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The Wheeler-DeWitt (WDW) equation for the Kantowski-Sachs model can also be understood as the

WDW equation corresponding to the Schwarzschild black hole due to the well known diffeomorphism

between these two metrics. The WDWequation and its solutions are ignorant of the coordinate patch one

is using, only by imposing coordinate conditions we can differentiate between cosmological and black

hole models. At that point, the foliation parameter t or r will appear in the solution of interest. In this work

we supersymmetrize this WDW equation obtaining an extra term in the potential with two possible signs.

The WKB method is then applied, giving rise to two classical equations. It is shown that the event horizon

can never be reached because very near to it, the extra term in the potential, for each one of the equations,

is more relevant than the one that corresponds to Schwarzschild. One can then study the asymptotic cases

in which one of the two terms in the Hamiltonian dominates the behavior. One of them corresponds to the

usual Schwarzschild black hole. We will study here the other two asymptotic regions; they provide three

solutions. All of them have a singularity in r ¼ 0 and depending on an integration constant C they can also

present a singularity in r ¼ C2. Neither of these solutions have a Newtonian limit. The black hole solution

we study is analyzed between the singularity r ¼ C2 and a maximum radius rm. We find an associated

mass, considering the related cosmological solution inside r ¼ C2, and based on the holographic principle

an entropy can be assigned to this asymptotic solution.
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I. INTRODUCTION

Black hole physics has been extensively studied in the
literature. It is useless to try to address the many interesting
aspects, even those related with a single topic. A very rich
discussion exists in the literature in one of these topics,
namely, that concerning black holes (event) horizons. One
can begin by mentioning the fact that in general relativity
[1], for stationary vacuum, solutions to the Einstein field
equations event horizons arise. Moreover, classical col-
lapse of astrophysical objects results in (future) event
horizons [2]. The existence of an event horizon means
that one has an inaccessible region, and therefore an ex-
ternal observer must then consider hidden states; pure
states become density matrices. So that, seen from outside,
the evolution results nonunitary, there is information loss.
This is one of those things one has to live with, if one
accepts the usual Carter-Penrose diagram. Modifications to
this diagram have been proposed based on different theo-
retical frameworks and models all hinting to a more subtle
history for collapse [3]. In classical numerical relativity
calculations, event horizons are almost impossible to find
with any certainty. Other definitions of horizons like local
or quasilocal are used to be able to perform calculations
that make sense [4]. It has also been claimed by several
authors (see [5] and works cited therein) that there is a

variety of physically realistic stellar collapse scenarios in
which an event horizon does not in fact forms, so that the
singularity remains exposed. Moreover, even though as-
tronomers will recognize that what they have observed so
far is compatible with the Schwarzschild or Kerr metrics
[6], they will also argue that one cannot unambiguously
conclude that the dark objects they observe are black holes
in the sense of general relativity. There is an increasing
consensus, or at least suspicion, within the general relativ-
ity community that event horizons are simply the wrong
thing to be looking at. Other possible definitions of hori-
zons have then been proposed; apparent [7], dynamical [8],
trapping [9] horizons that make more physical sense. Very
powerful and sophisticated methods have been developed
since the birth of general relativity searching for solutions
to its field equations. For a long time it has been known that
changing the structure of spacetime (i.e. interchanging the
coordinates t $ r), changes a static solution for a cosmo-
logical one and vice versa. The best known case is the
Schwarzschild metric that under this particular diffeomor-
phism transforms into the Kantowski-Sachs metric [10].
This interchange of variables has been recently proposed as
a method to generate new cosmological models from sta-
tionary axisymmetric solutions [11]. In string theory, it has
been suggested that by interchanging r $ it we can get
time-dependent solutions also from static and stationary
solutions. In this way we may relateDp-branes solutions to
S-brane solutions, i.e. time-dependent backgrounds of the
theory [12]. On the other hand, there are proposals to
obtain directly S-brane solutions [13]; thus, if cosmologi-
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cal solutions (i.e. S-branes) can be generated from sta-
tionary ones (i.e. Dp-branes), this procedure also works
the other way around.

In particular, for a Schwarzschild black hole, Kuchař
[14] has shown how to reconstruct the curvature coordi-
nates T and R (or the Kruskal coordinate U and V) from
spherically symmetric initial data. His formalism makes
possible a discussion of the action of space-time diffeo-
morphism on the quantum geometry. A particular interest-
ing example is the interchange of the curvature coordinates
T and R. This choice of coordinates interchanges the static
and dynamical regions for the Kruskal diagram transform-
ing the Kantowski-Sachs cosmological metric into the
Schwarzschild metric. This relation was taken into account
suggesting a canonical approach based on a foliation in the
parameter r, by this means a Hamiltonian formalism is
developed. This kind of approach was used to find quantum
black hole states [15] and a generalization to a noncom-
mutative minisuperspace provides a particular model to-
wards the understanding of noncommutative quantum
black holes [16]. The WDW equation solutions are igno-
rant of the coordinate patch one is using and only when we
impose coordinate conditions will there be any difference
between cosmological models and black hole solutions.
Only at that point will the foliation parameter t and r,
respectively, appear in the solution of interest.

