2�
þ ~�2½ðD� 4Þ5ð1� f̂Þ2 � 2ðD� 4Þð1� f̂Þðf̂0r̂þ ĥÞ þ 4X̂ð1� f̂Þf̂r̂2 þ 2ĥf̂0r̂�g ¼ 0; (3.7)

f̂r̂4FSð�̂Þ :¼ r̂2½ðD� 2Þ3ð1� f̂Þ � ðD� 2Þðf̂0 � 4f̂�̂0Þr̂þ 4f̂ð�̂00 � �̂02Þr̂2 þ 2�̂0f̂0r̂2� þ ~�2½ðD� 4Þ5ð1� f̂Þ2
� 2ðD� 4Þð1� f̂Þðf̂0 � 4f̂�̂0Þr̂þ 8f̂ð1� f̂Þð�̂00 � 2�̂02Þr̂2 þ 4ð1� 3f̂Þ�̂0f̂0r̂2� ¼ 0; (3.8)

f̂r̂4FSð	̂Þ :¼ r̂2½ðD� 2Þ3ð1� f̂Þ � ðD� 2Þðĥ� 4f̂�̂0r̂Þ þ 2ðĥ� 2f̂�̂0r̂Þ�̂0r̂� þ ~�2½ðD� 4Þ5ð1� f̂Þ2
� 2ðD� 4Þð1� f̂Þðĥ� 4f̂�̂0r̂Þ þ 4ð1� 3f̂Þĥ�̂0r̂� ¼ 0; (3.9)

f̂r̂4FSð�̂Þ :¼ r̂2½ðD�2Þ4ð1� f̂Þ�ðD�2Þ3ðf̂0r̂þ ĥÞþ4ðD�2Þ3f̂�̂0r̂þ2ðD�2ÞX̂ f̂ r̂2þ4ðD�2Þf̂ð�̂00 ��̂02Þr̂2
þ2ðD�2Þðf̂0r̂þ ĥÞ�̂0r̂�þ ~�2½ðD�4Þ6ð1� f̂Þ2�2ðD�4Þ5ð1� f̂Þðf̂0r̂þ ĥÞþ8ðD�4Þ5ð1� f̂Þf̂�̂0r̂

þ4ðD�4ÞX̂ð1� f̂Þf̂r̂2þ8ðD�4Þf̂ð1� f̂Þð�̂00 �2�̂02Þr̂2þ4ðD�4Þð1�3f̂Þðf̂0r̂þ ĥÞ�̂0r̂þ2ðD�4Þĥf̂0r̂
�8f̂ ĥð�̂00 �2�̂02Þr̂2�8ĥf̂0�̂0r̂2þ16X̂�̂0f̂2r̂3�¼0: (3.10)

Because of the Bianchi identity, there is one relation between the above four functionals; FSð�̂Þ, FSð�̂Þ, FSð	̂Þ, and FSð�̂Þ, i.e.,

f̂ �1=2ðf̂1=2FSð	̂ÞÞ0 ¼
1

r̂
FSð�̂Þ þ

�
f̂0

2f̂
� 
̂0

�
FSð�̂Þ þ �̂0FSð�̂Þ: (3.11)

That is, the above four Eqs. (3.7), (3.8), (3.9), and (3.10) are not independent. Hence, if we solve three of them, the
remaining one equation is automatically satisfied.
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B. Boundary conditions

In order to find a black hole solution, we need the
boundary conditions both at the event horizon and at the
infinity. Since we are interested in an asymptotically ‘‘flat’’
spacetime, we assume

f̂ ! 1�
�

2�2
D

ðD� 2ÞAD�2

�
M̂

r̂D�3
; 
̂ ! O

�
1

r̂D�3

�
;

�̂ ! O
�

1

r̂D�3

�
; (3.12)

as r̂ ! 1, where

AN ¼ 2�ðNþ1Þ=2=�½ðN þ 1Þ=2�; (3.13)

is the area of N-dimensional unit sphere, and M̂ is a
gravitational mass in the string frame.

At the event horizon (r̂H), the metric function f̂ van-

ishes, i.e., f̂ðr̂HÞ ¼ 0. The variables and their derivatives
must be finite at r̂H. Taking the limit of r̂ ! r̂H, we have
three independent constraints from the basic equations:

�̂2
H½ðD� 2Þ3 � 2ðD� 2Þ�̂H þ 2̂H þ 4�̂H�̂H�

þ ½ðD� 4Þ5 � 4ðD� 4Þ�̂H þ 4̂H þ 2�̂2
H� ¼ 0;

(3.14)

�̂2
H½ðD� 2Þ3 � ðD� 2Þ�̂H þ 2�̂H�̂H�

þ ½ðD� 4Þ5 � 2ðD� 4Þ�̂H þ 4�̂H�̂H� ¼ 0; (3.15)

�̂2
H½ðD� 2Þ4 � 2ðD� 2Þ3�̂H þ 2ðD� 2Þ̂H

þ 4ðD� 2Þ�̂H�̂H� þ ½ðD� 4Þ6 � 4ðD� 4Þ5�̂H

þ 4ðD� 4Þ̂H þ 8ðD� 4Þ�̂H�̂H þ 2ðD� 4Þ�̂2
H

� 8�̂2�̂H� ¼ 0; (3.16)

where we have denoted the variables at the horizon with the

subscript H, i.e., �̂H, �̂
0
H, f̂

0
H, 
̂H, 
̂

0
H, ðX̂ f̂ÞH and so on,

and introduced the dimensionless variables as

�̂ H :¼ r̂H=~�
1=2
2 ; �̂H :¼ r̂Hf̂

0
H;

�̂H :¼ r̂H�̂
0
H; ̂H :¼ r̂2HðX̂ f̂ÞH:

(3.17)

Eliminating �̂H and ̂H in Eqs. (3.14), (3.15), and (3.16)

[we assume that �̂H � 0 and ̂H � 0], we find the qua-
dratic equation for �̂H:

