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In the framework of phantom quintessence cosmology, we use the Noether Symmetry Approach to

obtain general exact solutions for the cosmological equations. This result is achieved by the quintessential

(phantom) potential determined by the existence of the symmetry itself. A comparison between the

theoretical model and observations is worked out. In particular, we use type Ia supernovae and large-scale

structure parameters determined from the 2-degree Field Galaxy Redshift Survey and from the Wide part

of the VIMOS-VLT Deep Survey ). It turns out that the model is compatible with the presently available

observational data. Moreover we extend the approach to include radiation. We show that it is compatible

with data derived from recombination and it seems that quintessence do not affect nucleosynthesis results.

DOI: 10.1103/PhysRevD.80.104030 PACS numbers: 04.50.�h, 04.80.Cc, 11.25.�w, 98.80.�k

I. INTRODUCTION

Recent analysis of the three-year WMAP data [1–3]
provides no indication of any significant deviations from
Gaussianity and adiabaticity of the cosmic microwave
background radiation power spectrum and therefore sug-
gests that the Universe is spatially flat to within the limits
of observational accuracy. Further, the combined analysis
of the three-year WMAP data with the Supernova Legacy
Survey (SNLS), in [1], constrains the equation of state wde,
corresponding to almost 74% of dark energy present in the
currently accelerating Universe, to be very close to that of
the cosmological constant value. The marginalized best fit
values of the equation of state parameter gave �1:14 �
wde � �0:93 at 68% confidence level. Thus, it was real-
ized that a viable cosmological model should admit a
dynamical equation of state that might have crossed the
phantom value w ¼ �1, in the recent epoch of cosmologi-
cal evolution. Phantom fluid was first investigated in the
current cosmological context by Caldwell [4], who also
suggested the name referring to the fact that phantom (or
ghost) must possess negative energy which leads to insta-
bilities on both classical and quantum level [5,6]. Since it
violates the energy conditions, it also could put in doubt the
pillars of general relativity and cosmology such as: the
positive mass theorems, the laws of black hole thermody-
namics, the cosmic censorship, and causality [7,8]. On the
other hand, phantom becomes a real challenge for the
theory, if its support from the supernovae Ia-Type
(SNeIa) data is really so firm. From the theoretical point
of view, a release of the assumption of an analytic equation
of state which relates energy density and pressure and does
not lead to energy conditions violation (except for the
dominant one) may also be useful [9]. As for the explana-
tion of the SNeIa data, phantom is also useful in killing the
doubled positive pressure contribution in several brane-
world models [10].

Phantom type of matter was also implicitly suggested in
cosmological models with a particle production [11], in

higher-order theories of gravity models [12], Brans-Dicke
models, in nonminimally coupled scalar field theories
[13,14], in ‘‘mirage cosmology’’ of the braneworld sce-
nario [15], and in kinematically-driven quintessence (k
essence) models [16,17], for example. Such phantom mod-
els have well-known problems but, nevertheless, have also
been widely studied as potential dark energy candidates,
and actually the interest in phantom fields has grown vastly
during the last years and various aspects of phantom mod-
els have been investigated [18–35].
One of the most interesting features of phantom models

is that they allow for a Big-Rip curvature singularity, which
appears as a result of having the infinite values of the scale
factor aðtÞ ! 1 at a finite future. However, as it was
already mentioned, the evidence for phantom from obser-
vations is mainly based on the assumption of the barotropic
equation of state which tightly constraints the energy den-
sity and the pressure. It is puzzling [9] that for Friedmann
cosmological models, which do not admit an equation of
state which links the energy density % and the pressure p, a
sudden future singularity of pressure may appear. This is a
singularity of pressure only, with finite energy density
which has an interesting analogy with singularities which
appear in some inhomogeneous models of the Universe
[36,37].
Recently, phantom cosmologies which lead to a qua-

dratic polynomial in canonical Friedmann equation have
been investigated [38], showing that interesting dualities
exist between phantom and ordinary matter models which
are similar to dualities in superstring cosmologies [39,40].
These dualities were generalized to nonflat and scalar field
models [41–53], brane models [54], and are also related to
ekpyrotic models [55,56]. Furthermore, some theoretical
studies have been devoted to shed light on phantom dark
energy within the quantum gravity framework, since, de-
spite the lack of such a theory at present, we can still make
some attempts to probe the nature of dark energy according
to some of its basic principles [57].
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Finally, phantom cosmology can provides the opportu-
nity to ‘‘connect’’ the phantom driven (low energy meV
scale) dark energy phase to the (high energy grand unified
theories scale) inflationary era. This is possible because the
energy density increases in phantom cosmology. Concrete
models in this sense have been recently elaborated with
some interesting results [58].

