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We consider the Einstein-Maxwell system as a Cauchy initial value problem taking the electric and

magnetic fields as independent variables. Maxwell’s equations in curved spacetimes are derived in detail

using a 3þ 1 formalism and their hyperbolic properties are analyzed, showing that the resulting system is

symmetric hyperbolic. We also focus on the problem of finding initial data for multiple charged black

holes assuming time-symmetric initial data and using a puncturelike method to solve the Hamiltonian and

the Gauss constraints. We study the behavior of the resulting initial data families, and show that previous

results in this direction can be obtained as particular cases of our approach.
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I. INTRODUCTION

One of the most important results in numerical relativity
in recent years has been the successful simulation of the
coalescence of two spiraling (spin or spinless) black holes
(BH) (see Refs. [1,2] for an overview). These simulations
are important since one expects black hole collisions to be
among the most powerful sources of gravitational radia-
tion. Gravitational radiation from these types of sources
will presumably be measured by the next generation of
interferometric gravitational observatories within the next
decade or so [3]. It is therefore important to have simula-
tions of different kinds of astrophysical scenarios in order
to compare with the observational results to reach a deeper
understanding of such sources of gravitational radiation. In
addition to the simulations of coalescing black holes,
different authors have started to analyze collisions of ex-
tended objects (i.e. objects constructed with a nonzero
energy-momentum tensor) like neutron stars [4–6] or
even more exotic objects like boson stars [7,8]. Since
such objects are less compact than black holes, and since
their individual masses are limited, one expects that the
amount of gravitational radiation emitted by the collision
of these objects will be weaker relative to the two-black
hole problem. However, from the numerical point of view,
such scenarios are by far more challenging since hydro-
dynamics, microphysics or field theory are also involved.
Moreover, their gravitational-wave signals can be richer in
the sense that they can carry information about the internal
composition (e.g. equation of state).

Another interesting numerical problem that one can
conceive and that might have an observational counterpart
is the collision of two charged black holes (TCBH). This
problem is simpler than the case of two neutron stars but
perhaps more interesting than the two uncharged black
hole collision. In fact, it is conceivable that if black holes

in binary systems were formed by the gravitational core
collapse of neutron stars or supernovae then they could
have a small amount of charge. Actually, even if a black
hole is originally uncharged but immersed in a uniform
magnetic field (which in turn can be produced by an
accreting plasma surrounding the back hole), it can be
charged up to some extent [9]. Very likely their charge
would be small compared with their mass (in suitable
units), but perhaps large enough to leave an imprint in
the wave forms of gravitational radiation during a collision.
In fact, numerical simulations of electromagnetic (EM)
fields immersed in the background spacetime correspond-
ing to the collision of two uncharged black holes already
show that the dynamics of the background spacetime in-
duce the emission of electromagnetic radiation that is
correlated in a very particular way with the gravitational-
wave signals [10]. Such electromagnetic radiation (if de-
tected) might provide information about the premerger
stage as a precursor to the coalescence of the black holes.
One can expect that taking into account the backreaction of
the electromagnetic field in the spacetime itself can have
even more interesting features.
But even from the theoretical point of view, it seems

important to analyze the interplay between the gravita-
tional and electromagnetic forces in a TCBH collision.
Indeed, the analysis of the interplay between electromag-
netism and gravity within a BH spacetime has a long
history in general relativity [11]. The first analytic solution
to Einstein’s equations involving an electromagnetic field
was given by Reissner and Nordström [13,14]. This solu-
tion was interpreted as a spacetime containing a static and
spherically symmetric charged black hole. Much later,
Papapetrou [15] and Majumdar [16] found a static solution
involving multiple black holes having the maximal charge-
to-mass ratios (see Sec. III B). Perjes [17], and Israel and
Wilson [18] generalized this solution to the stationary case.
Several uniqueness theorems within the Einstein-Maxwell
theory have been established during the past which show
how to characterize certain kinds of stationary black hole
solutions (see Ref. [19] for a review).
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More recently, Ruffini and collaborators [20] have ana-
lyzed the case of a static charge in a Reissner-Nordström
spacetime by using a perturbative approach. In the frame-
work of the so-called membrane paradigm [21], and using
a 3þ 1 formalism, Thorne and colleagues have dealt with
different problems involving electromagnetic fields in
strong gravitational background fields (namely those gen-
erated by stationary black holes). Such a ‘‘membrane’’
viewpoint allows one to approximate several results con-
cerning electromagnetic fields around BHs, notably at the
horizons. The membrane viewpoint assigns to the horizon
thermodynamic mechanical and electric properties. In this
direction one can mention the pioneering work of Damour
[22] and Znajek [23], who analyzed the boundary condi-
tions of electromagnetic fields at the horizons of a BH.
Such boundary conditions can be thought of as arising
from the physical properties of a fictitious membrane
residing at the horizon or near the horizon (see [21] for
the introduction of the notion of ‘‘stretched horizon’’
which allows one to approximate these boundary condi-
tions near the true horizon). Since in this viewpoint one
neglects the backreaction of the matter fields into the
spacetime, this approximation will break down in situ-
ations where the self-gravity of the matter is important. It
is in this regime where numerical relativity becomes
crucial.

In the context of multiple charged black holes, the work
by Bowen [24] was one of the first to address the initial
data problem. He considered the case of zero initial mag-
netic field, but without imposing a moment of time sym-
metry and without resorting to electromagnetic potentials.
We will often make reference to Bowen’s work in this
paper. Previous to Bowen’s work, Lindquist [25] generated
initial data for many stationary charged particles by impos-
ing time symmetry and using a method of images and
electromagnetic potentials. This paper is similar in spirit
to Bowen’s work, except that we shall mainly be interested
in a TCBH initial data which is computed using a method
analogous to the puncture method [26] which is not inver-
sion symmetric (see Sec. III).

In order to tackle the problem of a TCBH collision there
are many challenges, both numerical and analytical. First,
from the numerical point of view there are two main
considerations: one is the initial data and another one is
the evolution of the Einstein-Maxwell system. The former
one requires suitable initial data compatible with the con-
straint equations. Whereas the latter one needs a numerical
code to solve the Einstein-Maxwell evolution system to-
gether with all the numerical tools necessary to analyze the
location of horizons, the amount of emission of gravita-
tional and electromagnetic radiation, etc.

As regards the analytical challenges, there are various
issues with different levels of complexity. Since the vast
majority of numerical relativists are concerned with the
3þ 1 formulation of Einstein equations and their corre-

sponding numerical solution, the first step toward our goal
consists in obtaining a well defined 3þ 1 decomposition of
Maxwell’s equations in a curved spacetime. It turns out
that this problem has been embraced in the past in at least
two works: first by Ellis in [27], and later by Thorne and
Macdonald in [28]. In Sec. II we present a completely
independent derivation of the 3þ 1 Maxwell equations
which we then compare with the one reported by Thorne
and Macdonald. Our derivation is based primary in the 3þ
1 formulation considered by York [29] (see Refs. [30,31]
for a thorough review of this formulation). As we will
show, the 3þ 1 Maxwell equations in curved spacetime
are in fact very similar to the usual Maxwell equations in
flat spacetime, except for the fact that some extra terms due
to the curvature arise. We obtain two ‘‘scalar’’ constraint
equations for the electric and magnetic fields, and two
‘‘vector’’ evolution equations for those fields. In this
case, the electric and magnetic fields are referred to the
so-called Eulerian observers whose four-velocity is or-
thogonal to the spacelike hypersurfaces that define the
foliation of the four dimensional spacetime (see Sec. II).
The advantage of this 3þ 1 formulation of Maxwell equa-
tions, as opposed to the one based on electromagnetic
potentials, is that their fundamental variables are gauge
invariant ab initio. Therefore, one needs to focus only on
the gravitational gauge issue. Moreover, the set of equa-
tions turns out to be manifestly hyperbolic (symmetric
hyperbolic). The only difference with respect to the flat
case is that the eigenvalues and eigenvectors associated
with the principal part of the equations include contribu-
tions due to the (densitized) lapse and shift. We analyze
these aspects in Sec. II A.
As we mentioned above, another challenge which can be

both numerical and analytical concerns the initial data. Let
us recall that in the case of the two uncharged BH colli-
sions one can consider a rich family of interesting initial
conditions. The simpler ones consist of imposing a mo-
ment of time symmetry in which the two BH are initially at
rest and without angular momentum and spin. With such a
condition the momentum constraints are satisfied trivially.
In this case, the initial data will generate a head-on colli-
sion. Moreover, one can assume that the 3-metric is con-
formally flat. Both conditions in the Hamiltonian
constraint lead to an elliptic equation for the conformal
factor (see Sec. III A). A unique solution of that equation is
obtained when imposing suitable boundary conditions
which in turn are related to the topology of the initial
hypersurface �0 (see Refs. [30,32] for a pedagogical re-
view of initial data). One possible topology for �0 is R3

minus two balls (the boundary of which represents the
horizons of the two BH). This kind of initial data has
been used in the so-called excised approach where one
ignores what is inside those balls while evolving the rest of
the spacetime. A simpler topology for �0 is to consider R

3

minus two ‘‘points.’’ This is the so-called ‘‘puncture data’’
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approach. The punctures represent in fact two different
asymptotically flat regions on a two-throat shaped space-
like �0. Since in vacuum the elliptic equation for the
conformal factor is indeed linear one can in fact construct
puncture data that represent an arbitrary number of black
holes that are initially at rest. This data has a simple
analytical expression whose form resembles the electric
potential generated by a series of point charges.