â�̂2
H þ b̂�̂H þ ĉ ¼ 0; (3.18)

where

â ¼ 4ð�̂2
H þ 2Þ½ðD� 2Þ3�̂6

H þ 2ðD3 � 5D2 þ 2Dþ 14Þ�̂4
H þ 2ðD� 4Þð3D2 � 14Dþ 7Þ�̂2

H þ 4ðD� 3Þ5�;
b̂ ¼ �2½ðD� 3ÞðD� 2Þ2�̂8

H þ ðD� 2Þð7D2 � 43Dþ 72Þ�̂6
H þ 2ðD� 4ÞðD3 � 37Dþ 72Þ�̂4

H

þ 2ðD� 4ÞðD� 5Þð3D2 � 5D� 16Þ�̂2
H þ 4ðD� 1ÞðD� 5ÞðD� 4Þ2�;

ĉ ¼ �ðD� 1Þ�̂2
H½�ðD� 2Þ3�̂4

H þ 4ðD� 4ÞðD� 2Þ�̂2
H þ 2ðD� 4Þ2ðDþ 1Þ�: (3.19)

The discriminant of the quadratic Eq. (3.18) depends on

D and �̂H. If the discriminant is negative (D̂D :¼ b̂2 �
4â ĉ <0), there is no real value of�0

H, which means that no
regular horizon exists. The condition for the discriminant
to be non-negative gives some constraint on �̂2

H for given
D. Since ~�2 is a fundamental coupling constant, it gives
some condition on the horizon radius r̂H.

For D ¼ 4� 10, assuming ~�2 > 0, we find allowed
values for the regular event horizon, which are summarized

in Table I. There is a minimum horizon radius r̂H ¼
2:95712~�1=2

2 in four-dimensional spacetime, while in

five-dimensional and six-dimensional spacetimes, there is
a small gap in the parameter space of horizon radius

(1:035 72~�1=2
2 < r̂H < 2:557 57~�1=2

2 for five dimensions

and 1:467 81~�1=2
2 < r̂H < 2:257 72~�1=2

2 for six dimen-

sions) where there is no regular horizon. For spacetime
of dimensions higher than six, there is a regular horizon for
any horizon radius.

IV. TRANSFORMATION TO THE EINSTEIN
FRAME

Here, we give the relation between the variables in the
string frame and those in the Einstein frame. The metrics in
both frames are given by Eq. (3.4) and

ds2D ¼ �fe�2
dt2 þ 1

f
dr2 þ r2d�2

D�2; (4.1)

respectively. The conformal transformation (2.3) or

ĝ �� ¼ exp½���g��; (4.2)

TABLE I. The allowed values for a regular horizon radius are

shown (�̂H :¼ r̂H=~�
1=2
2 ). The equality gives a double root of�0

H .

There is a minimum radius in four dimensions. In five dimen-
sions and six dimensions, there are gaps in which there is no
regular horizon. For dimensions higher than six, a regular
horizon always exists for any horizon radius.

D Condition for regular horizon

4 �̂H � 2:957 12
5 �̂H � 2:557 57 or �̂H � 1:03572
6 �̂H � 2:257 72 or �̂H � 1:467 81
7 � D � 10 any values

KEI-ICHI MAEDA, NOBUYOSHI OHTA, AND YUKINORI SASAGAWA PHYSICAL REVIEW D 80, 104032 (2009)

104032-4



gives the relation between the metric components as fol-
lows:

r̂ ¼ exp

�
��

2

�
r; (4.3)

f̂ ¼
�
1þ �r

2

d�

dr

�
2
f; (4.4)


̂ ¼ 
� ��

2
þ ln

�
1þ �r

2

d�

dr

�
; (4.5)

or inversely,

r ¼ exp½��2�̂�r̂; (4.6)

f ¼
�
1� �2r̂

d�̂

dr̂

�
2
f̂; (4.7)


 ¼ 
̂þ �2�̂þ ln

�
1� �2r̂

d�̂

dr̂

�
: (4.8)

Since the radial coordinates r and r̂ are related by Eq. (4.3)
or Eq. (4.6), the horizon radii must be rescaled:

rH ¼ exp½��2�̂H�r̂H; r̂H ¼ exp

�
��H

2

�
rH: (4.9)

The gravitational masses and the scalar charges are also
rescaled as

GM ¼ GM̂� ðD� 3Þ�2Q̂�;

GM̂ ¼ GMþ ðD� 3Þ�
2

Q�;
(4.10)

Q� ¼ 2�Q̂�; (4.11)

where the scalar charges Q̂� in the string frame and Q� in

the Einstein frame are defined by the asymptotic behaviors

�̂ !
�

8�

ðD� 2ÞAD�2

�
Q̂�

r̂D�3
;

� !
�

8�

ðD� 2ÞAD�2

�
Q�

rD�3
;

(4.12)

as r̂ ! 1ðr ! 1Þ, respectively.
The lapse function 
 in the Einstein frame must drop as

1=r2ðD�3Þ. As a result, we find


̂ ! �
�
8��

AD�2

�
Q̂�

r̂D�3
; 
 ! O

�
1

r2ðD�3Þ

�
; (4.13)

near infinity.

V. THERMODYNAMIC VARIABLES

Before showing our numerical result, let us introduce
thermodynamical variables of a black hole.

The Hawking temperature is given from the periodicity
of the Euclidean time on the horizon as

T̂ H ¼ 1

4�
f̂0He�
̂H ; TH ¼ 1

4�
f0He�
H : (5.1)

Although we can define the Hawking temperature both in
the string frame and in the Einstein frame, we find that both
temperatures are the same by using the relation

f̂ 0
H ¼

�
1þ �rH

2
�0

H

�
e�ð��H=2Þf0H: (5.2)

As for a black hole entropy, it does not obey the
Bekenstein-Hawking formula, i.e., a quarter of the area
of event horizon, because we have the Gauss-Bonnet terms.
According to the Wald’s formula for a black hole entropy,
which is defined by use of the Noether charge associated
with the diffeomorphism invariance of the system [19], we
find

S ¼ �2�
Z
�

@L
@R����

������; (5.3)

where � is (D� 2)-dimensional surface of the event hori-
zon, L is the Lagrangian density, ��� denotes the volume

element binormal to �.
For the effective action in the string frame (2.1), it gives

SS ¼ e�2�̂H ÂH

4

�
1þ 2~�2

r̂2H

�
; (5.4)

where ÂH is the area of the event horizon. Using the
variables in the Einstein frame, this entropy is rewritten
as [16]

SS ¼ AH

4

�
1þ 2~�2

r2H
e���H

�
: (5.5)

We may look at the corrections to the Bekenstein-
Hawking entropy (SBH :¼ AH=4), which is

SS � SBH ¼ 2~�2

r2H
e���H � SBH > 0: (5.6)

SS is always larger than SBH.