In this paper, we want to investigate if the existence of
phantom fields can be connected to Noether symmetries.
Such an issue becomes recently extremely important due to
the fact that several phenomenological models have been
constructed but, some of them have no self-consistent
theoretical foundation. The idea to derive the equation of
state from symmetries is not new [59] and recently has
been applied to dark energy [60]. From a mathematical
point of view, the general consideration is that symmetries
greatly aid in finding exact solutions [59,61]. Besides, due
to the Noether theorem, symmetries are always related to
conserved quantities which, in any case, can be considered
as conserved ‘‘charges.’’ Specifically, the form of the self-
interacting scalar-field potential is ‘‘selected’’ by the ex-
istence of a symmetry and then the dynamics can be
controlled. The equation of state, being related to the
form of scalar-field potential, is determined as well.
However, the symmetry criterion is not the only one that
can be invoked to discriminate physically consistent mod-
els but it could be considered a very straightforward one
since, as we will see below, it allows also to achieve exact
solutions.

In Sec. II, we actually show that phantom fields come
out by requiring the existence of Noether symmetry to the
Lagrangian describing a standard single scalar field quin-
tessential cosmological model: we show that it allows a
phantom dark energy field, and also provides an explicit
form for the (phantom) self-interaction potential.
Section III studies how this gives rise to exact and general
solutions. Also extending the approach to include radia-
tion, we show that it is also compatible with the postre-
combination observational data and that quintessence does
not influence the results of nucleosynthesis. In Sec. IV, we
work out a comparison between the theoretical solution
and observational dataset, as the publicly available data on
SNeIa, the parameters of large-scale structure determined
from the 2-degree Field Galaxy Redshift Survey (2dFGRS)
and from the Wide part of the VIMOS-VLT Deep Survey
(VVDS). In Sec. V, we discuss the presented results and
draw conclusions.

II. THE NOETHER SYMMETRYAPPROACH

The Noether Symmetry Approach has revealed a useful
tool in order to find out exact solutions, in particular, in
cosmology [61–64]. The existence of the Noether symme-
try allows to reduce the dynamical system that, in most of
cases, results integrable. It is interesting to note that the
self-interacting potentials of the scalar field [64], the cou-

plings [61], or the overall theory [63], if related to a
symmetry (i.e. a conserved quantity) have a physical mean-
ing. In this sense, the Noether Symmetry Approach is also
a physical criterion to select reliable models (see [63] for a
discussion).
In the present case, let us consider a matter-dominated

model in homogeneous and isotropic cosmology with sig-
nature ð�;þ;þ;þÞ for the metric, with a single scalar
field, �, minimally coupled to the gravity. It turns out that
the pointlike Lagrangian action takes the form

L ¼ 3a _a2 � a3
�
�

_�2

2
� Vð�Þ

�
þDa�3ð��1Þ (1)

where a is the scale factor and the constant D is a constant
defined in such a way that the matter density �m is ex-
pressed as �m ¼ Dðao=aÞ3�, where 1 � � � 2. For the
moment, we will limit our analysis to � ¼ 1, correspond-
ing to cosmological dust. The value of the constant �
discriminates between standard and phantom quintessence
fields: in the former case, it is � ¼ 1; in the latter, it is � ¼
�1. The effective pressure and energy density of the �
field are given by

p� ¼ �12
_�2 � Vð�Þ; (2)

�� ¼ �12
_�2 þ Vð�Þ: (3)

These two expressions define an effective equation of state
w� ¼ p�

��
, which drives the behavior of the model. The

field equations are

2
€a

a
þH2 þ �

1

2
_�2 � Vð�Þ ¼ 0; (4)

€a

a
þ 3H _�þ �V0ð�Þ ¼ 0; (5)

3H2 ¼ �� þ �m; (6)

where prime denotes derivative with respect to �, while
dot denotes derivative with respect to time.
The Noether theorem states that, if there exists a vector

field X, for which the Lie derivative of a given Lagrangian
L vanishes i.e. LXL ¼ 0, the Lagrangian admits a Noether
symmetry and thus yields a conserved current [61]. In the
Lagrangian under consideration, the configuration space is
M ¼ fa;�g and the corresponding tangent space is