A much more realistic initial data was the one used in the
simulations of the coalescence of two binary BH that we
alluded to above. In this case, there is a remarkable ana-
lytical solution (the Bowen-York solution) of the momen-
tum constraints which represents two BH with arbitrary
linear momentum and spin [33]. This solution is con-
structed using a conformal and transverse-traceless decom-
position [32]. The most difficult part of this approach is to
solve a highly nonlinear elliptic equation for the conformal
factor. Again, one can adopt the puncture or the excised
approach. In either case one needs to solve the elliptic
equation numerically. The puncture approach has been
very popular recently and is the one that has led to many
successful evolutions of different BH binary configura-
tions. The outcome of such evolutions has led to the
prediction of a large variety of gravitational wave forms
that in the near future will be confronted with the obser-
vational data [3].

Returning now to the case of the two-charged BH prob-
lem, one can take advantage of the experience with the
uncharged case in order to construct interesting initial data.
Unlike the uncharged case, the new difficulty is that the
Einstein constraint equations will have contributions due to
the electromagnetic fields. In order to simplify the problem
the first attempt consists of assuming again a moment of
time symmetry where the magnetic field is zero. As men-
tioned before, this kind of initial data was considered in the
past by Bowen [24]. In this case the Poynting vector (which
is the source of the momentum constraints) becomes iden-
tically zero. We could then use the Bowen-York initial data
for this problem. However, one still needs to solve the
Hamiltonian constraint plus the Gauss constraint for the
electric field, the former containing now the contribution
due to the electrostatic energy-density associated with the
initial electric field generated by the two-charged BH. One
can further simplify the problem if one assumes that the
two BH are initially at rest (zero spin and zero linear and
angular momentum). This initial data would then represent
the head-on collision of two charged BH. However, unlike
the vacuum case, the elliptic equation for the conformal
factor is now highly nonlinear. Remarkably, we have found
a way to solve analytically both constraints (the Hamil-
tonian and Gauss constraints) using a puncture approach
(see Sec. III B). This solution represents a superposition of
multiple charged black holes all of which having the same
charge-to-mass ratio. When this last condition is dropped,
finding an analytical solution seems difficult. However, it is
not difficult to find numerical solutions (see Sec. III C).

The paper is organized as follows: Sec. II presents our
derivation of the 3þ 1 Maxwell equations in a curved
spacetime, as well as the analysis of their hyperbolic
properties (this section is complemented by an
Appendix). The Einstein-Maxwell system is summarized
and a brief discussion on the electromagnetic potentials is
also included. In Sec. III we analyze the initial data for
multiple black holes using a conformal approach, where
both analytical and numerical results are obtained. Finally
Sec. IV contains several comments and remarks for the
future.

II. MAXWELL EQUATIONS IN 3þ 1 FORM

In the following we assume that the reader is familiar
with the 3þ 1 formalism of general relativity (see
Refs. [29–31], for a thorough review, and [34] for the
conventions adopted here).
Let us first remember that the covariant Maxwell equa-

tions read

raF
ab ¼ �4�jb; (2.1)

raF
�ab ¼ 0; (2.2)

where

Fab ¼ @aAb � @bAa; (2.3)

F�ab :¼ � 1

2
�abcdFcd (2.4)

are Faraday’s tensor and its dual. Here we take the con-
vention that �0123 ¼ �1=

ffiffiffiffiffiffiffi�g
p

and �0123 ¼ þ ffiffiffiffiffiffiffi�g
p

, with

the signature of gab taken as ð�;þ;þ;þÞ [35].
In order to obtain the 3þ 1 decomposition of Maxwell

equations from their covariant form, one has to proceed in
a way very similar to the derivation of the so-called
Arnowitt-Deser-Misner (ADM) equations of general rela-
tivity. Let us briefly review the ingredients of this decom-
position. One considers a spacetime ðM;gabÞ (assumed to
be globally hyperbolic) which is foliated by a family of
spacelike hypersurfaces �t (t 2 R) parametrized by a
global time function t (i.e. M has topology M ¼
�t � R). The foliation is achieved in the following way:
On a Cauchy surface �t, one is given an initial data set that
satisfies some constraint equations (see Sec. II C). The full
spacetime is ‘‘reconstructed’’ by evolving these initial data
using a suitable set of evolution equations (which includes
the gauge). Such a set of constraints and evolution equa-
tions are known as the ADM equations of general
relativity.
In order to find a similar set of equations for the elec-

tromagnetic case, an analogous algebraic and geometric
decomposition of the field equations (2.1) and (2.2) has to
be performed. The general procedure for obtaining a 3þ 1
splitting of a system of covariant field equations (also
called orthogonal decomposition) consists of projecting
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the different tensor fields in the directions parallel and
orthogonal to the timelike unit vector field na (nana ¼
�1) which is normal to �t. The projection onto �t is
performed by first defining the projector operator:

hab ¼ �a
b þ nanb: (2.5)

This tensor field has the property of being idempotent:
ha

chc
b ¼ ha

b.
A tensor field 3Ta1a2...ak

b1b2...bl
is said to be tangential to

�t if, when contracted with na, it gives zero, or equiva-
lently if contracted with hab it remains unchanged. For

brevity, such tensors will be termed 3-tensors. Any tensor
field can be decomposed orthogonally by using hab and n

a.

In particular, a 4-vector wa is decomposed as follows

wa ¼ 3wa þ w?na; (2.6)

where 3wa :¼ habw
b and w? :¼ �ncw

c. Moreover, the

3þ 1 splitting of the metric reads

ds2 ¼ �ðN2 � NiNiÞdt2 � 2Nidtdx
i þ hijdx

idxj; (2.7)

where the lapse function N > 0 is defined as to normalize
the (future pointing) dual vector field na ¼ �Nrat. The
shift vector is given by Na :¼ �habt

b, where ta ¼ ð@=@tÞa
is a vector field that represents the ‘‘flow’’ of the time lines
and which satisfies tarat ¼ 1. This means that ta is or-
thogonally decomposed as ta ¼ �Na þ Nna, with N ¼
�nat

a. Here hij is the 3-metric (or induced metric) of the

manifold�t. In order to avoid confusion a note on notation
is important at this point: many numerical relativity refer-
ences (see e.g. [29,30]) use � and �a to denote the lapse
and shift instead of N and Na, with � ¼ N and �a ¼ �Na

(do note the change in sign in the shift).
Another important object is the extrinsic curvature of the

embeddings �t which is defined as [36]

Kab :¼ � 1

2
Lnhab; (2.8)

where Ln stands for the Lie derivative along na. From the
above definition one can obtain the following identity

Kab ¼ �ha
chb

drcnd; (2.9)

which shows that Kab is in fact a 3-tensor field.
Furthermore, its trace is given by

K ¼ �rcn
c: (2.10)

As is well known, the set ð�t; hab; KabÞ provides the
initial data for the gravitational field. This data in fact
cannot be chosen freely, and has to satisfy the Einstein
constraint equations (see Sec. II C).

At this point it is useful to introduce a covariant deriva-
tive operator compatible with hab. Given a 3-tensor field
3Ta1a2...ak

b1b2...bl
, one defines

De
3Ta1a2...ak

b1b2...bl
¼ ha1c1 . . . h

ak
ckhb1

d1 . . . hbl
dlhfe

�rf
3Tc1c2...ck

d1d2...dl
; (2.11)

where Dahbc � 0. Finally, one should mention that the
indices of 3-tensors can be raised and lowered with hab

and hab, and also their contravariant time components are
identically zero. Moreover the projector hab applied to any
3-tensor field acts as a �a

b.

The Maxwell equations written in the form of an initial-
data (Cauchy) problem can be obtained by projecting
Eqs. (2.1) and (2.2) orthogonally and tangentially to the
spacelike hypersurface �t using na and the projector op-
erator (2.5), respectively. Note that with respect to a local
coordinate basis adapted to the foliation we have na ¼
ð�N; 0; 0; 0Þ and na ¼ ð1=N;Ni=NÞ. In particular, in a flat
spacetime one has na ¼ ð�1; 0; 0; 0Þ and na ¼ ð1; 0; 0; 0Þ.
We will need to define suitable quantities associated

with the EM field before proceeding with the 3þ 1 de-
composition of the Maxwell equations. In order to do this,
consider first the 3þ 1 decomposition of an arbitrary 2-0
tensor, say Hab, which is given as follows

Hab ¼ ð3ÞHab þ nað3ÞH?b þ ð3ÞHa?nb þH??nanb;
(2.12)

with

ð3ÞHab :¼ hach
b
dH

cd; (2.13)

ð3ÞH?b :¼ �nch
b
dH

cd; (2.14)

ð3ÞHa? :¼ �nch
a
dH

dc; (2.15)

H?? :¼ nanbH
ab: (2.16)

For the particular case where Hab ¼ Fab, the antisym-
metry of Fab implies that F?? � 0, so [37]

Fab ¼ ð3ÞFab þ nað3ÞF?b þ ð3ÞFa?nb: (2.17)

We now define the electric and magnetic fields as mea-
sured by the Eulerian observers with four velocity na in the
following way [38]

Ea :¼ �nbF
ba � ð3ÞF?a; (2.18)

Ba :¼ �nbF
�ba � ð3ÞF�?a: (2.19)

The last equalities in Eqs. (2.18) and (2.19) result by
noticing that the above definitions and the antisymmetry
of Fab and F�ab both imply that Ea and Ba are in fact 3-
vector fields since naE

a � 0 � naB
a, or equivalently

Ea ¼ hadE
d, Ba ¼ hadB

d. Otherwise such equalities can

be corroborated simply by inserting Eq. (2.17) and its
corresponding dual in the definitions above. In this way,
one finds that
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Fab ¼ ð3ÞFab þ naEb � Eanb: (2.20)

On the other hand, from Equations (2.19), (2.4), and (2.20)
we have

Ba ¼ 1

2
nb�

bacdFcd

¼ 1

2
nb�

bacdðð3ÞFcd þ ncEd � EcndÞ

¼ 1

2
nb�

bacdð3ÞFcd; (2.21)

where in the last equality we used the fact that the con-
traction of the totally antisymmetric Levi-Civita symbol
�bacd with the symmetric tensors nbnd and nbnc vanishes
identically. Moreover

Ba � haeB
e ¼ 1

2
nbh

a
e�

becdð3ÞFcd

¼ 1

2
nbh

a
ehc

fhd
gð3Þ�becdð3ÞFfg ¼

1

2
�?afgð3ÞFfg;

(2.22)

where

ð3Þ�?afg :¼ nbh
a
eh

f
ch

g
d�

becd � nb�
bafg: (2.23)

The last identity arises when using Eq. (2.5) in the above
definition, plus the fact that all the contractions between
�becd and more than one factor na vanish identically [40].