VI. BLACK HOLES IN THE DEGB THEORY

Now we present our numerical results.
Giving a horizon radius rH, we solve the basic equations.

To solve the equations numerically, we first set 
H ¼ 0,
�H ¼ 0, and find the asymptotically flat spacetime. We
then rescale the lapse function and the dilaton field as
~
ðrÞ ¼ 
ðrÞ � 
ð1Þ and ~�ðrÞ ¼ �ðrÞ ��ð1Þ. This is al-
ways possible because 
 and� appear only in the forms of
their derivatives such as 
0 and �0. As a result, we can set
~
ðrÞ, ~�ðrÞ ! 0 for r ! 1. Then in our actual solutions,

H and �H do not vanish. In what follows, for brevity, we
omit the tilde of the variables.
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Depending on the dimension, we classify our solutions
into three types: (a) four dimensions (D ¼ 4), (b) five
dimensions (D ¼ 5), and (c) six or higher dimensions
(D ¼ 6� 10).

A. Mass-area relation

First we show the relation between the black hole mass
M and the horizon area AH in Fig. 1. When we give the
numerical result, we show �M :¼ �2

DM for the mass instead

of the gravitational massM, because its value can be scaled

as ~�ðD�3Þ=2
2 when we change the coupling constant �2. In

the unit of �D ¼ 1, both masses are equivalent. Hence, in
what follows, for simplicity, we do not distinguish two
masses and use M for both masses.

In the four-dimensional case, as shown in Fig. 1(a), there
is the minimum radius below which there is no black hole

(r̂HðminÞ ¼ 2:957 12~�1=2
2 ). The ranges of the horizon radius

where the black holes exist are shown in Table II and are
narrower than those from the regularity condition in Table I
in general, though the minimum radius in the string frame
coincides with the value in Table I for four dimensions. The
minimummass of the black hole shown in Fig. 1(a) is given

byMmin ¼ 69:3511~�1=2
2 . Near this minimummass, we find

that the M-AH curve turns around, i.e., there are two black

hole solutions for a given mass (Mmin � M<

72:3945~�1=2
2 ). We suspect that the larger black hole is

stable, while the smaller one is unstable (see the later
discussion about the entropy).
In the five-dimensional case, there appears new type of

solutions near the zero-mass region as shown in Fig. 1(b).
We find two mass ranges: one has the smaller masses (S-
branch), and the other has the larger masses (L-branch).
There is a mass gap between these two branches. It has
been expected from the results which we found from the
regularity condition for the horizon (see Table I). The L-
branch is similar to the solutions in the four-dimensional
case. There exists the lower mass bound. Near the mini-

mum mass (MðLÞ
min ¼ 395:862~�2), we find two black hole

solutions in the range of MðLÞ
min <M< 395:880~�2 (see the

enlarged figure in Fig. 1(b)). The minimum radius in this
branch is found by the existence condition of the regular

horizon, i.e., r̂HðminÞ ¼ 2:557 57~�1=2
2 (Compare Tables I

and II) just as in the four-dimensional case. In the S-

branch, we find the maximum mass (MðSÞ
max ¼

19:7733~�2). There is no turnaround behavior near the
maximum mass in the S-branch. As the horizon radius

FIG. 1 (color online). The horizon area AH in terms of the gravitational mass M. There appear mass gaps in five dimensions and ten
dimensions. In four dimensions and in the L-branches of five dimensions and ten dimensions, we find theM-AH curves turn around the
minimum masses. We have two black hole solutions near the turnaround points. There is no turnaround behavior in the S-branch.

TABLE II. The ranges of the horizon radii in which numerically solved black hole solutions

exist both in the string frame (�̂H :¼ r̂H=~�
1=2
2 ) and in the Einstein frame (�H :¼ rH=~�

1=2
2 ). They

are related by the conformal factor. There is a minimum radius in four dimensions. For
dimensions higher than four dimensions, there is a gap, in which there is no regular black
hole solution. The ranges of the horizon radius in the string frame should be compared with those
in Table I.

D String frame Einstein frame

4 �̂H � 2:957 12 �H � 3:657 26
5 �̂H � 2:557 57 or �̂H � 0:647 144 �H � 2:848 36 or �H � 0:636 670
6 �̂H � 2:261 41 or �̂H � 0:780 228 �H � 2:444 67 or �H � 0:788 059
7 �̂H � 2:134 95 or �̂H � 0:835 000 �H � 2:259 07 or �H � 0:842 271
8 �̂H � 2:123 65 or �̂H � 0:848 702 �H � 2:212 91 or �H � 0:853 517
9 �̂H � 2:154 06 or �̂H � 0:842 414 �H � 2:223 00 or �H � 0:845 275
10 �̂H � 2:202 16 or �̂H � 0:827 220 �H � 2:258 18 or �H � 0:828 790
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approaches zero, the gravitational mass vanishes. We find

M � 0:100 295~�1=2
2 rH in the zero-mass limit. (Note that

M / r2H in the case of five-dimensional Schwarzschild
black hole.)

In dimensions higher than five, we find the similar
structures; i.e., there are two branches (the S- and L-
branches). However, in the L-branch, the minimum radius
is not given by the regularity condition (see Tables I and
II). In fact, for D � 7, we find a gap in the range of black
hole radii in numerical solutions, but the regular horizon
condition is always satisfied for any horizon radii. In this
gap, we cannot find any asymptotically flat black hole
solution, although the horizon can be regular. The L-
branch shows the similar properties to those in the four-
dimensional or five-dimensional case. In the S-branch in

ten-dimensions, we find MðSÞ
max ¼ 68:6614~�7=2

2 , and M �
84:1890~�2r

5
H in the zero-mass limit. (Note that M / r7H in

the case of ten-dimensional Schwarzschild black hole.)
We cannot make definite statement about what happens

in the region of a mass gap. Since there is no static black
hole, the spacetime may be always dynamical losing the
mass energy and eventually reaching the S-branch, or it
may evolve into a naked singularity.