Several approaches have been suggested to supersym-
metrize the WDW equation for cosmological models; the
first model proposed [17] was based on the fact that shortly
after the invention of supergravity [18] it was shown [19],
that this theory provides a natural classical square root of
gravity. By this means a method for finding square root
equations and their corresponding Hamiltonians in quan-
tum cosmology was proposed in [17], that is the study of
supersymmetric quantum cosmology. Later, a superfield
formulation was introduced, by means of which it is pos-
sible to obtain, in a direct manner, the corresponding
fermionic partners and also being able to incorporate mat-
ter in a simpler way [20]. A third method allows to define a
‘‘square root’’ of the potential, in the minisuperspace, of
the cosmological model of interest and consequently op-
erators which square results in the Hamiltonian [21], other
related proposals have been studied [22]. Being the minis-
uperspace variables in the WDW equation, and conse-
quently the corresponding wave functions, ignorant of
the coordinate patch one is using, one imposes coordinate
conditions which then produce the difference between
cosmological solutions and black hole models.

In this work a WDWequation for a Schwarzschild black
hole, is considered [10,15]. It is explicitly shown that, by
means of the WKB method, one gets the well-known
Schwarzschild solution. Making use of the third method
mentioned above [21], a quantum supersymmetric
Kantowski-Sachs model, and consequently its correspond-
ing supersymmetric quantum black hole model is found.

We get operators which square provides two Hamiltonians
that generalize the WDW equation. A simple WKB ap-
proach is applied to these Hamiltonians leading to two
classical equations, having each one, two asymptotic re-
gions that can be analytically obtained. The Schwarzschild
black hole is one of these asymptotic solutions in both
cases. However, in general, its horizon can never be
reached because when 2m=r is very near to one the other
two asymptotic regions, of each one of the equations
correspondingly are the valid ones. The analytic solutions
can be found for both of them, they are singular at r ¼ 0;
depending on an integration constantC, another singularity
appears at r ¼ C2. In these asymptotic regions, neither of
the solutions have a Newtonian limit. Even though these
asymptotic regions are a consequence of supersymmetry, it
is interesting to analyze their corresponding classical so-
lutions to understand the behavior of the general classical
solution in these asymptotic regions that drastically differ
from the Schwarzschild one. It has been shown [23] by
solving the Dirac equation, particularly in the
Schwarzschild and Kerr backgrounds, that the spinors
blow up at the horizon. In our supersymmetric black hole
model the fermionic degrees of freedom are intrinsic ele-
ments of the theory and they do not allow the presence of
the Schwarzschild horizon. Solutions of supergravity theo-
ries played a crucial role in important developments in
string black hole physics, AdS/CFT and others. It is well
known that massive neutral particles cannot be associated
with supersymmetric Bogomol’nyi-Prasad-Sommerfield
(BPS) states, the most simple spherically symmetric solu-
tion that admits Killing spinors to satisfy the constrains that
define BPS states is the Reinner-Nordström black hole with
M ¼ jQj [24]. The classical (and quantum) supersymmet-
ric Schwarzschild black hole model we propose is based, as
mentioned above, in supersymmetrizing the WDW equa-
tion associated with the standard Schwarzschild black
hole. This procedure provides a modified (SUSY quantum)
Hamiltonian and its corresponding classical equations that,
in this sense define a supersymmetric generalization of the
Schwarzschild black hole. Our proposal seems to provide a
starting point to understand and construct a first model of a
classical supersymmetric Schwarzschild black hole.
If we would apply whole supergravity (N ¼ 1) to the

Kantowski-Sachs-Schwarzschild model, instead of directly
supersymmetrizing its WDWequation, it is to be expected
to get and equivalent Hamiltonian. As already outlined, in
this work we will analyze, in the context of the minisuper-
space approximation, the generalized supersymmetric
WDW equation for the oldest and most well-known black
hole that was discovered by Schwarzschild. We will first
review, in Sec. II, the WDW equation for a Schwarzschild
black hole, taking advantage of its diffeomorphism with
the Kantowski-Sachs model [10,15], and will use theWKB
method to obtain the corresponding well-known classical
solution. In Sec. III we choose the third and simplest of the
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three approaches, outlined above, to supersymmetrize the
WDW equation and apply it to define the supersymmetric
model for the Schwarzschild black hole. The same kind of
result would essentially be obtained by using any of the
other two approaches (in the case of the first of them, based
directly in supergravityN ¼ 1, the fermionic partners are
the gravitinos). In this way the corresponding (super)
Hamiltonian is obtained. In Sec. IV, the classical analysis,
a WKB approach is performed for the only two diagonal
components of the (super) Hamiltonian, and the equations
corresponding to the asymptotic regions are analytically
solved. As already stated, the standard Schwarzschild met-
ric is the solution to one of them and there are other two
asymptotic regions corresponding to each one of the two
Hamiltonians. One has two solutions and the other, only
one, they have a singularity at r ¼ 0, and can present also
another singularity at r ¼ C2, (C ¼ const). The
Schwarzschild horizon can never be reached because
when 2m=r is very near to one, one must consider the
other asymptotic region, in each case, and their corre-
sponding solutions. Even though, in the framework of
our proposal, the Schwarzschild solution and the super-
symmetric solutions are asymptotic solutions, it is interest-
ing to study the behavior of the last ones; in Sec. V we
analyze one of them that has the two singularities at r ¼ 0
and at r ¼ C2, find its associated mass in this asymptotic
region, and by means of the cosmological model inside r ¼
C2 and making use of the holographic principle, we are
able to propose an entropy related to this solution and show
its relation with the mass. Section VI is devoted to dis-
cussion and conclusions.