Now, since �0123 ¼ �1=
ffiffiffiffiffiffiffi�g

p ¼ �1=ðN ffiffiffi
h

p Þ, where

h :¼ detðhijÞ and ð3Þ�?afg ¼ �Nhaeh
f
ch

g
d�

0ecd, it is clear

that ð3Þ�?123 ¼ �N�0123 ¼ 1=
ffiffiffi
h

p
. Therefore we simply

identify

ð3Þ�afg ¼ ð3Þ�?afg; (2.24)

with the 3-Levi-Civita symbol defined in such a way that
ð3Þ�123 ¼ 1=

ffiffiffi
h

p
[41]. It is also convenient to introduce a

‘‘flat’’ Levi-Civita symbol as

�abcF
:¼ ffiffiffi

h
p ð3Þ�abc; (2.25)

�Fabc :¼
1ffiffiffi
h

p ð3Þ�abc; (2.26)

where �abcF and �Fabc take values ð0;�1Þ as in flat space.

We can also invert Eq. (2.22) as follows

ð3ÞFab ¼ ð3Þ�abcBc; (2.27)

so that Eq. (2.20) now reads [42]

Fab ¼ ð3Þ�abcBc þ naEb � Eanb: (2.28)

In the same way we can obtain the following 3þ 1
decomposition of F�ab:

F�ab ¼ �ð3Þ�abcEc þ naBb � Banb: (2.29)

We note that, just as in the case of flat space, the dual
operation maps the electric and magnetic fields as follows:
Ea ! Ba, Ba ! �Ea [43].
We are now in the position of performing the 3þ 1

splitting of Maxwell equations (details can be found in
the Appendix). The projection of Eqs. (2.1) and (2.2) onto
na, after the use of Eqs. (2.28) and (2.29), leads to the initial
value constraints for the electric and magnetic fields re-
spectively:

DaE
a ¼ 4��; (2.30)

DaB
a ¼ 0; (2.31)

where we remind the reader that Da is the derivative
operator compatible with hab [cf. Eq. (2.11)], and � :¼
�naj

a is the charge density as measured by the Eulerian
observer. More specifically, the covariant 3-divergence is
given by

DaE
a ¼ 1ffiffiffi

h
p @ið

ffiffiffi
h

p
EiÞ: (2.32)

On the other hand, the projection of (2.1) onto �t

provides the evolution equation for the electric field (see
the Appendix for details):

hacLnE
c ¼ ðD� BÞa � ðB� aÞa þ KEa � 4�ð3Þja;

(2.33)

with

ðD� BÞa :¼ ð3Þ�abc@bBc; (2.34)

ðB� aÞa :¼ ð3Þ�abcBbac; (2.35)

ð3Þja :¼ habj
b; (2.36)

and where K :¼ Ka
a is the trace of the extrinsic curvature

given by Eq. (2.10), and ac :¼ naran
c � DcðlnNÞ is the

acceleration of the Eulerian observer [29,31].
Taking the spatial components of Eq. (2.33) one finds

[44]

@tE
i þLNE

i ¼ ðD� NBÞi þ NKEi � 4�Nð3Þji; (2.37)

where now LN is the Lie derivative along the shift, and
where we used the fact that ðD� NBÞi ¼ NðD� BÞi �
NðB� aÞi.
In a similar way, the projection of (2.2) onto �t provides

the evolution equation for the magnetic field

@tB
i þLNB

i ¼ �ðD� NEÞi þ NKBi: (2.38)

A self-consistency check of Eq. (2.37) can be performed
by noting that Eq. (2.1) implies the charge conservation
equation

rcj
c ¼ 0: (2.39)

This equation can be written in terms of the 3þ 1 language
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as follows (see the Appendix):

@t�þLN� ¼ �DaðNð3ÞjaÞ þ N�K: (2.40)

Therefore, by replacing in the above equation the values of

� and ð3Þjc given by Eqs. (2.30) and (2.37) respectively, one
finds (after some algebra that involves the use of the
commutator of covariant derivatives applied to a vector
field as well as the Gauss-Codazzi equations) an identity. In
a similar way, one can also check the self-consistency of
Eqs. (2.31) and (2.38).

At this point it is important to mention that a set of 3þ 1
Maxwell equations analogous to Eqs. (2.30), (2.31), (2.37),
and (2.38), as well as the 3þ 1 charge conservation
Eq. (2.40), were derived previously by Thorne and
Macdonald in [28] using the same sign conventions but a
different notation [45]. These authors in turn used the 3þ
1 congruence formalism of Maxwell’s equations derived
by Ellis [27].

It is important to note that in a flat spacetime Eqs. (2.30),
(2.31), (2.37), and (2.38) reduce to the familiar form of
Maxwell’s equations. For the present case of a curved
spacetime, one can in fact rewrite Eq. (2.30) in integral
form asZ

@�t

Ea
ffiffiffi
h

p
�ad� ¼

Z
�t

�naj
a
ffiffiffi
h

p
dx1dx2dx3: (2.41)

On the left hand side (lhs), one has the flux of the electric
field lines across a closed two-surface lying on �t with

normal �a 2 T�t
p . On the right hand side (rhs), one has the

total charge measured by the Eulerian observers contained
in the volume enclosed by the two-surface. The rhs is a
consequence of Eq. (2.39), which implies that the total
electric charge Q is conserved:

Q ¼
Z
�t

Njt
ffiffiffi
h

p
dx1dx2dx3

¼
Z
�t

�naj
a
ffiffiffi
h

p
dx1dx2dx3

¼
Z
�t

�
ffiffiffi
h

p
dx1dx2dx3: (2.42)

Note that in all the above expressions there appears the

proper volume element
ffiffiffi
h

p
dx1dx2dx3 on �t as measured

by the Eulerian observers. A similar analysis can be done
on Eq. (2.31), except that in this case there are no magnetic
charges (the magnetic field lines are always closed).

As concerns the evolution equations (2.37) and (2.38),
some of the extra terms appearing there are due to curva-
ture effects plus the fact that all observables are referred to
the Eulerian observers. For instance, if one uses during the
evolution the so-calledmaximal slicing condition [which is
defined by imposing K � 0 � @tK; this leads to an elliptic
equation for the lapse N [cf. Eq. (2.82)], then the terms
proportional to NK on the rhs of Eqs. (2.37) and (2.38)
vanish identically. Otherwise, those terms are present and

are associated with the time variation of the proper volume
elements on �t. Now, quite independently of the choice of
a particular time slicing, Thorne and Macdonald have
provided geometrical interpretations of the extra terms
that couple gravity with electromagnetism in a nontrivial
fashion. Such interpretations can become even clearer
when writing the evolution equations in integral form [28].

A. Hyperbolicity analysis of Maxwell’s equations in
curved spacetimes

The system of evolution equations (2.37) and (2.38) for
the electric and magnetic fields can clearly be written as
[46]

@t ~uþMi@i ~u ¼ ~S; (2.43)

where ~u ¼ ðEi; BiÞ are the fundamental variables and Mi

are the characteristic matrices along the directions xi.
In order to gain some insight on the hyperbolic structure

of Maxwell’s equations, let us first focus on the case of a
flat spacetime background in Cartesian coordinates and in
vacuum (i.e. in the absence of electric charges and cur-
rents). In such a case the matrix Mi is a 6� 6 block
antidiagonal matrix which can be written as the following
direct sum of two 3� 3 matrices:

M i ¼ Mi
up ~�Mi

low; (2.44)

where the symbol ~� means a direct sum by placing the
blocks in the antidiagonal:

M i ¼ 0 Mi
up

Mi
low 0

 !
: (2.45)

The components of the upper and lower matrices Mi
up and

Mi
low are given respectively by

M ilm
up ¼ �ilmF ð1 � l; m � 3Þ; (2.46)

M ilm
low ¼ ��ilmF ð1 � l; m � 3Þ: (2.47)

The minus ‘‘�’’ in Eq. (2.47) corresponds to the asymme-
try in sign in the dynamic Maxwell equations (2.37) and
(2.38). However, since Milm

up ¼ Miml
low this shows that Mi is

indeed symmetric [e.g. see Eq. (2.52)]. Therefore one
concludes that the system of equations (2.37) and (2.38)
are in fact symmetric hyperbolic and so they admit a well
posed Cauchy problem.
One can further analyze the different modes of the

characteristic matrix Mi. Let us take first the simple case
where Ei and Bi consists of plane waves moving in the ‘‘x’’
direction so that

Ei ¼ Êie{ð!t�kxÞ; (2.48)

Bi ¼ B̂ie{ð!t�kxÞ: (2.49)

Equations (2.37) and (2.38) then reduce to the following
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algebraic system (remember that we are considering flat
spacetime in vacuum)

!Êi þ �ijlkjB̂
l ¼ 0; (2.50)

!B̂i � �ijlkjÊ
l ¼ 0: (2.51)

The matrix Mx then takes the form

M x ¼

0 0 0 0 0 0
0 0 0 0 0 c
0 0 0 0 �c 0
0 0 0 0 0 0
0 0 �c 0 0 0
0 c 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
; (2.52)

where c :¼ k=! corresponds to the speed of light. The
constraints equations (2.30) and (2.31) impose the follow-
ing conditions

Ê x ¼ 0 ¼ B̂x: (2.53)

Now, the eigenvalues ofMx are ~� ¼ ð0; 0;�c;�cÞ. The
eigenvalue � ¼ 0 corresponds to the eigenvectors ~e1 ¼
ð1; 0; 0; 0; 0; 0Þ and ~e2 ¼ ð0; 0; 0; 1; 0; 0Þ, the eigenvalue
� ¼ �c corresponds to the eigenvectors ~e3 ¼
ð0;�1; 0; 0; 0; 1Þ and ~e4 ¼ ð0; 0; 1; 0; 1; 0Þ, and the eigen-
value � ¼ c corresponds to the eigenvectors ~e5 ¼
ð0; 1; 0; 0; 0; 1Þ and ~e6 ¼ ð0; 0;�1; 0; 1; 0Þ.