B. Thermodynamics

Next we present the thermodynamical variables. First
we give the entropy in terms of the gravitational massM in
Fig. 2. The entropy behaves very similarly to the area of the
horizon, although there is a correction to the Bekenstein-
Hawking entropy, which is also shown by the (blue) dotted
line as a reference in the figure. In particular, we find
turnaround behaviors near the minimum masses in four
dimensions and in the L-branches of five dimensions and
ten dimensions Near the minimum points, we have two
black holes for a given mass. The larger black hole has the
larger entropy, and then we expect that it is dynamically
stable. On the other hand, the smaller black hole has the
smaller entropy, and then we expect that it is dynamically
unstable.

We also show the temperatures of the black holes in
Fig. 3. The temperature in four dimensions is always finite
and shows the turnaround behavior near the minimum
mass. At this turning point, we expect a change of stability
(see the discussion in [20]). When the black hole evapo-
rates via the Hawking radiation, the mass decreases.
Although the temperature is finite, it does not vanish at
the minimum mass, and the evaporation never stops at the
minimum mass. We may find a naked singularity.

In five dimensions and higher dimensions, we find the
same behavior as for the L-branch. In the S-branch, how-
ever, the temperature in five dimensions is always finite
and vanishes at the zero-mass limit. Then the black hole
may disappear via the Hawking radiation.

On the other hand, the behavior is very different in
dimensions higher than five. The temperature in ten di-

mensions diverges as M ! 0. We find the same behavior
for the case of D ¼ 6� 9. The evaporation never stops
even near the zero-mass limit. Rather the black hole may
explode via the Hawking radiation.
As a result, we can classify our solutions into three

types: (a) D ¼ 4, (b) D ¼ 5, and (c) D ¼ 6� 10.
The reason why we have three types may be understood

as follows: The Gauss-Bonnet curvature in four dimen-
sions becomes a total divergence if there is no dilaton field,
and then it does not give any contribution in the basic
equations. Even if we include a dilaton field, we expect
the dynamical properties of the Gauss-Bonnet term in four
dimensions is very much different from those in the case of
D � 5, in which the Gauss-Bonnet term gives a significant
change in the basic equations without a dilaton field.
Five dimensions and six dimensions are also different

from other higher dimensions, because the Gauss-Bonnet
term is the highest Lovelock term in five dimensions and
six dimensions, while in higher dimensions (D ¼ 7� 10),
there exist higher Lovelock terms. There may also be a big
difference between odd and even dimensions. Hence, we
expect four types: four dimensions, five dimensions, six
dimensions, and higher dimensions (D ¼ 7� 10).
However, it turns out that the solutions in six dimensions
and higher dimensions look similar. As a result, we find
three types.

C. Configuration of the metric and dilaton field

Here, we show the behavior of the mass function defined
by mðrÞ ¼ rD�3ð1� fðrÞÞ=2, which approaches the
Arnowitt-Deser-Misner mass at infinity, the lapse function

ðrÞ and the dilaton field �ðrÞ, for several values of the
horizon radii in Fig. 4 in four dimensions.
In four dimensions, we find that the mass function, lapse

function and dilaton field behave monotonously smooth.
For the solution with minimum horizon radius, however,
the second derivative of the dilaton field diverges. We show
the Kretschmann curvature invariant defined by K :¼
R����R

���� for several radii in Fig. 5(a). We can see the

curvature at the horizon increases rapidly near the mini-
mum radius. We find the curvature singularity on the
horizon in the limit of M ! Mmin.
For the L-branch of the five-dimensional black holes, we

find very similar behaviors to the case of four dimensions.
For the solution with minimum horizon radius, the second
derivative of the dilaton field diverges. The Kretschmann
curvature invariant also diverges at the horizon in the limit

of M ! MðLÞ
min, as shown in Fig. 5(b).

In the S-branch, however, we find somewhat different
result. As we see in Fig. 6, we find some irregular behavior
just outside of the horizon (r� 2rH) for the black holes

with rH ¼ 0:636 670~�1=2
2 (the solid line) and

0:554 630~�1=2
2 (the dotted line), and the corresponding

masses (M ¼ 19:7733~�2 and 12:7352~�2) are close to the
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maximum valuesMðSÞ
maxð¼ 19:7733~�2Þ in the S-branch. We

show the Kretschmann curvature invariant for several radii
in Fig. 5(c). Although we find a strange behavior of the
curvature invariant around r � 2:18rH, the curvature does
not seem to diverge on the horizon. We suspect that the
point with the irregular behavior outside the horizon will

become a singularity in the limit of M ! MðSÞ
max.

Next we depict the mass function, lapse function and
dilaton field in ten dimensions in Figs. 7 and 8. We find the
very different behavior in the L-branch from the four-
dimensional case or from the L-branch in five dimensions.
In the L-branch, the lapse function and the dilaton field

does not diverge near the horizon in the limit of rH ! rðLÞmin.

We show the Kretschmann curvature invariant in Fig. 9(a).
There appears a discontinuity in the curvature invariant

around r � 1:09rH for rH ¼ 2:258 18~�1=2. This point does
not evolve into the divergence of the curvature even in the

limit of rH ! rðLÞmin. We may regard it as a ‘‘gravitational

shock wave’’, where we have a curvature discontinuity. It is
a new type of singularity. The reason why we find the
minimum radius in the L-branch is different from the
minimum radius found by the regular horizon condition
is that the ‘‘gravitational shockwave’’ appears first outside
of the horizon before the singularity appears on the horizon

when we take the limit of rH ! rðLÞmin.

FIG. 3 (color online). Temperatures of black holes in DEGB for (a) D ¼ 4, (b) D ¼ 5, and (c) D ¼ 10.

FIG. 2 (color online). The entropies SS of black holes in DEGB in terms of the mass M by the solid (red) line for (a) D ¼ 4,
(b) D ¼ 5 and (c) D ¼ 10. As a reference, we also show the Bekenstein-Hawking entropy SBH ¼ AH=4 by the (blue) dotted line.

FIG. 4 (color online). The solution of the four-dimensional black hole. We choose the following four values for the horizon radius:

rH ¼ 8:803 92~�1=2
2 (solid), 4:163 83~�1=2

2 (dotted), 3:124 16~�1=2
2 (dashed) and 2:957 12~�1=2

2 (dot-dashed).
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In the S-branch, we also find the similar behavior to the
S-branch in five dimensions. Some irregular behavior ap-
pears around r � 1:46rH outside of the horizon near the

maximum mass MðSÞ
max. It may evolve into a singularity in

the limit of M ! MðSÞ
max.