TM ¼ fa;�; _a; _�g. Hence the infinitesimal generator of
the Noether symmetry is

X ¼ �
@

@a
þ �

@

@�
þ _�

@

@ _a
þ _�

@

@ _�
; (7)

where � and � are both functions of a and � and

_� � @�

@a
_aþ @�

@�
_� (8)
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_� � @�

@a
_aþ @�

@�
_�: (9)

The Cartan oneform is

�L ¼ @L
@ _a

daþ @L

@ _�
d�: (10)

The constant of motion Q ¼ iX�L is given by

Q ¼ �ða;�Þ @L
@ _a

þ �ða;�Þ@L
@ _�

: (11)

If we demand the existence of a Noether symmetry,
LXL ¼ 0, we get the following equations:

�þ 2a
@�

@a
¼ 0 (12)

6
@�

@�
� �a2

@�

@a
¼ 0 (13)

3�þ 2�a
@�

@�
¼ 0 (14)

3Vð�Þ�þ aV 0ð�Þa� ¼ 0: (15)

We have now to look for conditions on the integrability of
this set of equations, limiting ourselves to the phantom case
(i.e., � ¼ �1), since the standard case has been already
investigated in [65,66]. It is possible to assume that � and
� are separable (and non-null), i.e.

�ða;�Þ ¼ A1ðaÞB1ð�Þ; �ða;�Þ ¼ A2ðaÞB2ð�Þ:
(16)

This is not true in general but, in such a case, it is straight-
forward to achieve a solution for the system (12)–(15). It is

� ¼
2A cosð12

ffiffi
3
2

q
�Þffiffiffi

a
p ; (17)

� ¼
�2

ffiffiffi
6

p
A sinð12

ffiffi
3
2

q
�Þ

a
ffiffiffi
a

p ; (18)

Vð�Þ ¼ V0 sin

�
1

2

ffiffiffi
3

2

s
�

�
2

(19)

which selects the Noether symmetry.

III. SOLUTIONS FROM NEW COORDINATES AND
LAGRANGIAN

Once that X is found, it is then possible to find a change
of variables fa;�g ! fu; vg, such that one of them (say u,
for example) is cyclic for the LagrangianL in Eq. (1), and
the transformed Lagrangian produces a reduced dynamical
system which is generally solvable. Solving the system of

equations iXdu ¼ 1 and iXdv ¼ 0 (where iXdu and iXdv
are the contractions between the vector field X and the
differential forms du and dv, respectively), we obtain

a ¼ ðvþ 9A2u2Þð1=3Þ (20)

� ¼ 2
ffiffiffiffiffiffiffiffi
2=3

p
arccos

ð3AuÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ 9A2u2

p : (21)

Under this transformation, the Lagrangian takes the suit-
able form

L ¼ Dþ vV0 þ _v2

3v
þ 12A2 _u2; (22)

where u is the cyclic variable. The conserved current gives

Q ¼ @L
@ _u

¼ 24A2 _u ¼ B; (23)

which can be trivially integrated to obtain uðtÞ ¼ Btþ C.
We use now the energy condition EL ¼ 0 to find v. We
obtain the following differential equation:

_vðtÞ 2 � 3vðtÞðDþ V0vðtÞ � 12A2 _uðtÞ2Þ ¼ 0: (24)

It is a first order equation which can be factorized into the
form

ðp� F1Þðp� F2Þ ¼ 0; (25)

being p ¼ _vðtÞ and Fi ¼ Fiðt; vÞ. We are then left with
solving two first-degree equations p ¼ Fiðt; vÞ. Writing
the solutions to these first-degree equations as Giðt; vÞ ¼
0 the general solution to Eq. (24) is given by the product
G1ðt; vÞG2ðt; vÞ ¼ 0. It turns out that1

vðtÞ ¼ expð� ffiffiffiffiffiffiffiffi
3V0

p
tÞ

16V2
0

ðexpð ffiffiffiffiffiffiffiffi
3V0

p
tÞ þ 48A2B2V0

� 4DV0Þ2: (26)

The substitution of the functions a ¼ aðu; vÞ and � ¼
�ðu; vÞ into Eqs. (20) and (21) yields

aðtÞ¼
�
9!2t2

þðexp� ffiffiffiffiffiffiffiffi
3V0

p
tÞðexp ffiffiffiffiffiffiffiffi

3V0

p
tþ48!2V0�4DV0Þ2

16V2
0

�ð1=3Þ
(27)

1In the following we can set C ¼ 0 in uðtÞ ¼ Btþ C without
losing generality.
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�ðtÞ¼2

ffiffiffi
2

3

s
arccos

�
�

3ABtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9!2t2þðexp�

ffiffiffiffiffiffi
3V0

p
tÞðexp

ffiffiffiffiffiffi
3V0

p
tþ48!2V0�4DV0Þ2

16V02

r �
;