The determinant of the eigenvector matrix Rx is

detðRxÞ ¼ �4: (2.54)

The set of eigenvectors therefore is complete, and the
evolution system turns to be strongly hyperbolic. This of
course is not a surprise since we already knew that Mx is
symmetric and therefore the system is in fact symmetric
hyperbolic.

The first two modes with speed zero (� ¼ 0) are clearly
unphysical since they are associated with modes that vio-
late the constraints (2.53). On the other hand, the modes
with speed �c do satisfy the constraints. These physical
modes correspond to ~e3, ~e4, ~e5, ~e6, and are associated with
the two polarizations states (each one with speed �c) of
the electromagnetic waves.

Now, for the case of waves propagating along an arbi-
trary direction defined by the unit vector ~s, the principal
symbol of the system is given byC :¼ Misi. Then we have

C ¼

0 0 0 0 s3 �s2
0 0 0 �s3 0 s1
0 0 0 s2 �s1 0
0 �s3 s2 0 0 0
s3 0 �s1 0 0 0
�s2 s1 0 0 0 0

0
BBBBBBBB@

1
CCCCCCCCA
: (2.55)

The eigenvalues are ~� ¼ ð0; 0;�1;�1Þ with correspond-
ing eigenvectors (from now on we will take the speed of
light to be equal to 1):
(i) � ¼ 0:

~e 1 ¼ ðs1=s3; s2=s3; 1; 0; 0; 0Þ; (2.56)

~e 2 ¼ ð0; 0; 0; s1=s3; s2=s3; 1Þ: (2.57)

(ii) � ¼ �1

~e 3 ¼ ðs2;�ðs21 þ s23Þ=s1; s2s3=s1;�s3=s1; 0; 1Þ;
(2.58)

~e 4 ¼ ð�s3;�s2s3=s1; ðs21 þ s22Þ=s1;�s2=s1; 1; 0Þ:
(2.59)

(iii) � ¼ 1

~e 5 ¼ ð�s2; ðs21 þ s23Þ=s1;�s2s3=s1;�s3=s1; 0; 1Þ:
(2.60)

~e 6 ¼ ðs3; s2s3=s1;�ðs21 þ s22Þ=s1;�s2=s1; 1; 0Þ:
(2.61)

and the determinant of the eigenvector matrix R is

detðRÞ ¼ �4=ðs21s23Þ: (2.62)

The set of eigenvectors is clearly complete, and the evo-
lution system again turns out to be strongly hyperbolic.
Since C is symmetric, the system is in fact symmetric
hyperbolic.
Again, the two modes with zero speed violate the con-

straints since ~S � ~e1 and ~S � ~e2 do not vanish, where ~S :¼
ðs1; s2; s3; s1; s2; s3Þ (the constraints correspond to @iu

i ¼
0, that is, ûiSi ¼ 0 ¼ Êisi þ B̂isi). On the other hand, one

can see that ~S � ~ei vanish identically for i ¼ ð3; . . . ; 6Þ.
Therefore such modes satisfy the constraints and propagate
with the speed of light. They correspond to the two polar-
ization states with speed �1.
We can now consider the full system of evolution equa-

tions (2.37) and (2.38) with a prescribed shift. The princi-
pal symbol now reads
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C ¼

Ns 0 0 0 N s3 �N s2
0 Ns 0 �N s3 0 N s1
0 0 Ns N s2 �N s1 0
0 �N s3 N s2 Ns 0 0

N s3 0 �N s1 0 Ns 0
�N s2 N s1 0 0 0 Ns

0
BBBBBBBB@

1
CCCCCCCCA
; (2.63)

where Ns :¼ Nisi, and with N :¼ N=
ffiffiffi
h

p
the densitized

lapse.

The eigenvalues of the principal symbol are now ~� ¼
ðNs;Ns; Ns �N Þ. These correspond to the characteristic
speeds as measured by the Eulerian observers. In the flat
spacetime limit they reduce to those previously obtained.
Their corresponding eigenvectors are now

(i) � ¼ Ns

~e 1 ¼ ðs1=s3; s2=s3; 1; 0; 0; 0Þ; (2.64)

~e 2 ¼ ð0; 0; 0; s1=s3; s2=s3; 1Þ: (2.65)

(ii) � ¼ Ns �N

~e 3 ¼ ðs2;�ðs21 þ s23Þ=s1; s2s3=s1;�s3=s1; 0; 1Þ:
(2.66)

~e 4 ¼ ð�s3;�s2s3=s1; ðs21 þ s22Þ=s1;�s2=s1; 1; 0Þ:
(2.67)

(iii) � ¼ Ns þN

~e 5 ¼ ð�s2; ðs21 þ s23Þ=s1;�s2s3=s1;�s3=s1; 0; 1Þ;
(2.68)

~e 6 ¼ ðs3; s2s3=s1;�ðs21 þ s22Þ=s1;�s2=s1; 1; 0Þ:
(2.69)

Just as in the flat case, the first two modes which
propagate with the coordinate speed Ns are unphysical
since they violate the constraints. On the other hand, the
remaining modes satisfy the constraints and propagate at
the speed of light Ns �N .

The characteristic speeds along a given direction xi can

also be written as ~�i ¼ ðNi; Ni; Ni �N siÞ, so that the

projection along the ~s direction provides ~�. This shows
that physical modes propagate along the light cones, cor-
responding to the coordinate speeds Ni �N si.

B. Energy-momentum tensor of the electromagnetic
field

The energy-momentum tensor of the EM field is given
by

Tab ¼ 1

4�

�
FacFb

c � 1

4
gabFcdF

cd

�
: (2.70)

Using Eq. (2.28) we obtain

FacFb
c ¼ �ðEaEb þ BaBbÞ þ B2hab þ E2nanb

þ 2EcBdð3Þ�cdðanbÞ; (2.71)

where E2 ¼ EaEa and B2 ¼ BaBa.
From the above equation one can easily find

FacF
ac ¼ �2ðE2 � B2Þ: (2.72)

The energy-momentum tensor (2.70) then becomes

Tab ¼ 1

4�

�
�ðEaEb þ BaBbÞ þ 1

2
habðE2 þ B2Þ

þ 1

2
nanbðE2 þ B2Þ þ 2EcBdð3Þ�cdðanbÞ

�
; (2.73)

where we have used the fact that gab ¼ hab � nanb
[cf. Eq. (2.5)]. The 3þ 1 decomposition of this tensor is
[cf. Eq. (2.12)]

Tab ¼ Enanb þ naJb þ Janb þ Sab; (2.74)

where now [cf. Eqs. (2.13), (2.14), (2.15), and (2.16)]

E :¼ nanbTab ¼ 1

8�
ðE2 þ B2Þ; (2.75)

Ja :¼ �hcan
dTdc ¼ 1

4�
ð3Þ�acdE

cBd; (2.76)

Sab :¼ ha
chb

dTcd

¼ 1

8�
½habðE2 þ B2Þ � 2ðEaEb þ BaBbÞ	: (2.77)

We identify E with the energy density of the EM field as
measured by the Eulerian observers, Ja with the momen-
tum density measured by those observers (the Poynting
vector), and Sab with the stress tensor [47].
Since the trace Ta

a of the energy-momentum tensor
(2.70) vanishes, Eq. (2.74) leads to [cf. Eqs. (2.75) and
(2.77)],

S ¼ E; (2.78)

where S ¼ Saa is the trace of the 3-tensor (2.77).
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C. Einstein-Maxwell system

We now consider the Einstein equations in 3þ 1 form,
with the matter sources provided by the electromagnetic
field contributions of Sec. II B.

The Hamiltonian and momentum constraints are, re-
spectively [29–31]

3Rþ K2 � KijK
ij ¼ 16�E; (2.79)

DlK
il �DiK ¼ 8�Ji: (2.80)

The dynamic Einstein equations read [29–31]

@tKij þLNKij þDiDjN � Nð3Rij þ KKij � 2KilK
l
jÞ

¼ 4�N½hijðS� EÞ � 2Sij	 ¼ �8�NSij; (2.81)

where we used Eq. (2.78) to simplify the rhs of Eq. (2.81).
Taking now the trace in Eq. (2.81), and using Eq. (2.79),
one obtains the following evolution equation which can be
very useful in many cases (e.g. see Sec. III below):

@tK þ Nl@lK þD2N � NKijK
ij ¼ 4�NðSþ EÞ

¼ 8�NE; (2.82)

where we used Eq. (2.78) in the last step. Here D2 stands
for the Laplacian operator compatible with the 3-metric
hab.

In all the four equations (2.79), (2.80), (2.81), and (2.82),
the rhs is given in terms of the energy-momentum contri-
butions defined in Eqs. (2.75), (2.76), and (2.77).

It is well known that the evolution equations (2.82),
when written in first order form, are only weakly hyper-
bolic (see Ref. [30] for a thorough review), and so do not
admit a well-posed Cauchy problem (in the Hadamard
sense). However, by adding suitable multiples of the con-
straints and using a conformal decomposition [e.g. the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion [48]] one can write the evolution system in such a
way that the evolution system admits a well-posed Cauchy
problem. Here we are not concerned with that issue, but
will consider it when we study numerical evolutions of the
Einstein-Maxwell system in a future paper.