FIG. 6 (color online). The solution of the S-branch of the five-dimensional black hole. We choose the following four values for the

horizon radius: rH ¼ 0:636 670~�1=2
2 (solid), 0:554 630~�1=2

2 (dotted), 0:319 473~�1=2
2 (dashed), 0:114 232~�1=2

2 (dot-dashed). Near the

maximum mass of the S-branch, we find some irregular behavior just outside of the horizon.

FIG. 5 (color online). The Kretschmann curvature invariants for several horizon radii in four dimensions and five dimensions. We

choose four values of the horizon radius in four dimensions: rH ¼ 3:663 91~�1=2
2 (solid), 3:658 65~�1=2

2 (dotted), 3:657 51~�1=2
2 (dashed)

and 3:657 26~�1=2
2 (dot-dashed), in the L-branch of five dimensions: rH ¼ 2:849 50~�1=2

2 (solid), 2:848 61~�1=2
2 (dotted), 2:848 41~�1=2

2

(dashed) and 2:848 37~�1=2
2 (dot-dashed), and in the S-branch of five dimensions: rH ¼ 0:636 663~�1=2

2 (solid), 0:636 652~�1=2
2 (dotted),

0:636 591~�1=2
2 (dashed), 0:636 400~�1=2

2 (dot-dashed). In four dimensions and the L-branch of five dimensions, the curvature invariant

increases rapidly near the horizon, and below the minimum radius, we will find a curvature singularity. On the other hand, in the S-
branch of five dimensions, we find a strange behavior of the curvature invariant near r � 2:18rH, but it does not diverge near the
horizon.

FIG. 7 (color online). The solution of the L-branch of the ten-dimensional black hole. We choose the following four values for the

horizon radius: rH ¼ 6:683 666~�1=2
2 (solid), 3:150 271~�1=2

2 (dotted), 2:379 547~�1=2
2 (dashed) and 2:258 180~�1=2

2 (dot-dashed). Near the

minimum mass of the L-branch, the lapse function and the dilaton field diverge at the horizon. The singularity appears on the horizon

in the limit of M ! MðLÞ
min.
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Now we can summarize our results as follows: For the
four dimensions and the L-branch in five dimensions, there
is a minimum radius, below which the curvature diverges
on the horizon. When D � 6, the singularity of the gravi-
tational shock wave appears in the L-branch below the
minimum radius. On the other hand, for the S-branch of
five and higher dimensions, there exists a maximum mass,
beyond which a black hole does not exist, and a singularity
may appear outside the horizon.

VII. TRUNCATED DILATONIC EINSTEIN-GAUSS-
BONNET MODEL

In this section, we discuss the truncated Einstein-Gauss-
Bonnet model, whose action is given by Eq. (2.7). The
properties of black hole solutions in the TDEGB model
with � ¼ 1

2 are studied in [16]. This value of the coupling

constant is obtained in ten dimensions. If we start from the
effective action in the string frame in D dimensions, we

have the different value, which is � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðD� 2Þp

, in the
Einstein frame. Here, we choose this value of the coupling
constant for the TDEGB model. The difference of two
models originates from the compactification. We find
some qualitative differences in thermodynamical proper-
ties in the TDEGB models with these two coupling con-
stants (see the discussion in Sec. IX). In what follows in the
text, we show the black hole solutions and their properties

in the TDEGB model with � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðD� 2Þp

.

A. Basic equations

The field equations are given by

fr2FTð�Þ :¼ 1
2ðf0rþ hþ 2ðD� 2ÞfÞ�0rþ f�00r2

� �B½ðD� 4Þ5ð1� fÞ2
� 2ðD� 4Þð1� fÞðf0rþ hÞ
þ 4Xfð1� fÞr2 þ 2hf0r� ¼ 0; (7.1)

fr2FTð�Þ :¼ ðD� 2Þ3ð1� fÞ � ðD� 2Þf0r� 1
2f�

02r2

þ B½ðD� 4Þ5ð1� fÞ2
� 2ðD� 4Þð1� fÞðf0 � 2�f�0Þr
þ 4�fð1� fÞð�00 � ��02Þr2
þ 2�ð1� 3fÞ�0f0r2� ¼ 0; (7.2)

fr2FTð	Þ :¼ ðD� 2Þ3ð1� fÞ � ðD� 2Þhþ 1
2f�

02r2

þ B½ðD� 4Þ5ð1� fÞ2
� 2ðD� 4Þð1� fÞðh� 2�f�0rÞ
þ 2�hð1� 3fÞ�0r� ¼ 0; (7.3)

FIG. 8 (color online). The solution of the S-branch of the ten-dimensional black hole. We choose the following four values for the

horizon radius: rH ¼ 0:413 5 45 1~�1=2
2 (solid), 0:163 972 7~�1=2

2 (dotted), 0:064 515 2~�1=2
2 (dashed) and 0:0315 799 4~�1=2

2 (dot-dashed).

FIG. 9 (color online). The curvature invariants for several
masses in ten-dimensions We choose the following four values

for the horizon radius in the L-branch: rH ¼ 2:279 83~�1=2
2

(solid), 2:268 30~�1=2
2 (dotted), 2:261 16~�1=2

2 (dashed) and

2:258 20~�1=2
2 (dot-dashed), In the S- branch: rH ¼

0:828 778~�1=2
2 (solid), 0:828 748~�1=2

2 (dotted), 0:828 366~�1=2
2

(dashed) and 0:826 771~�1=2
2 (dot-dashed). Near the minimum

radius in the L- branch, the invariant does not diverge, but
evolves into a ‘‘gravitational shockwave’’ at r � 1:09rH in the
limit of minimum radius. In the S-branch, a strange behavior
appears near r � 1:46rH outside the horizon. It may evolve into

a singularity in the limit of M ! MðSÞ
max.
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fr2FTð�Þ :¼ ðD� 2Þ4ð1� fÞ � ðD� 2Þ3ðf0rþ hÞ þ 2ðD� 2ÞXfr2 � 1
2ðD� 2Þf�02r2 þ B½ðD� 4Þ6ð1� fÞ2