(28)

where we have defined ! ¼ AB. Setting að0Þ ¼ 0, we can
construct a relation among the integration constants !, D,

and V0; actually, it turns out that D ¼ 1þ48!2V0

4V0 . To deter-

mine the integration constant !, we set the present time
t0 ¼ 1. This fixes the time-scale according to the (formally
unknown) age of the Universe. That is to say that we are
using the age of the Universe, t0, as a unit of time. We then
set a0 ¼ að1Þ ¼ 1, to obtain

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8þ 1

V2
0

� cosh
ffiffiffiffiffiffiffiffi
3V0

pq
V2
0

: (29)

The two conditions specified above allow one to express all
the basic cosmological parameters in terms of V0, the
constant that determines the scale of the potential. It is
not directly measurable. However we can also strongly
constrain its range of variability through its relation with
the Hubble constant; actually, because of our choice of
time unit, the expansion rate HðtÞ is dimensionless, so that

our Hubble constant Ĥ0 ¼ Hðt0Þ is clearly of order 1 and
not (numerically) the same as the H0 that is usually mea-
sured in km s�1 Mpc�1. Actually, we can consider the
relation

h ¼ 9:9
Ĥ0

�
; (30)

where, as usual, h ¼ H0=100 and � is the age of the

Universe in Gy. We see that Ĥ0 fixes only the product
h�. In particular, following e.g. [1], we can assume

that � ¼ 13:73þ0:16
�0:15, thus we get h < 0:76 for Ĥ0 � 1.

Since, according to our parametrization, Ĥ0 ¼
2þ16V2

0
�2 cosh

ffiffiffiffiffiffi
3V0

p
þ

ffiffiffiffiffiffi
3V0

p
sinh

ffiffiffiffiffiffi
3V0

p
24V2

0

, it is possible to constrain

the range of variability for V0, starting from Ĥ0. By means
of these choices, the exact solutions in Eqs. (27) and (28)
can be used to construct all the relevant cosmological
parameters. In particular

�� ¼ �1
2

_�ðtÞ2 þ Vð�Þ; (31)

p� ¼ �1
2

_�ðtÞ2 � Vð�Þ; (32)

w� ¼ � 1
2

_�ðtÞ2 þ Vð�Þ
� 1

2
_�ðtÞ2 þ Vð�Þ ; (33)

�� ¼ ��

3H2
: (34)

As it is shown in Fig. 1, the model allows an accelerated
expansion as indicated from the observations, and being a
phantom field exhibits a superquintessential equations of
state, with w� <�1 (see Fig. 2), a violation of the weak

energy condition (see Fig. 3). Finally, to conclude this
section, we present the traditional plot log��– loga com-

pared with the matter density (see Fig. 4). We see that ��

undergoes a transition from a subdominant phase, during
the matter-dominated era, to a dominant phase. The present
accelerated expansion of the Universe can be associated to
such a transition. Interestingly, both the subdominant and

0.0 0.1 0.2 0.6

0.0

1.0

z

FIG. 1 (color online). Redshift dependence of the acceleration
€aðtÞ: the model allows an accelerated phase of expansion, as
indicated by the observations.

1.0 10.0 0 1.0 2.0
2.2
2.0
1.8
1.6

1.2
1.0

z

w

FIG. 2 (color online). Redshift dependence of the equation of
state parameter w� for the some values of H0.

0.0

2.0

1.0

0.0

z

FIG. 3 (color online). Redshift dependence of the equation of

state w� and the function 	ð�� þ p�Þ ¼ ��þp�

��
, which allows to

compare the violation of the energy condition with the super-
quintessential expansion.
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the dominant phases are characterized by a constant den-
sity behavior.

Figure 5 shows the density parameters of (phantom)
quintessence and matter. The fixed point regime, charac-
terized by quintessence density parameter equal to unity
(�� ¼ 1), has not yet been reached today. This means that

we are living in a transition epoch with ��0
� 0:7.

A. Including radiation

A more realistic model can be considered by including
also radiation beside dust matter and the scalar field. In this
case, the dynamical equations, as far as we know, do not
have analytical solutions and it is not possible to analyti-
cally reconstruct the Noether symmetry. Because of these
facts, we will rely on numerical solutions.