The Cauchy problem in this case can be summarized as
follows: given the initial data ð�t; hab; Kab; Ea; BaÞ, satis-
fying the constraints (2.79), (2.80), (2.30), and (2.31), one
can then evolve forward in time (given a prescription for N
and Ni) the fields hab, Kab, Ea, Ba using their evolution
equations (2.8) and (2.81) (or their corresponding strongly
hyperbolic formulated equations), (2.37) and (2.38) respec-
tively [49].

D. Electromagnetic potentials

Up until this point we have worked directly with the
electric and magnetic fields and ignored the potentials.
This is quite deliberate, as the use of the potentials can
complicate matters, in particular due to the fact that one

needs to choose a gauge. Also, the evolution equations for
the electromagnetic field when written in terms of the
potentials are second order in space and time, which brings
extra complications coming from the fact that covariant
derivatives do not commute. Nevertheless, here we will
very briefly describe, without going into any details, the
3þ 1 form of the electromagnetic potentials and their
relation with the electric and magnetic fields.
Let us start by remembering that in terms of the potential

4-vector Aa the Faraday tensor is given by Eq. (2.3), which
we rewrite here for concreteness:

Fab ¼ @aAb � @bAa: (2.83)

Starting from the potential 4-vector, one can now define a
3þ 1 ‘‘scalar potential’’ � through

� :¼ �naA
a; (2.84)

together with a potential 3-vector ð3ÞAa defined as

ð3ÞAa :¼ habA
b: (2.85)

From these definitions one can immediately find that, in a
coordinate system adapted to the 3þ 1 foliation:

� ¼ NAt ¼ � 1

N
ðAt þ NaAaÞ; (2.86)

and

ð3ÞAa ¼ Aa � na�; ð3ÞAi ¼ Ai: (2.87)

Now, by projecting the expression for the Faraday tensor
in terms of Aa given above one can obtain, after some
algebra, the following relation between the electric-field Ei

and the 3þ 1 potentials:

@t
ð3ÞAi þLN

ð3ÞAi ¼ �NEi �DiðN�Þ: (2.88)

Notice that this equation can in fact be interpreted as an

evolution equation for the potential 3-vector ð3ÞAi.
Similarly, one can also obtain the following expression

for the magnetic field Bi in terms of ð3ÞAi:

Bi ¼ 1

2
ð3Þ�imnð@mð3ÞAn � @n

ð3ÞAmÞ
¼ ð3Þ�imn@m

ð3ÞAn ¼ ðD� ð3ÞAÞi; (2.89)

with the rotational operator ðD� ð3ÞAÞ defined in the same
way as before.
At this point, one could take the point of view that the

independent dynamical variables are in fact ð3ÞAi ¼
hijð3ÞAj and Ei, with evolution equations given by (2.37)

and (2.88), and simply define the magnetic field through
Eq. (2.89), therefore ignoring Eq. (2.38) (which is now just
a consequence of the definition of Bi). One would also find
that the magnetic constraint (2.31) is now trivial. We would
then have a system of evolution equations that is first order
in time and second order in space, with only one constraint,
namely the electric constraint (2.30).
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Of course, one would still have to choose a gauge
condition in order to evolve the scalar potential �. One
possibility would be to take the Lorentz gauge, which is
given in terms of the 4-vector potential as

raA
a ¼ 0: (2.90)

This gauge condition can be easily seen to take the follow-
ing form in 3þ 1 language

@t�þLN� ¼ �DmðNð3ÞAmÞ þ NK�; (2.91)

with K the trace of the extrinsic curvature, which clearly
provides us with an evolution equation for �.

Taking this point of view, however, has one serious
drawback. One can show that the system of evolution
equations given by (2.37), (2.88), and (2.91) is in fact
only weakly hyperbolic even in flat space (i.e. it has real
eigenvalues, but does not have a complete set of eigenvec-
tors), so that the system is not well-posed. There are
certainly ways around this, involving defining new auxil-
iary variables and crucially commuting the second cova-

riant derivatives of ð3ÞAi that would appear in Eq. (2.37)
when we write the magnetic field as (2.89) (which consid-
erably complicates the equation by bringing in a contribu-
tion from the Riemann tensor), but we will not go into such
details here (see e.g. Ref. [52]). It is enough to say that,
even though strongly hyperbolic versions of the evolution

system for ð3ÞAi and Ei do exist, it is simpler and much
cleaner to work with the electric and magnetic fields di-
rectly, and consider the potentials just as auxiliary varia-
bles when (and if) they are needed.

III. INITIAL DATA FOR MULTIPLE CHARGED
BLACK HOLES

In this section we will consider the problem of finding
suitable initial data for multiple charged black holes. For
simplicity, we will concentrate on the case of time-
symmetric initial data for which the extrinsic curvature
vanishes Kab ¼ 0. Furthermore, we will also assume that
the initial magnetic field is zero, in which case the mo-
mentum constraints are identically satisfied.

The problem of solving the Einstein-Maxwell constraint
equations was studied previously by Bowen in [24], where
he used a method of images (notably for the electric field)
to construct a manifold that represents two isometric
asymptotically flat universes with n throats connecting
them. In that work Bowen describes a solution for the
electric field that is inversion symmetric through the
throats (but which do not arise from a potential), which
then allows one to find numerical initial data for the 3-
metric that represents n charged black holes. Here, how-
ever, we will use a different approach and will look instead
for solutions that are not inversion symmetric, but that
rather represent a series of throats that connect our universe
to n distinct asymptotically flat universes, more in the spirit
of the Brill-Lindquist [53] initial data for time-symmetric

black holes, or the Brandt-Bruegmann [26] puncture data
for spinning or moving black holes.

A. Conformal transformation of the metric and electric
field

For time-symmetric initial data and vanishing magnetic
field, the problem of finding initial data reduces to finding a
solution of the electric constraint (2.30)

DaE
a ¼ 4��; (3.1)

together with the Hamiltonian constraint (2.79)

3R ¼ 16�E; (3.2)

with the energy density of the EM given by

E ¼ 1

8�
EaE

a: (3.3)

Let us now assume that the spatial metric hab is con-
formally flat, so that we can rewrite it as

hab ¼ c 4ĥab; (3.4)

with c the conformal factor and ĥab a flat background
metric in arbitrary coordinates. The Hamiltonian constraint
then reduces to the following elliptic equation for the
conformal factor

D̂ 2c þ 1

4
c 5EaE

a ¼ 0; (3.5)

with D̂2 the Laplacian operator compatible with the back-
ground metric.
With the above conformal transformation in mind, let us

now consider the electric constraint (3.1). Notice first that
Da is the derivative operator associated with the physical
metric hab. Notice also that, quite generally, for any 3-
vector va we have

Dav
a ¼ D̂av

a þ 6va@a lnc ; (3.6)

with c the conformal factor introduced above and D̂ the
derivative operator associated with the conformal metric

ĥab. This implies in particular that

Daðc nvaÞ ¼ c n½D̂av
a þ ð6þ nÞva@a lnc 	: (3.7)

Using this result it is then natural to define the confor-
mally rescaled electric field as

Ê a :¼ c 6Ea; Êa :¼ c 2Ea; (3.8)

and the conformally rescaled charge density as

�̂ :¼ c 6�: (3.9)

The electric constraint then reduces to

D̂ aÊ
a ¼ 4��̂; (3.10)

where now the divergence is calculated with respect to the
conformal metric.
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In terms of the conformal electric field just defined, the
Hamiltonian constraint takes the final form:

D̂ 2c þ 1

4c 3
ÊaÊ

a ¼ 0: (3.11)

In order to find initial data, one must then first solve the
conformal electric constraint (3.10), and then plug in the

solution for Êa into the Hamiltonian constraint in order to
solve for the conformal factor c .

In fact, Eq. (3.11) can also be written as

�c D̂2 �c � 1

2
ðD̂a �c ÞðD̂a

�c Þ þ 1

2
ÊaÊ

a ¼ 0; (3.12)

where �c :¼ c 2. This equation was considered by Bowen
[24] for solving the initial data for the single charged black
hole case (see the analysis below).

B. Exact initial data multiple charged black holes with
the same charge-to-mass ratio

In order to find initial data for multiple charged black
holes we will first assume that the background metric is
flat. Let us introduce a conformal electric potential ’ such
that

Ê a ¼ �@a’: (3.13)

Notice that the conformal potential ’ does not coincide
with the physical potential � discussed in Sec. II D above,
since even in the absence of a vector potential Eq. (2.88)
clearly shows that the relation between � and the physical
electric field involves the lapse function.

Using Eq. (3.13), the electric constraint can be rewritten
as

D̂ 2’ ¼ �4��̂: (3.14)

From now on we will also assume that we are in a region
away from any charges, so that �̂ ¼ 0.

Before attempting to find initial data for multiple
charged black holes, let us recall for a moment the
Reissner-Nordström analytic static solution for a single
charged black hole with mass M and charge Q [13,14],
for which the conformal electric potential ’ and the con-
formal factor c are given by

’ ¼ Q

r
; c ¼

��
1þM

2r

�
2 � Q2

4r2

�
1=2

; (3.15)

where we have assumed that the black hole is centered on
the origin of the coordinate system r ¼ 0.