� 2ðD� 4Þ5ð1� fÞðf0rþ hÞ þ 4�ðD� 4Þ5fð1� fÞ�0rþ 4ðD� 4Þð1� fÞXfr2
þ 4�ðD� 4Þfð1� fÞð�00 � ��02Þr2 þ 2ðD� 4Þhf0rþ 2�ðD� 4Þð1� 3fÞðf0rþ hÞ�0r

� 4�fhð�00 � ��02Þr2 � 4�h�0f0r2 þ 8��0Xf2r3� ¼ 0: (7.4)

where

XðrÞ :¼ 1

4f2r2
½hðf0r� hÞ � 2fðh0r� hÞ�; (7.5)

BðrÞ :¼ r�2 ~�2e
���; (7.6)

hðrÞ :¼ rðf0 � 2f
0Þ: (7.7)

The Bianchi identity gives one relation between these
four functionals:

f�1=2ðf1=2FTð	ÞÞ0 ¼ 1

r
FTð�Þ þ

�
f0

2f
� 
0

�
FTð�Þ þ�0FTð�Þ:

(7.8)

Hence, if one solve three of them, the remaining one
equation is automatically satisfied.

B. Boundary conditions

As we discussed in Sec. III B, we need the boundary
conditions both at the event horizon (r ¼ rH) and at the
infinity (r ¼ 1). The asymptotical ‘‘flatness’’ implies

f ! 1�
�

2�2
D

ðD� 2ÞAD�2

�
M

rD�3
; 
 ! O

�
1

r2ðD�3Þ

�
;

� ! O
�

1

rD�3

�
; (7.9)

as r ! 1. M is a gravitational mass in the Einstein frame.
Since the weak equivalence principle is satisfied in the

Einstein frame, the lapse must drop faster than the gravi-
tational potential (f� 1).
At the event horizon (rH), the metric function f van-

ishes, i.e., fðrHÞ ¼ 0. The variables and their derivatives
must be finite at rH.
The regularity conditions of the event horizon are now

�� 2
H�H�H��½ðD�4Þ5�4ðD�4Þ�Hþ4Hþ2�2

H�¼ 0;

(7.10)

��2
H½ðD� 2Þ3 � ðD� 2Þ�H� þ ½ðD� 4Þ5

� 2ðD� 4Þ�H þ 2��H�H� ¼ 0; (7.11)

��2
H½ðD� 2Þ4 � 2ðD� 2Þ3�H þ 2ðD� 2ÞH�

þ ½ðD� 4Þ6 � 4ðD� 4Þ5�H þ 4ðD� 4ÞH
þ 4�ðD� 4Þ�H�H þ 2ðD� 4Þ�2

H � 4��2
H�H� ¼ 0;

(7.12)

where

��H :¼ rHe
��H=2=~�1=2

2 ; �H :¼ rHf
0
H;

�H :¼ rH�
0
H; and H :¼ r2HðXfÞH:

(7.13)

Eliminating �H and H in Eqs. (7.10), (7.11), and (7.12)
[we assume that �H � 0 and H � 0], we find the qua-
dratic equation for �H:

a�2
H þ b�H þ c ¼ 0; (7.14)

where

a ¼ 2�½ððD� 2Þ3 ��2
H þ ðD� 4Þ5ÞððD� 2Þ ��2

H þ 2ðD� 4ÞÞ þ 2�2ððD� 2ÞðD� 4Þð3D� 11Þ ��2
H þ 4ðD� 3Þ5Þ�;

b ¼ �½ððD� 2Þ3 ��2
H þ ðD� 4Þ5ÞððD� 2Þ ��2

H þ 2ðD� 4ÞÞ2 � 4�2ðD� 1ÞðD� 4ÞððD� 2Þ2 ��4
H

þ 2ðD� 2Þ ��2
H � 2ðD� 4Þ5Þ�;

c ¼ �ðD� 1Þ2 ��2
H½ðD� 2Þ3 ��4

H � 4ðD� 2ÞðD� 4Þ ��2
H � 2ðDþ 1ÞðD� 4Þ2Þ�: (7.15)

For D¼4�10, assum ing ~�2 > 0 and imposing the dis-
criminant is non-negative (DD :¼b2�4ac�0), we find
the allowed values for the regular event horizon, which are
summarized in Table III. There is a minimum horizon
radius rH ¼ 1:861 21~�1=2

2 e���H=2 in four-dimensional
spacetime, while in five-dimensional spacetime, there is a
small gap in the parameter space of horizon radius
(0:962 882~�1=2

2 e���H=2 < rH < 1:458 28~�1=2
2 e���H=2)

where there is no regular horizon. For higher dimensional
spacetime than five dimensions, there is a regular horizon
for any horizon radius.

TABLE III. The allowed values for the regular horizon radius
are shown. The equality gives a double root of �0

H. There is a
minimum radius in four dimensions. In five dimensions and six
dimensions, there are gaps in which there is no regular horizon.
For dimensions higher than six, there is a regular horizon for any

horizon radius. ��H :¼ rHe
��H=2=~�1=2

2 .

D Condition for regular horizon

4 ��H � 1:861 21
5 ��H � 1:458 28 or ��H � 0:962 882
6 � D � 10 any values
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VIII. COMPARISON WITH TDEGB AND EGB

Now we compare the properties of the black hole solu-
tions in the DEGB and TDEGB models. We also show the
results in the EGB model as a reference.

A. Mass-area relation

First we show the mass-area relations of black holes in
Fig. 10. The solid (red) line, dashed (green) line, and dot-
dashed (black) line correspond to the DEGB, TDEGB, and
EGB models, respectively.

In four dimensions, there exists the minimum finite

radius, rHðminÞ ¼ 3:657 26~�1=2
2 and 3:138 439~�1=2

2 , and

minimum mass, MðDEGBÞ
min ¼ 69:3511~�1=2

2 and MðTDEGBÞ
min ¼

42:7128~�1=2
2 , both for the DEGB and TDEGB models,

respectively. There is no qualitative difference. A turning
point appears at the minimum mass, near where two black

holes exist in a small mass range (MðDEGBÞ
min � M<

72:3945~�1=2
2 for DEGB and MðTDEGBÞ

min � M<

42:7152~�1=2
2 for TDEGB). In the EGB model, it is just a

Schwarzschild black hole because the Gauss-Bonnet term
is a total divergence. It is completely different from the
other two.