Let us introduce the new independent variable u ¼
logð1þ zÞ ¼ � logðaðtÞ=a0Þ, where a0 is the present value
of the scale factor. The Einstein scalar field equations can
be written in the form

H2 ¼ �m þ �r þ V

3þ 1
2�

02 ; (35)

H2�00 ¼
�
� 1

2
ð�r þ �mÞ þ V

�
�0 þ dV

d�
(36)

where �r � a�4 is the energy density of radiation. We
numerically solved this system of coupled equations, spec-

ifying the initial conditions.2 The results of numerical
integration are shown in Figs. 6–8.
The presence of radiation is hardly changing the behav-

ior of the scalar field, its potential, the Hubble constant, and
the w parameter of the dark energy equation of state. As
expected, the evolution of the� parameters is different. At
the initial time (fixed for numerical calculations at u ¼
30), radiation dominates the expansion rate of the
Universe, with dark energy and matter being subdominant.
At a redshift of about 5000, the energy density of matter
and radiation become comparable and, during a relatively
short period, the Universe becomes matter-dominated. At a
redshift of about 1 dark energy starts to dominate the
expansion rate of the Universe. As result (see, Fig. 10), it
follows that during the epoch of nucleosynthesis (z� 109)

m

2.0 1.0 0.0
2

0

2

6

u

lo
g

FIG. 4 (color online). Plot of log10�� versus log10a (thick
line). The dashed lines indicate the log-log plot of log10�m /
log10a

�3.

m

0.0 1.0
0.0

0.2

0.6

0.8

1.0

z

FIG. 5 (color online). Behavior of density parameters of
(phantom) quintessence and matter. The fixed point regime,
characterized by quintessence density parameter equal to unity
(�� ¼ 1), has not yet been reached today, which can be con-

sidered a transition epoch.

0.0 0.5 1.0 1.5 2.0

2

4

6

8

10

u

H

FIG. 6 (color online). The Hubble parameter as a function of u
in the Universe filled in with matter, radiation and scalar field.

10 0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0

FIG. 7 (color online). Omega parameters as a function of u in
the Universe filled in with matter, radiation and scalar field.
From left to right, �’ is marked in green, �r in red, and �m in

blue.

2The initial values are assumed so that u ¼ 30 gives the same
value for �ð30Þ, �ð30Þ0, and Hð30Þ.
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the energy density of the scalar field is much smaller than
the energy density of radiation. In particular, during such
an epoch, the kinetic terms in the energy density of scalar
field vanishes, and the potential terms is constant: in this
case, the dark energy term acts as an effective cosmologi-
cal constant �, and it does not influence the process of
primordial nucleosynthesis.

IV. OBSERVATIONAL DATA AND PREDICTIONS

The above phantom scalar field model of quintessence,
provides an accelerated expansion of the Universe which
could agree, in principle, with the other cosmological
behaviors. To test the viability of the model, let us compare
now its predictions with some available observational data-
set. We concentrate mainly on different kinds of observa-
tional data: the publicly available data on SNeIa, the
parameters of large-scale structure determined starting
from the 2dFGRS and from the Wide part of the VVDS.

A. Constraints from SNeIa observations

The model can be constrained by SNeIa dataset pres-
ently available. As a starting point, let us take into account
the sample of 182 SNeIa compiled in [67], which includes
the 21 new SNeIa recently discovered by the Hubble Space
Telescope, and combines previous SNeIa dataset, namely,
the Gold Sample compiled in [68], supplemented by the
SNLS dataset [69].

Following a standard procedure, we perform a 
2 analy-
sis comparing the redshift dependence of the theoretical
values to the observational estimates of the distance modu-
lus, � ¼ m�M, which takes the form

m�M ¼ 5 logDLðzÞ þ 25: (37)

Moreover, the luminosity distance for a general flat and
homogeneous cosmological model can be expressed as an
integral of the Hubble function as

DLðzÞ ¼ c

H0

ð1þ zÞ
Z z

0

1

Eð�Þ d�; (38)

where EðzÞ ¼ HðzÞ
H0

is related to the Hubble function ex-

pressed in terms of z ¼ a0=aðtÞ � 1. Let us note that the
luminosity distance also depends on the Hubble distance
c=H0 (which does not depend on the choice of the unit of
time). Such freedom allows us to fit h or the a priori
unknown age of the Universe � using the SNeIa dataset.
We find that 
2

red ¼ 1:04 for 182 data points, and the best-

fit values are V0 ¼ 14þ3
�1, which corresponds to Ĥ0 ¼

0:98þ0:05
�0:04 and �� ¼ 0:68þ0:06

�0:04. We also get h ¼
0:72� 0:04. In Fig. 9, we compare the best-fit curve with
the observational dataset.