The conformal and physical electric fields for this solu-
tion are purely radial and are given by

Ê r ¼ Q

r2
; Er ¼ Q

r2c 6
: (3.16)

The fact that the conformal factor c above is an exact

solution of Eq. (3.11) for this electric field can be verified
by direct substitution.
Since in this case the spacetime is static, Eq. (2.82)

provides a linear elliptic equation for the lapse:

D2N ¼ 8�NE ¼ NEaEa; (3.17)

which in terms of the conformal variables reads

D̂ 2N þ 2

c
ðD̂iNÞðD̂ic Þ ¼ N

c 4
ÊaÊ

a: (3.18)

One can now also confirm by direct substitution that the
lapse given by Eq. (3.19) below solves Eq. (3.18) when
using in turn Eqs. (3.15) and (3.16):

N ¼ ð1þM=2rÞð1�M=2rÞ þQ2=4r2

ð1þM=2rÞ2 �Q2=4r2
: (3.19)

Notice that Eqs. (3.15), (3.16), and (3.19) correspond to the
Reissner-Nordström solution in isotropic (i.e. conformally
flat) coordinates, and not in the standard Schwarzschild-
like coordinates one finds in most textbooks [54]. It is clear
that by taking Q � 0, the above solution reduces to the
Schwarzschild solution in isotropic coordinates.
Based on the form of the conformal factor for the

Reissner-Nordström solution given above, we will now
propose the following ansatz for the conformal factor in
the presence of a generic electric potential ’ that is a
solution of the electric constraint (3.14):

�c ¼ c 2 ¼ ð1þ 	Þ2 � ’2

4
: (3.20)

Substituting this back into Eq. (3.12) we find, after some
algebra, the following elliptic equation for 	:

ð1þ	Þ
�
ð1þ	Þ2 �’2

4

�
D̂2	�’4

4
@m

�
	

’

�
@m
�
	þ 2

’

�
¼ 0;

(3.21)

where we have already used the fact that D̂2’ ¼ 0.
We can now easily notice a remarkable fact: If we take

the function	 to be proportional to the electric potential’,
that is 	 ¼ k’ for some constant k, then Eq. (3.12) is
identically satisfied since in such a case we clearly have

@mð	=’Þ ¼ 0 and D̂2	 ¼ 0 (remember that ’ solves the
electric constraint away from charges).
We will now use this fact to find an exact solution of the

Hamiltonian constraint for multiple black holes. Let us
assume that in the conformal space we have a series of
point charges with values Qi located at the points ~ri. The
solution for the potential ’ is then clearly

’ ¼ Xn
i¼1

Qi

j~r� ~rij : (3.22)

Let us now choose 	 proportional to ’ in the following
way:
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	 ¼ k’ ¼ k
Xn
i¼1

Qi

j~r� ~rij �
Xn
i¼1

Mi

2j~r� ~rij : (3.23)

We can now construct a conformal factor that satisfies the
Hamiltonian constraint as in (3.20)

c 2 ¼
�
1þXn

i¼1

Mi

2j~r� ~rij
�
2 � 1

4

�Xn
i¼1

Qi

j~r� ~rij
�
2
; (3.24)

withMi ¼ 2kQi, and k an arbitrary constant. This solution
represents a series of n charged black holes, all of which
have the same charge-to-mass ratio Qi=Mi ¼ 1=2k.

One could ask at this point how we can know that the
above solution in fact does represent a series of black
holes. There are several ways to see that this should be
so. First, notice that if we take n ¼ 1 this is just the
standard Reissner-Nordström solution for a single charged
black hole. Second, in the case when all the charges vanish
the conformal factor (3.24) above reduces to the well-
known Brill-Lindquist conformal factor for a series of
noncharged black holes [53]. Also, if the different points
~ri are very far apart, then close to each of them the
conformal factor again reduces essentially to the
Reissner-Nordström solution, so we would indeed have a
series of n charged black holes. Finally, notice that because
of the singularities in the conformal factor, as we approach
each point ~ri the areas of spheres centered around that
point first become smaller and then increase again. That
is, our initial data is a topological construction with a series
of wormholes connecting to other asymptotically flat re-
gions. Since the initial data is time symmetric the throats of
these wormholes (i.e. the minimal surfaces) in fact corre-
spond to apparent horizons. Of course, if some of the points
~ri are very close to each other one could find common
apparent horizons around them, so that we actually have
fewer black holes with complicated internal topologies. As
a final comment, notice also that due to the tidal forces
between the different black holes, the throats of the worm-
holes cannot be expected to be spherical, and their precise
shape and location should be found numerically.

That an exact solution of the Hamiltonian constraint for
multiple charged black holes exists at all is a surprising
result. Notice, however, that we have only found a solution
for the initial data. In general, one would expect this initial
configuration to evolve as each black hole reacts to the
gravitational and electric fields of the other black holes, so
that a nonzero extrinsic curvature and magnetic field would
quickly develop.

There is in fact one notable exception to this. In order to
find it wewill first rewrite the conformal factor (3.24) in the
following way

c 2 ¼ 1þ 2k
Xn
i¼1

Qi

j~r� ~rij þ
�
k2 � 1

4

��Xn
i¼1

Qi

j~r� ~rij
�
2
;

(3.25)

where we have already used the fact thatMi ¼ 2kQi. If we
now take k ¼ 1=2, which implies Mi ¼ Qi, then the con-
formal factor reduces to

c 2 ¼ 1þXn
i¼1

Qi

j~r� ~rij ; (3.26)

which now corresponds to initial data for a series of
extremal black holes. Amazingly, one can show that this
multiextremal black hole solution turns out to be static, that
is, the gravitational attraction of all the black holes is
exactly canceled out by their electrostatic repulsion, so
that the black holes never move from their initial positions.
The lapse function for such a static solution is given by

N ¼ 1=c 2 ¼
�
1þXn

i¼1

Qi

j~r� ~rij
��1

; (3.27)

which solves Eq. (3.18) exactly.
This multiextremal static solution was first obtained by

Papapetrou [15] and Majumdar [16] (see [19] for a review),
and was further analyzed by several authors [17,18,55–58].
This solution is so well known that it can even be found in
some textbooks (see e.g. the recent book by Carroll [59]).
On the other hand, as far as we are aware the exact solution
of the Hamiltonian constraint for nonextremal black holes
with equal charge-to-mass ratios presented above was not
previously known.

C. Numerical initial data for multiple charged black
holes with different charge-to-mass ratios

The exact multiple black hole solution of the
Hamiltonian constraint found in the previous section is
only valid in the case when all the black holes have the
same charge-to-mass ratio. When considering different
charge-to-mass ratios we have not been able to find a
closed form solution. On the other hand, finding numerical
solutions can be done easily enough. In order to do this we
will first modify our ansatz (3.20) above in the following
way:

�c ¼ c 2 ¼ ðuþ 	Þ2 � ’2

4
; (3.28)

with

	 ¼ XN
i¼1

Mi

2j~r� ~rij ; (3.29)

’ ¼ XN
i¼1

Qi

j~r� ~rij ; (3.30)

and where u is a function that goes to 1 at infinity, and in
fact is identically equal to 1 everywhere in the case when
all charge-to-mass ratios are equal.
Substituting now Eq. (3.28) into the Hamiltonian con-

straint we find the following elliptic equation for u:
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ð	þ uÞ
�
ð	þ uÞ2 � ’2

4

�
D̂2u� ’4

4
@m

�
	þ u� 1

’

�

� @m
�
	þ uþ 1

’

�
¼ 0: (3.31)

The above equation needs to be solved numerically for u in
the case when the charge-to-mass ratios of the different
black holes are not all equal.

Before presenting some examples of numerical solutions
for the case of two black holes, it is important to investigate
the expected behavior of the function u close to each of the
‘‘punctures,’’ that is, close to each of the points ~r ¼ ~ri. In
order to do this, let us now use a system of spherical
coordinates ðr; 
; �Þ adapted to one of the black holes.
Without loss of generality we will choose that black hole
as the one identified with the label 1, so that ~r1 ¼ 0. Let us
now examine the behavior of the different terms in
Eq. (3.31) for small r. Consider first the coefficient of the
Laplacian operator:

T1 :¼ ð	þ uÞ
�
ð	þ uÞ2 � ’2

4

�
: (3.32)

Let us assume for the moment that u is finite at each of the
punctures. From the form of the functions 	 and ’, it is
then clear that for small r this term behaves in general as

T1 
 1=r3: (3.33)

Consider now the term with first order derivatives in
Eq. (3.31):

T2 :¼ ’4@m

�
	þ u� 1

’

�
@m
�
	þ uþ 1

’

�
: (3.34)

In order to analyze the behavior of this term for small r, we
will first expand the derivatives to obtain

T2 ¼ ½’@mð	þ uÞ � ð	þ u� 1Þ@m’	
� ½’@mð	þ uÞ � ð	þ uþ 1Þ@m’	: (3.35)

We will now rewrite the functions 	 and ’ above as

	 ¼ M1

2r
þHðr; 
;�Þ; ’ ¼ Q1

r
þ Fðr; 
; �Þ; (3.36)

with H and F given by

H ¼ X
i�1

Mi

2j~r� ~rij ; F ¼ X
i�1

Qi

j~r� ~rij ; (3.37)

which are clearly regular functions at r ¼ 0. Substituting
into T2 and expanding we find, after some algebra, that for
small r this term behaves as

T2 
 1=r4: (3.38)

Notice that naively one could expect T2 to diverge as 1=r
6,

due to the presence of terms of the form ð’@r	Þ2, but in
fact all such terms cancel out and we are left with a
dominant divergence of order 1=r4.

From the behavior of T1 and T2 for small r, we then find
that in order for Eq. (3.31) to be consistent the Laplacian of
u must behave for small r as

D̂ 2u
 1=r: (3.39)

Now, in spherical coordinates the (flat) Laplacian is
given by

D̂ 2u ¼ @2ruþ 2

r
@ruþ 1

r2
L2u; (3.40)

with L2 the angular operator

L2u :¼ 1

sin

@
ðsin
@
uÞ þ 1

sin2

@2’u: (3.41)

This implies that in order to have D̂2u behaving as ex-
pected for small r we must ask for the function u to have a
Taylor expansion near the origin of the form

u ¼ aþ bð
;�Þr; (3.42)

with a a constant and bð
;�Þ some regular function of the
angular coordinates. Notice that bð
;�Þ must be nonzero
for Eq. (3.31) to be consistent, so the above expansion
implies that u is not regular at the origin (remember that
r is a radial coordinate). The function u then turns out to be
only C0 at the punctures, that is, it is finite and continuous,
but its derivatives are no longer continuous. In other words,
the function u is in general expected to have a kink (i.e. a
conical singularity) at each of the punctures (we will see in
the numerical examples below that this is indeed the case).