In five dimensions, the result changes drastically (see
Fig. 10(b)). For the EGB model, the mass-area relation is
very simple (the dot-dashed line). The area increases
monotonically with respect to the mass, and there exists

a minimum finite mass (MðEGBÞ
min ¼ 2�2 ~�2). In the TDEGB

model, the mass-area relation is also monotonic, but it
splits up into two branches (the S- and L-branches) shown
by the dashed (green) line just as in the DEGB model (the

solid [red] line). The ranges are MðSÞ
min <M<MðSÞ

max and

M>MðLÞ
min for the S- and L-branches, respectively, where

MðSÞ
min

:¼ 10:8051~�2, MðSÞ
max :¼ 27:4615~�2, and MðLÞ

min
:¼

142:382~�2. So there exists a finite minimum mass

(MðSÞ
min), and the area in the L-branch increase monotoni-

cally without any turning point as well as that in the S-
branch. However, in the case of the DEGB model, as we
discussed in Sec. VI, the black holes exist from zero mass,

and there appears a mass gap (MðSÞ
max ¼ 19:7733~�2 <M<

MðLÞ
min ¼ 395:862~�2) where no black hole exists. In the L-

branch of the DEGB model, we find two black hole solu-
tions with the different horizon radii but with the same

mass in the range ofMðLÞ
min <M< 395:880~�2. The smaller-

radius black hole may be unstable because the entropy is
also smaller.
In ten dimensions, the mass-area relations are almost the

same for the DEGB, TDEGB, and EGB models. However
there is a qualitative difference between the DEGB model
and the TDEGB (or EGB) model. In the TDEGB (or EGB)
model, the area increases monotonically with respect to the
mass from zero to infinity. The mass vanishes at zero area.
However, in the DEGB model, there exists a gap in the

range of mass (MðSÞ
max ¼ 68:6614~�7=2

2 � M<MðLÞ
min ¼

58647:5~�7=2
2 ), and a turning point appears near the mini-

mum mass MðLÞ
min. There exist two different solution with

the same mass, in the range of mass (MðLÞ
min <M<MðLÞ

min þ
1:560 19� 10�5 ~�7=2

2 ). The behavior is the same as that in

five dimensions.
We also find the same behaviors in six to nine

dimensions.

B. Thermodynamics

For the TDEGB model (2.7), the entropy is given by

ST ¼ AH

4

�
1þ 2~�2

r2H
e���H

�
: (8.1)

The corrections from the Bekenstein-Hawking entropy is

ST � SBH ¼ 2~�2

r2H
e���H � SBH > 0: (8.2)

This means that the entropy is always larger than the
Bekenstein-Hawking’s one in the TDEGB model as well.
The difference between (5.6) and (8.2) comes from the
truncated term F (note that the values of �H in the
DEGB theory and the truncated one are different).
Here, we show the black hole entropy and temperature in

Figs. 11 and 12, respectively. In these figures, the solid

FIG. 10 (color online). The mass-area relations of black hole solutions in four dimensions, five dimensions, and ten dimensions. The
dashed (green), dot-dashed (black), and solid (red) lines are the cases of the TDEGB, EGB, and DEGB models, respectively.
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(red) line, dashed (green) line, and dot-dashed (black) line
describe the results for the DEGB, TDEGB, and EGB
models, respectively.

The entropy behaves quite similar to the area for all
models, although the values are slightly different as shown
in Fig. 2 in the DEGB model. There is no qualitative
difference between AH and S, except for D ¼ 4 in the

TDEGB model for which we find a cusp near M �
MðTDEGBÞ

min instead of a turnaround smooth curve [21]. The

cusp is related to a stability change understood by a catas-
trophe theory [22].

As for the temperature, the behaviors are quite different
in each model depending on the dimensions. In four di-
mensions, just as the area or the entropy, there appears a
turning point, at which stability changes as we expected
[20]. The same behavior is found in the TDEGB model. In
the EGB model, it is just a Schwarzschild black hole, i.e.,
TH / 1=M.

In five dimensions, however, there is a maximum tem-

perature Tmax ¼ 0:251 938~��ð1=2Þ
2 at M ¼ 15:0506~�2 in

the DEGB model, just as in the EGB model (Tmax ¼ffiffi
6

p
8� ~��1=2

2 at M ¼ 4�2 ~�2), although we have a mass gap.

The temperature in the TDEGB model decreases mono-
tonically as the mass increases.

In ten dimensions, the temperature decreases monotoni-
cally with respect to the mass except near the turning point

in the L-branch. There is no maximum temperature just as
in the TDEGB and EGB models. In the L-branch of the
DEGB model, however, we always find a turning point.
From this observation, we may conclude as follows: In

four dimensions, both the DEGB and TDEGB models
predict almost the same. When the black hole mass ap-
proaches the minimum value, the temperature is still finite.
So the evaporation may not stop there. We suspect that
either it evolves into a naked singularity, or it becomes
time-dependent.
In five dimensions, however, two models give quite

different predictions. In the DEGB model, in the zero-
mass limit, we find that the temperature also vanishes.
Then we expect that the black hole evaporate quietly. On
the other hand, in the TDEGB model, no black hole exists

below the minimum mass MðSÞ
min and beyond the maximum

temperature Tmax. When a back hole goes beyond this point
via Hawking evaporation, we will find a naked singularity
or a time-dependent black hole spacetime.
If the spacetime dimension is higher than five, two

models will give the similar fate, i.e., a black hole evapo-
rates violently because the temperature diverges in the
mass-zero limit.

IX. CONCLUDING REMARKS

We summarize our results in Table IV. The main differ-
ence in the DEGB model from the TDEGB model is that

FIG. 12 (color online). The temperature of black holes with respect to the gravitational mass. The solid (red), dashed (green), and
dot-dashed (black) lines are for the DEGB, TEGBD, and EGB models.

FIG. 11 (color online). The entropies of black holes with respect to the gravitational mass. The solid (red), dashed (green), and dot-
dashed (black) lines are for the DEGB, TEGBD, and EGB models.
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the existence of a turning point in five and higher
dimensions and a zero-mass black hole in five dimensions.
The Hawking temperature in the five-dimensional
DEGB model vanishes at the zero-mass limit, but that
in the TDEGB model is finite. The DEGB model also
gives a maximum temperature in five dimensions. It
may suggest that the DEGB model is better than the
truncated one. In fact, the maximum temperature is given

by Tmax � 0:251 938~��1=2
2 ¼ 0:290 913�0�1=2 at M ¼

15:0506~�2, which is naively consistent with the result

given by the perturbative approach (Tmax � 0:1�0�1=2)
[10].