B. Dimensionless coordinate distance test

After having explored the Hubble diagram of SNeIa,
that is the plot of the distance modulus as a function of the
redshift z, we want here to follow a very similar, but more
general approach, considering as a cosmological observ-
able the dimensionless coordinate distance defined as:

yðzÞ ¼
Z z

0

1

Hð�Þd�: (39)

The variable yðzÞ does not depend explicitly on h so that
any choice of h does not alter the main result. Daly and
Djorgovki [70] have compiled a sample comprising data on
yðzÞ for the 157 SNeIa in the Riess et al. [68] Gold dataset
and 20 radiogalaxies from [71], summarized in Tables 1
and 2 of [70]. In [72], they have added the latest SNeIa data
released from the SNLS collaboration [69] thus ending up
with a sample comprising 248 measurements of yðzÞ that
we use here. As a preliminary step, Daly and Djorgovski
have fitted the linear Hubble law to a large set of low
redshift (z < 0:1) SNeIa thus finding:

h ¼ 0:664� 0:008;

which is consistent with our fitted value h ¼ 0:72� 0:04,
and with the value H0 ¼ 72� 8 km s�1 Mpc�1 given by
the Hubble Space Telescope Key project [73] based on the
local distance ladder and with the estimates coming from

0.0 0.5 1.0 1.5 2.0
30

35

40

45

z

m
M

FIG. 9 (color online). Observational data from the SNeIa sam-
ple fitted against the model. The solid curve is the best-fit curve,
and the best fits values are V0 ¼ 14þ2�1, which corresponds to

Ĥ0 ¼ 0:98þ0:05
�0:04 and �� ¼ 0:68þ0:06

�0:04.
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80

u

L
og

10

FIG. 8 (color online). Plot of log10�� versus log10a (thick
line). The lines indicate the log-log plot of log10�m / log10a

�3

and the log-log plot of log10ð�rÞ / log10ða�4Þ.
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the time delay in multiple imaged quasars [74] and the
Sunyaev-Zel’dovich effect in x-ray emitting clusters [75].
It is interesting to point out that the SHOES Team recently
completed an extensive new program with the Hubble
Space Telescope which stream-lined the old distance lad-
der and observed Cepheids in the near-infrared where they
are less sensitive to dust. The result was to reduce the total
uncertainty in the Hubble constant by more than a factor of
2, now to just 4.8% uncertainty (h ¼ 74:2� 3:6) [76].

To determine the best-fit parameters, we define the
following merit function:


2ðV0Þ ¼ 1

N � 1

XN
i¼1

�
yðzi;V0Þ � yi

i

�
2
: (40)

We obtain 
2
red ¼ 1:1 for 248 data points, and the best-fit

value is V0 ¼ 14þ3
�1, which corresponds to Ĥ0 ¼ 0:96þ0:1

�0:06

and �� ¼ 0:65þ0:07
�0:04 In Fig. 10, we compare the best-fit

curve with the observational dataset. Daly and Djorgovski
[70] developed a numerical method for a direct determi-
nation of the expansion and acceleration rates, HðzÞ and
qðzÞ, from the data, using the dimensionless coordinate
distance yðzÞ, without making any assumptions about the
nature or evolution of the dark energy. They use the equa-
tion

� qðzÞ � €aa= _a2 ¼ 1þ ð1þ zÞðdy=dzÞ�1ðd2y=dz2Þ;
(41)

valid for k ¼ 0. Equation (41) depends only upon the
Friedman-Robertson-Walker line element and the relation
ð1þ zÞ ¼ a0=aðtÞ. Thus, this expression for qðzÞ is valid
for any homogeneous and isotropic Universe in which ð1þ
zÞ ¼ a0=aðtÞ, and it is therefore quite general and can be
compared with any model to account for the acceleration of
the Universe. This approach has the advantage to be model
independent, but it introduces larger errors in the estima-
tion of qðzÞ, since the numerical derivation is very sensitive
to the size and quality of data. An additional problem is
posed by the sparse and not complete coverage of the z
range of interest. Measurement errors are propagated in the
standard way leading to estimated uncertainties of the
fitted values. In Fig. 11, we compare the qðzÞ obtained by

Daly and Djorgovski from their full dataset with our best-
fit model.