D. Numerical examples for the case of two charged
black holes

We have constructed a simple numerical code to solve
Eq. (3.31) for the case of two charged black holes with
different charge-to-mass ratios. In such a case one can
locate both black holes along the z axis. The situation is
then clearly axisymmetric, so the problem is effectively
two-dimensional.
As a boundary condition we ask for the function u to

behave as u ¼ 1þ c=r for large r, where r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ z2

p
and c is some constant. In order to eliminate the unknown
constant this boundary condition is differentiated and ap-
plied in the following way:

@ru ¼ 1� u

r
: (3.43)

Our code uses cylindrical coordinates ð�; z; �Þ instead
of spherical coordinates ðr; 
; �Þ, so that in practice we
assume that far away the dependence on the azimuthal
angle 
 can be ignored, so that one can write

@�u ¼
�
�

r

�
@ru; @zu ¼

�
z

r

�
@ru: (3.44)

The final boundary condition on the � boundaries is then
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�
r

�

�
@�u ¼ 1� u

r
; (3.45)

with an analogous condition on the z boundaries.
Since here we are mainly interested in showing that the

solutions for u can be easily found and that they behave as
expected, we have decided to write a very simple code that
instead of solving the elliptic equation directly solves an
associated hyperbolic problem of the form

@2t u ¼ D̂2u� ’4

4
@m

�
	þ u� 1

’

�
@m
�
	þ uþ 1

’

�

�
�
ð	þ uÞ

�
ð	þ uÞ2 � ’2

4

���1
; (3.46)

with t a fictitious time parameter. The boundary conditions
are then also modified to outgoing-wave boundary condi-
tions of the form

@tuþ
�
r

�

�
@�u ¼ 1� u

r
; (3.47)

and analogously for the z boundaries. We choose as initial
condition u ¼ 1, and evolve the above hyperbolic equation
until we reach a stationary state with some predetermined
tolerance. The idea is that the wavelike equation above will
propagate the residual away through the boundaries, and
will drive the system to a static solution which corresponds
to the solution of the original elliptic problem.

Spatial derivatives are approximated with standard cen-
tered second order differences, while for the time integra-
tion we use a three-step iterative Crank-Nicholson
algorithm [60,61]. The resulting code is rather slow, par-
ticularly for high resolutions, but has the advantage of
being both very simple to write (and debug), and also
extremely robust. A more sophisticated elliptic solver
should of course be used in order to find highly accurate
solutions in a short computational time (we certainly do not
recommend to use our quick-and-dirty ‘‘wavelike’’ algo-
rithm for any kind of production runs).

In order to deal with the problem of divisions by � our
computational grid staggers the axis and introduces a ghost
grid point at position � ¼ ���=2. To determine the value
of u at this ghost point we then simply impose the parity
condition uð���=2Þ ¼ uð��=2Þ.

Notice that we do not do anything special close to the
punctures and just take standard centered differences
everywhere. This clearly affects the order of convergence
close to the punctures (see numerical examples below).

1. Example I: Equal masses and opposite charges

As a first example we will consider the case of two black
holes with equal masses M1 ¼ M2 ¼ 1, and equal but
opposite charges Q1 ¼ �Q2 ¼ 1=2. The punctures are
located along the z axis at positions z1 ¼ �z2 ¼ 2, and
the boundaries extend to � ¼ 6, z ¼ �6.

As initial guess we choose u ¼ 1 everywhere, and we
then evolve Eq. (3.46) until the magnitude of its right-hand
side is everywhere smaller than a fixed tolerance of � ¼
10�8. This tolerance is chosen such that it is always smaller
than the truncation error at the resolutions considered here.
Figure 1 shows the numerical solution for the function u

along the z axis, for a resolution of �� ¼ �z ¼ 0:0125.
Notice how the function u behaves as expected on both
punctures, with very evident kinks. One can also see that u
has equatorial symmetry even though the charges have
opposite signs. Of course, had we chosen both charges
with the same sign the exact solution would have been u ¼
1 everywhere since in that case the charge-to-mass ratios
would have been equal. It is also interesting to note that the
maximum deviation of the function u from unity is pre-
cisely at the punctures, and this maximum deviation is of
only about 7%. Figure 2 shows a height map of the same
solution in the ð�; zÞ plane.
Next we show a plot of the convergence in the

Hamiltonian constraint along the z axis. Since we are in

FIG. 1. Numerical solution for the function u along the z axis
for the case of equal masses and equal but opposite charges.

FIG. 2. Height map in the ð�; zÞ plane of the numerical solu-
tion for the function u.
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fact solving numerically precisely the Hamiltonian con-
straint, one would expect it to be satisfied to the level of the
tolerance in the elliptic solver. This is of course true, but in
order to study convergence we are in fact using a different
expression for the Hamiltonian constraint. We first recon-
struct the conformal factor c , and later evaluate numeri-
cally to second order the Hamiltonian constraint (3.11)
written as

D̂ 2c þ 1

4c 3
@m’@

m’ ¼ 0: (3.48)

This last expression should not be expected to hold to the
level of the tolerance in the elliptic solver, but rather to the
level of numerical truncation error, which is much higher
(we have chosen a very small tolerance parameter in the
elliptic solver precisely for this reason).

Figure 3 shows the logarithm of the absolute value of the
Hamiltonian constraint evaluated using (3.48) for the five
different resolutions �� ¼ �z ¼ 0:1; 0:05; 0:025; 0:0125;
0:006 25, with each plot rescaled by the corresponding
factor expected for second order convergence: 1, 4, 16,
64, 256 (we in fact show only the region close to 1 of the
punctures as the situation is symmetric on the other punc-
ture). Notice how away from the puncture all plots lie on
top of each other, showing nice second order convergence.
Closer to the puncture, however, the Hamiltonian con-
straint in fact increases with higher resolution, but this
loss of convergence is limited to the 2 or 3 grid points
closest to the puncture, so that the nonconverging region
keeps getting smaller and smaller with higher resolution.
This should not be surprising since in the conformal factor
c we have terms that diverge as 1=r close to each puncture.

2. Example II: Equal masses and one charge equal
to zero

As a second example we will consider the case of two
black holes with equal masses M1 ¼ M2 ¼ 1, and one
charge set equal to zero Q1 ¼ 1=2, Q2 ¼ 0. As before,
the punctures are located along the z axis at positions z1 ¼
�z2 ¼ 2 and we use a resolution of �� ¼ �z ¼ 0:0125.
The results are plotted in Fig. 4. Notice that even though
Q2 ¼ 0, the function u still has a small kink at z ¼ �2.

3. Example III: Some more generic cases

As a more generic case we set up two black holes with
different masses, M1 ¼ 1, M2 ¼ 0:5, located as before at
the points z1 ¼ �z2 ¼ 2. The first black hole has a charge
ofQ1 ¼ 1=2, while for the charge of the second black hole
we consider a series of values: Q2 ¼ �0:25;�0:1; 0:0;
0:1; 0:25. The results are plotted in Fig. 5.
What seems to happen as Q1 > 0 is kept fixed and Q2

changes is that, forQ2 < 0, the kinks in u are point down at
both punctures. Then, as Q2 approaches zero the kink at
that puncture becomes much smaller but still keeps point-
ing down. If Q2 goes through zero and becomes positive,
then the kink at z2 first disappears and later starts growing
again in the opposite direction. As Q2 keeps increasing
towards a value where both charge-to-mass ratios are equal
both kinks become smaller with opposite directions, until
the function u becomes 1 everywhere.
By trial and error we have in fact found a situation for

which the kink at z ¼ �2 seems to essentially disappear.
Figure 6 shows the numerical solution for u in the case
when M1 ¼ 1, M2 ¼ 0:5, Q1 ¼ 0:5, Q2 ¼ 0:014 75.
The special value of Q2 for which the kink disappears

can in fact be estimated analytically. When we examined
the behavior of the function u near the punctures in
Sec. III C above, we mentioned the fact the source term
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log(256*ham)[0.00625]

FIG. 3. Convergence of the Hamiltonian constraint. We plot
the logarithm of the absolute value of the Hamiltonian constraint
evaluated at 5 different resolutions, with each resolution rescaled
by the corresponding factor in order to show second order
convergence.
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FIG. 4. Similar to Fig. 1, but for the case of equal masses and
one charge equal to zero.
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of Eq. (3.31), which we called T2, behaves as 1=r4 near
each puncture. Being somewhat more precise one can show
that for the case of two black holes this term behaves close
to the puncture at ~r2 as

T2 ¼ 1

4r4

�
Q1M2

d
�Q2M1

d
� 2Q2�u

�

�
�
Q1M2

d
�Q2M1

d
� 4Q2 � 2Q2�u

�
þOð1=r3Þ;

(3.49)

with r ¼ j~r� ~r2j, and where d is the distance between the
punctures and �u ¼ uð~r2Þ � 1. Notice that there are two

ways in which the term T2 can vanish, corresponding to a
solution u that is regular at the puncture. One possibility is
to have u ¼ 1, so that �u ¼ 0, and equal charge-to-mass
ratios so that Q1M2 ¼ Q2M1, in which case the first term
above vanishes. This is clearly the exact solution we al-
ready described. But a second possibility is to assume that
u is very close to 1 at the puncture so that �u � 1, and to
ask for Q2 
Q1M2=ðM1 þ 4dÞ, in which case the second
term above will almost vanish (T2 will in fact not vanish
exactly for this value of Q2 since at the puncture �u is not
exactly zero, but one can expect T2 to vanish for a value of
Q2 that is very close to this one). For the values in our
example we haveM1 ¼ 1,M2 ¼ 0:5,Q1 ¼ 0:5 and d ¼ 4,
so that Q2 
 1=68
 0:0147, which is remarkably close to
the empirical value found above.