We also include the result in the case of � ¼ 1=2 [16].
The result in that model is almost qualitatively similar to
our TDEGB model except for the five dimensions. In five
dimensions, the result is the same as the Schwarzschild
black hole rather than that in our TDEGB or in the EGB
model, although we do not know the reason.

In this paper we consider only the asymptotically
flat spacetime. The asymptotically nonflat spacetimes,
however, are also important. The asymptotically anti-
de Sitter spacetime is especially interesting in the context
of anti-de Sitter/conformal field theory (AdS/CFT) corre-
spondence. AdS/CFT correspondence is a widely-believed
conjecture which suggests that there exists a duality be-
tween bulk gravity and boundary conformal theory. Taking
account into some quantum effects, i.e., the higher curva-
ture correction terms, one may examine a strong coupling
region via AdS/CFT. It may provide another confirmation
for the conjecture. The gravity duals of Gauss-Bonnet
gravity with nontrivial dilaton field was studied in [23].
The asymptotically anti-de Sitter spacetime in the TDEGB
models were also analyzed [24,25]. Since we find some
important difference between the DEGB and TDEGB
models in this paper, it is also interesting to analyze the
asymptotically nonflat spacetimes in the DEGB theory,
which is under study.

ACKNOWLEDGMENTS

N.O. would like to thank T. Torii for valuable discus-
sions. This work was partially supported by the Grant-in-
Aid for Scientific Research Fund of the JSPS
(Nos. 19540308 and 20540283) and for the Japan-U.K.
Research Cooperative Program, and by the Waseda
University Grants for Special Research Projects.

APPENDIX A: BLACK HOLE IN THE EINSTEIN-
GAUSS-BONNET THEORY

In this appendix, we summarize the properties of a black
hole in the Einstein-Gauss-Bonnet theory. The action is

S EGB ¼ 1

2�2
D

Z
dDx

ffiffiffiffiffiffiffi�g
p ðRþ �2R

2
GBÞ: (A1)

We find the field equations by setting the dilaton field � ¼
0, and can reduce them as

½rD�3ðk� fðrÞÞ þ�2ðD� 3Þ4rD�5ðk� fðrÞÞ2�0 ¼ 0;


0ðrÞ ¼ 0: (A2)

In four dimensions, the Gauss-Bonnet term does not give
any contribution to the solution. We have just a
Schwarzschild black hole, i.e., fðrÞ ¼ k� 2�=r. For D �
5, we find two branches of the solutions as follows:

fðrÞ ¼ f	ðrÞ

:¼ kþ r2

2ðD� 3Þ4�2

�
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8ðD� 3Þ4�2�

rD�1

s �
;


ðrÞ ¼ 0; (A3)

where � is an integration constant, which is related to the
gravitational mass M as ðD� 2ÞAD�2� ¼ �2

DM. The
asymptotic behavior or the weak coupling limit, i.e.,
~�2�=rD�1 � 1, gives

TABLE IV. The comparison between the DEGB and TDEGB models with the EGB model and Schwarzschild black hole as
references. In the four-dimensional TDEGB model, we find a cusp instead of a turnaround smooth curve.

D DEGB TDEGB TDEGB (� ¼ 1=2) EGB Schwarzschild

4 mass range M>Mmin M>Mmin M>Mmin Schwarzschild

black hole

M � 0
turning point yes ‘‘yes (cusp)’’ no no

Tmax finite finite finite 1
TH at Mmin finite finite finite 1

5 mass range MðSÞ
max >M � 0,
M>MðLÞ

min

MðSÞ
max >M>MðSÞ

min,

M>MðLÞ
min

M>Mmin M>Mmin M � 0

turning point yes no no no no

Tmax finite finite 1 finite 1
TH at Mmin zero finite 1 zero 1

6� 10 mass range MðSÞ
max >M � 0, M>MðLÞ

min M � 0 the same as our TDEGB

ð� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðD� 2Þp Þ

M � 0 M � 0
turning point yes no no no

Tmax 1 1 1 1
TH at Mmin 1 1 1 1
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fþðrÞ ! k�
�

2�2
D

ðD� 2ÞAD�2

�
M

rD�3
;

f�ðrÞ ! kþ
�

2�2
D

ðD� 2ÞAD�2

�
M

rD�3
þ ðD� 2Þr2

ðD� 4Þ~�2

:

(A4)

The former is an asymptotically flat spacetime, while the
latter is an asymptotically anti de Sitter spacetime [26].
The black hole mass in the asymptotically flat case is given
by

�M :¼ �2
DM ¼ ðD� 2ÞAD�2

2
rD�3
H

�
1þ 2ðD� 4Þ~�2

ðD� 2Þr2H
�
;

(A5)

and the Hawking temperature is

TH ¼ ½ðD� 2Þ3r2H þ ðD� 4Þ5 ~�2�
4�rH½ðD� 2Þr2H þ 2ðD� 4Þ~�2�

: (A6)

The entropy is given by the Wald’s formula as

SEGB ¼ AH

4

�
1þ 2~�2

r2H

�
: (A7)

In four dimensions, it is just a Schwarzschild spacetime.
There is nontrivial contribution in the entropy from the

Gauss-Bonnet term. Then we find

Mmin ¼ 0; and Smin ¼ 2�~�2; (A8)

at rH ¼ 0, when the temperature diverges (Tmax ¼ 1).
In five dimensions, we find the black hole mass and the

Hawking temperature as

M ¼ �2ð3r2H þ 2~�2Þ; (A9)

TH ¼ 3rH
2�½3r2H þ 2~�2�

: (A10)

Then we find

Mmin ¼ 2�2 ~�2; Smin ¼ 0; Tmin ¼ 0; (A11)

at rH ¼ 0. We also find the maximum temperature as

Tmax ¼
ffiffiffi
6

p
8�

~��1=2
2 ; (A12)

at rH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2~�2=3

p
(Mmax ¼ 4�2 ~�2 ).

For dimensions higher than five, we find

Mmin ¼ 0; and Smin ¼ 0; (A13)

at rH ¼ 0, when the temperature diverges (Tmax ¼ 1).
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