C. Growth of density perturbations and observational
constraints from galaxies redshift surveys

A relevant consequence of the presence of a dominant
form of dark energy in the Universe, in addition to its
primary effect on the expansion rate, is to modify the
gravitational assembly of matter from which the observed
large-scale structure originated. In linear perturbation the-
ory, it is possible to describe the growth of a generic small
amplitude density fluctuation 	M � 	�m=�m through a
second-order differential equation [77,78]:

€	m þ 2HðtÞ _	m � 4�G�m	m ¼ 0: (42)

In Eq. (42), the dark energy enters through its influence on
the expansion rate HðtÞ. We shall consider Eq. (42) only in
the matter-dominated era, when the contribution of radia-
tion is really negligible. In our model, Eq. (42) assumes the
form

€	m þ 2 _	m

2

3

�
��2tð�1� 8V2

0 þ cosh
ffiffiffiffiffiffiffiffi
3V0

p Þ þ ffiffiffiffiffiffiffiffi
3V0

p
sinh

ffiffiffiffiffiffiffiffi
3V0

p
t

�1þ t2 þ 8t2V2
0 � t2 cosh

ffiffiffiffiffiffiffiffi
3V0

p þ cosh
ffiffiffiffiffiffiffiffi
3V0

p
t

�
þ

(43)

�	m

�
2þV0ð3þ 16V0Þ � 2cosh

ffiffiffiffiffiffiffiffi
3V0

p
�1þ t2 þ 8t2V2

0 � t2 cosh
ffiffiffiffiffiffiffiffi
3V0

p þ cosh
ffiffiffiffiffiffiffiffi
3V0

p
t

�
¼ 0:

(44)

Equation (43) does not admit exact analytic solutions.
However, since with our choice of normalization the whole
history of the Universe is confined in the range t 2 ½0; 1�,
and since we choose ! � 1, we can expand the trigono-
metric functions appearing in Eq. (43) in series around t ¼
0, obtaining an integrable differential equation, which is a
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FIG. 11 (color online). The allowed region for qðzÞ, obtained
by Daly and Djorgovski, from the full dataset (shadow area). An
approximated polynomial corresponding to a z window �z ¼
0:6 is shown with the black-thin solid line. With the black-thick
dashed lines, it is shown the approximated polynomial fitted to
the smoothed data at �1 range, and corresponding to a z
window �z ¼ 0:4. The red-solid line shows the deceleration
function, qðzÞ for our model, corresponding to the the best-fit
values.
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FIG. 10 (color online). Observational Daly and Djorgovski
database [72] fitted against the model. The solid curve is the
best-fit curve.

NOETHER SYMMETRYAPPROACH IN PHANTOM . . . PHYSICAL REVIEW D 80, 104030 (2009)

104030-7



Fuchsian differential equation which admits hypergeomet-
ric solutions. For the growing mode, we get

	þ / t2=32F1

�
� 1

3
;
7

6
;
11

6
;

� 9t2V2
0

24þ 36V0 þ 192V2
0 � 24 cosh

ffiffiffiffiffiffiffiffi
3V0

p
�
: (45)

We use such an exact solution to study the behavior of the
solution for t ’ 0, and, mainly, to set the initial conditions
at t ¼ 0 and numerically integrate Eq. (43) in the whole
range [0, 1]. From its solutions, we can define a linear
growth rate f that measures how rapidly structures are
being assembled in the Universe as a function of cosmic
time, or, equivalently, of the redshift:

f � d ln	þ
d lna

; (46)

where a is the scale factor.
The growth index fðzÞ essentially depends on the value

of the mass density parameter at the given epoch, �m. For
the cosmological-constant model the dependence is f /
�0:55

m . However, this is not valid if the observed accelera-
tion originates from a modification of the equations of
general relativity; for example, in the Dvali-Gabadadze-
Porrati braneworld theory [79–81], an extra-dimensional
modification of gravity gives fðzÞ / �0:68

m ðzÞ. In general, a
fitting form fðzÞfðzÞ / ��

mðzÞ has been shown to be an
accurate description for a wide range of models [for which
��

mðzÞ itself, not only �, depends on the model]. Thus,
models with the same expansion history HðzÞ but a differ-
ent gravity theory, will have a different growth rate evolu-
tion fðzÞ and index �. A discrepancy between the measured
value of the growth rate and that computed independently
(assuming general relativity) from the HðzÞ yielded by
SNeIa would point out modifications of gravity. In
Figs. 12 and 13, we show that, for the parameters of our
model, the relation fðzÞ / �0:68

m ðzÞ works quite well. Some
observational techniques have been suggested to measure
fðzÞ at different redshifts. Redshift-space distortions, that