IV. CONCLUSIONS

We have considered the Einstein-Maxwell system hav-
ing two goals in mind. The first goal consisted in recasting
the covariant Maxwell equations in a curved spacetime as
an initial value problem along the lines of the usual 3þ 1
formalism of general relativity, choosing the magnetic and
electric fields as independent variables. This led to a set of
two constraint equations for the electric and magnetic
fields, plus a set of two evolution equations for those fields.
The evolution equations are hyperbolic with the propaga-
tion speeds depending on the lapse and shift.
The second goal was to construct initial data satisfying

the gravitational and electromagnetic constraints which
represent momentarily static charged black holes. In order
to achieve this goal we assumed a moment of time sym-
metry with vanishing extrinsic curvature and magnetic
field. For the case of two black holes, this initial data
will serve to analyze a head-on collision. We found that
for black holes having an equal charge-to-mass ratio it is
possible to find an analytic solution for the constraints.
However, when this condition is dropped, we present in-
stead numerical solutions. We studied the behavior of such
solutions with several values of the free parameters (i.e.
different masses and charges), showing extremal cases.
A much more realistic initial data will consist in relaxing

the moment of time-symmetry condition (i.e. abandon the
initial condition Kij ¼ 0), but keeping a null initial mag-

netic field and analyze the analogous case of the Bowen-
York initial data. In this case, one will need to solve a much
more complex Hamiltonian constraint for the conformal
factor. An elliptic solver will be required a fortiori to solve
this constraint. This is an issue that is worth analyzing in
the future.
Using the initial data presented here we plan in the near

future to study the evolution of the Einstein-Maxwell
system generated by the collision of two charged black
holes, and analyze the emission of both gravitational and
electromagnetic radiation. We believe that the interplay
between gravity and electromagnetism will give rise to

FIG. 6. Solution for u in the case when M1 ¼ 1, M2 ¼ 0:5,
Q1 ¼ 0:5, Q2 ¼ 0:014 75. Notice that the kink at z ¼ �2 is
essentially gone.

FIG. 5. Similar to Fig. 1 for a more generic case in which the
back hole at z ¼ 2 has M1 ¼ 1, Q1 ¼ 1=2, while for the black
hole at z ¼ �2 we take M2 ¼ 1=2 and a series of values for the
charge: Q2 ¼ �0:25;�0:1; 0; 0:1; 0:25.
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very interesting and unusual dynamics due to the possibil-
ity of repulsion between charges. This is an issue that has
not been scrutinized thus far in numerical relativity.
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APPENDIX

For the sake of clarity, we will give here some details
about our derivation of the 3þ 1 Maxwell equations. We
start with Eq. (2.1). The projection of this equation onto na
reads:

nbraF
ab ¼ 4��; (A1)

where one must remember � :¼ �nbj
b. At this point there

are several possible ways to proceed. Let us first write

nbraF
ab ¼ raðnbFabÞ � Fabranb ¼ raE

a � Fabranb;

(A2)

where in the last step we used Eq. (2.18).
Now, concerning the term raE

a, one way to relate it
with 3þ 1 quantities is by using the following identity for
any 4-vector field Va

raV
a ¼ 1ffiffiffiffiffiffiffi�g

p @að ffiffiffiffiffiffiffi�g
p

VaÞ ¼ 1

N
ffiffiffi
h

p @aðN
ffiffiffi
h

p
VaÞ; (A3)

where we have used the fact that g ¼ �N2h. We then have

raV
a ¼ Va@a lnN þ 1ffiffiffi

h
p @að

ffiffiffi
h

p
VaÞ: (A4)

For the particular case where Va ¼ Ea, it turns out that
Ea@a lnN ¼ Ebhb

ara lnN ¼ EaDa lnN, where the fact

that Ea � Ebhb
a is a consequence of the fact that Ea

is a 3-vector. Moreover, since Et � 0 the term

ð1= ffiffiffi
h

p Þ@að
ffiffiffi
h

p
EaÞ reduces to the 3-divergence DaE

a. We
then have

raE
a ¼ DaE

a þ Eaa
a; (A5)

where we used the following identity for the acceleration
of the Eulerian observer ab :¼ naranb � Db lnN. We
point out that one could have obtained the same result
from the definition of the 3-covariant divergence:

DaE
a ¼ ha

chabrcE
b ¼ hb

crcE
b ¼ rbE

b þ ncnbrcE
b

¼ rbE
b þ ncrcðnbEbÞ � ncEbrcnb

¼ rbE
b � Ebab; (A6)

where we used the fact that nbE
b � 0 since Ea is by

definition orthogonal to na. From this equation one obtains

the same identity (A5). Using this result Eq. (A2) now
reads

nbraF
ab ¼ DaE

a þ Eaa
a � Fabranb: (A7)

We now need to prove that, in fact, Fabranb ¼ Eaa
a. For

this we use Eq. (2.20) to obtain

Fabranb ¼ ð3ÞFabranb þ naEbranb � Eanbranb:

(A8)

The second term in the last equation is precisely
naEbranb ¼ Ebab, while the third vanishes identically
since nbnb ¼ �1, and therefore raðnbnbÞ ¼ 2nbranb �
0. Finally, we show that the first term vanishes by using the
definition of the extrinsic curvature, Eq. (2.8):

ð3ÞFabKab ¼ �ð3ÞFabha
chb

drcnd ¼ �ð3ÞFcdrcnd:

(A9)

This term vanishes identically because ð3ÞFab is antisym-
metric while Kab is symmetric. We have thus proved that
Fabranb ¼ Eaa

a. Using this result in Eq. (A7) allows us
to conclude that

nbraF
ab ¼ DaE

a ¼ 4��: (A10)

Following an analogous procedure, one can also obtain
Eq. (2.31) by projecting Eq. (2.2), except that one now uses
Eq. (2.29) instead of (2.20). In this case, there is no mag-
netic charge.
We proceed now to obtain Eq. (2.37) by projecting (2.1)

onto �t using hab:

habrcF
cb ¼ �4�ð3Þja: (A11)

Using Eq. (2.20) and expanding we obtain

habrc
ð3ÞFcb � Echabrcn

b þ Earcn
c þ habn

crcE
b

¼ habrc
ð3ÞFcb þ EbKb

a � EaK þ habn
crcE

b

¼ �4�ð3Þja; (A12)

where we used Echabrcn
b ¼ Edhd

chabrcn
b ¼ �EdKd

a,

and K ¼ �rcn
c [cf. Eqs. (2.9) and (2.10)].

Now, from the definition of the 3-covariant derivative
applied to a 3-tensor field we have [cf. Eq. (2.11)]

Dc
ð3ÞFcb ¼ hc

dhceh
b
frd

ð3ÞFef ¼ hdeh
b
frd

ð3ÞFef

¼ hbfrd
ð3ÞFdf � ð3ÞFebrdðnendÞ

¼ hbfrd
ð3ÞFdf � ð3ÞFebae: (A13)

In this way Eq. (A12) becomes

habn
crcE

b þDc
ð3ÞFca þ ð3ÞFbaab þ EbKb

a � EaK

¼ �4�ð3Þja: (A14)

The first term above can be rewritten using the following
identities
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habLnE
b ¼ habðncrcE

b � Ecrcn
bÞ

¼ habn
crcE

b þ Ka
cE

c: (A15)

We then conclude that

habLnE
b þDc

ð3ÞFca þ ð3ÞFbaab � EaK ¼ �4�ð3Þja:
(A16)

Finally, using the fact that ð3ÞFca is antisymmetric, to-
gether with Eqs. (2.27) and (2.25), one can write

Dc
ð3ÞFca ¼ 1ffiffiffi

h
p @ið

ffiffiffi
h

p ð3ÞFiaÞ ¼ 1ffiffiffi
h

p @bð�bacF BcÞ

¼ �bacFffiffiffi
h

p @bBc ¼ �ð3Þ�abc@bBc: (A17)

Equation (A16) then reads

habLnE
b � ð3Þ�abc@bBc þ ð3Þ�abcBbac � EaK

¼ �4�ð3Þja; (A18)

where we used again Eq. (2.27) to rewrite the third term.
Taking the notation given by Eqs. (2.34) and (2.35), one
finally recovers Eq. (2.33).

In order to find Eq. (2.37) from Eq. (A18), one has to
remember that the Lie derivative can be written in terms of
ordinary derivatives as follows

habLnE
b ¼ habðnc@cEb � Ec@cn

bÞ: (A19)

Now, since we are only interested in the spatial compo-
nents of Eq. (A18), using (2.5) together with na ¼

ð�N; 0; 0; 0Þ, na ¼ ð1=N;Ni=NÞ one can easily show that

hiaLnE
a ¼ 1

N
@tE

i þ Nj

N
@jE

i � Ej

N
@jN

i: (A20)

Substituting this last result into the spatial components of
(A18) leads directly to Eq. (2.37).
In a similar fashion one can obtain Eq. (2.38) by pro-

jecting (2.2) onto �t. In fact, this just amounts to using the
duality relations Ea ! Ba and Ba ! �Ea in (2.37) to
obtain Eq. (2.38).
Finally, we proceed to derive Eq. (2.40). This can be

easily done by using the orthogonal decomposition of the
electric-current 4-vector [cf. Eq. (2.6)]:

ja ¼ ð3Þja þ �na; (A21)

being � :¼ �naj
a the charge density measured by the

Eulerian observer, and ð3Þja :¼ hacj
c. This decomposition,

when inserted into Eq. (2.39) and making use of (2.10),
leads directly to

nara�� �K þra
ð3Þja ¼ 0: (A22)

Using now Eq. (A5) for ð3Þja instead of Ea (the expression
is valid for any 3-vector), one obtains

L n�þDa
ð3Þja þ ð3Þjaaa � �K ¼ 0; (A23)

where

L n� � nara� ¼ 1=Nð@t�þ Nj@j�Þ: (A24)
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