is, the imprint of large-scale peculiar velocities on ob-
served galaxy maps, have not yet been considered in this
context. Gravity driven coherent motions are in fact a
direct consequence of the growth of structure. The anisot-
ropy they induce in the observed galaxy clustering, when
redshifts are used as a measure of galaxy distances, can be
quantified by means of the redshift-space two-point corre-
lation function �ðrp; piÞ, where rp and � are, respectively,

the transverse and line-of-sight components of galaxy sep-
arations. The anisotropy of �ðrp; piÞ has a characteristic

shape at large rp that depends on the parameter � ¼ f
bL
. In

practice, we observe a compression that is proportional to
the growth rate, weighted by the factor bL, the linear bias
parameter of the specific class of galaxies being analyzed.
The parameter bL measures how closely galaxies trace the
mass density field, and is quantified by the ratio of the root-
mean-square fluctuations in the galaxy and mass distribu-
tions on linear scales. A value of �0:49� 0:09 has been
measured at z ¼ 0:15 using the 2dFGRS sample of 220 000
galaxies with bias [82,83]. From the observationally deter-
mined � and b, it is now straightforward to get the value of
the growth index at z ¼ 0:15 corresponding to the effective
depth of the survey. Verde et al. (2001) used the bispectrum
of 2dFGRS galaxies, and Lahav et al. (2002) combined the
2dFGRS data with cosmic microwave background radia-
tion data, and they obtained

bLverde
¼ 1:04� 0:11; (47)

bLlahav
¼ 1:19� 0:09: (48)

Using these two values for b, the value of the growth
index f at z ¼ 0:15 is

f1 ¼ 0:51� 0:1; (49)

f2 ¼ 0:58� 0:11: (50)

More recently, Guzzo et al. reported a measurement of
� ¼ 0:70� 0:26 at a redshift of 0.77, using new spectro-
scopic data from the wide part of the VVDS [84]. Using a
new survey of more than 10 000 faint galaxies, they also
measured the anisotropy parameter bL ¼ 0:70� 0:26,
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FIG. 13 (color online). The relative error between the growth
index f in our cosmological model ��

mðzÞ, with � ¼ 0:55: it
turns out that such a relation describes quite well the linear
growth rate.
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FIG. 12 (color online). The growth index f in our cosmologi-
cal model (the solid line), compared with its functional depen-
dence from ��

mðzÞ, with � ¼ 0:55 (dashed line).
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which corresponds to a growth rate of structure at that time
of f ¼ 0:91� 0:36. This is consistent with our cosmologi-
cal model, which gives fð0:77Þ ¼ 0:97� 0:12 and
fð0:15Þ ¼ 0:68� 0:2. However it is also consistent with
standard�CDMwith lowmatter density and flat geometry,
although the error bars are still too large to distinguish
among alternative origins for the accelerated expansion.
This could be achieved with a further factor-of-ten increase
in the sampled volume at similar redshift.

V. CONCLUSIONS

We have investigated the possibility that phantom field
dynamics could be derived by the Noether Symmetry
Approach. The method allows to fix the self-interacting
potential of the phantom field and then to solve exactly the
field equations, at least in the case of dark energy and
matter-dominated Universe. The main cosmological pa-
rameters can be directly derived starting from the general
solution. We also worked out a comparison between the
theoretical predictions and observational dataset, as the
publicly available data on SNeIa and radiogalaxies, the
parameters of large-scale structure determined from the
2dFGRS, and from the wide part of the VVDS. It turns
out that the model is quite well compatible with the pres-
ently available observational data.

Furthermore, we extended the approach to the case
including radiation. It can be shown that radiation is hardly
changing the behavior of the scalar field, its potential, the
Hubble constant and the w parameter of the dark energy
equation of state. As expected, the evolution of the �
parameters is different. At the initial epochs, radiation
dominates the expansion rate of the Universe, with dark
energy and matter being subdominant. At a redshift of
about 5000, the energy density of matter and radiation
become almost equivalent and, for a relatively short period,
the Universe becomes matter-dominated. At a redshift of
about 1, dark energy starts to dominate the expansion rate
of the Universe. It turned out that during the epoch of
nucleosynthesis (z� 109) the energy density of the scalar
field is much smaller than the energy density of radiation,
and during such an epoch the kinetic terms in the scalar-
field energy density vanishes, and the potential terms is
constant. This means that the dark energy term acts as an
effective cosmological constant �, and it does not influ-
ence the process of primordial nucleosynthesis.
As concluding remark, it is interesting to see that the

presence of the Noether symmetry could constitute a
physical criterion to fix the phantom potential. Such an
approach revealed extremely useful also for other classes
of models (see, e.g. [63,64]).
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