II. WDW EQUATION FOR
SCHWARZSCHILD !KANTOWSKI-SACHS
METRICS AND THE CLASSICAL LIMIT

Let us begin by reviewing the relationship between the
cosmological Kantowski-Sachs metric and the
Schwarzschild metric [10,15]. The Schwarzschild solution
can be written as

ds2 ¼ �
�
1� 2m

r

�
dt2 þ

�
1� 2m

r

��1
dr2

þ r2ðd�2 þ sin2�d’2Þ: (1)

For the case r < 2m, the gtt and grr components of the
metric change in sign and @t becomes a spacelike vector,
and @r becomes a timelike vector. If we make the coor-
dinate transformation t $ r, we find

ds2 ¼ �
�
2m

t
� 1

��1
dt2 þ

�
2m

t
� 1

�
dr2

þ t2ðd�2 þ sin2�d’2Þ: (2)

On the other hand, the parametrization by Misner [25]
appropriate for the Kantowski-Sachs and Schwarzschild
metrics is

ds2 ¼ �N2dt2 þ e2
ffiffi
3

p
�dr2

þ e�2
ffiffi
3

p
�e�2

ffiffi
3

p
�ðd�2 þ sin2�d’2Þ: (3)

The corresponding WDW equation for the Kantowski-
Sachs metric, results in

�
� @2

@�2
þ @2

@�2
þ 48e�2

ffiffi
3

p
�

�
c ð�; �Þ ¼ 0: (4)

The solution to this equation was given by Misner [25].
Based on the diffeomorphism between the Kanstowski-

Sachs and the Schwarzschild metrics, the WDW equation
(4) has been applied to find a quantized version of a
Schwarzschild black hole [15]. As mentioned, our objec-
tive is to find the (super) WDW equation corresponding to
(4) that can be traduced in a (super) Hamiltonian for a
Schwarzschild black hole and will concentrate our study to
its classical solutions, i.e. the supersymmetric generaliza-
tion of the Schwarzschild black hole. In order to obtain
that, first we show how to get the solutions (1) and (2) by
applying the WKB method to the WDWequation (4). As is
well known, we assume that the wave function has the form

c ¼ ei½S1ð�ÞþS2ð�Þ�: (5)

The usual procedure results in the Einstein-Hamilton-
Jacobi equation

�
�
dS1ð�Þ
d�

�
2 þ

�
dS2ð�Þ
d�

�
2 � 48e�2

ffiffi
3

p
� ¼ 0; (6)

one identifies

dS1ð�Þ
d�

! �� and
dS2ð�Þ
d�

! ��; (7)

where

�� ¼�12

N
e�

ffiffi
3

p
��2

ffiffi
3

p
� _� and �� ¼ 12

N
e�

ffiffi
3

p
��2

ffiffi
3

p
� _�;

(8)

then the classical equation to be solved is

3

N2
ð _�2 � _�2Þ þ e2

ffiffi
3

p
�þ2

ffiffi
3

p
� ¼ 0: (9)

Making use of the Misner parametrization (3), taking

e�2
ffiffi
3

p
��2

ffiffi
3

p
� ¼ t2, and identifying N2 ¼ e�2

ffiffi
3

p
�, we get

the equation

e�2
ffiffi
3

p
�ð1þ 2

ffiffiffi
3

p
t _�Þ � t2 ¼ 0; (10)

which solution

e�2
ffiffi
3

p
� ¼ 2mt� t2; (11)

withm ¼ const, brings us back to the metric (2), and due to
the diffeomorphism between the solutions (1) and (2),
choosing the parameter r instead of t, we get the
Schwarzschild solution (1) as well. So, as it should be,
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the WKB method applied to the WDW equation (4) gives
the classical equation (10), and its solution (11) is the same
as that of the classical Einstein equations.

III. A SUPERSYMMETRIC WDW EQUATION FOR
THE MISNER PARAMETRIZATION OF THE
KANTOWSKI-SACHS-SCHWARZSCHILD

METRICS

In order to generalize the WDW equation (4) to its
supersymmetric version the third method outlined in the
introduction will be used [21,26,27]. The Hamiltonian for
the homogeneous models can in general be written as

2H0 ¼ G������ þUðqÞ; (12)

where G�� is the metric in the minisuperspace. It is pos-
sible to find a function � such that

G�� @�

@q�
@�

@q�
¼ UðqÞ: (13)

Thus, the minisuperspace Hamiltonian is written in the
form

H ¼ 1

2
½Q �Qþ �QQ� ¼ H0 þ 1

2

@2�

@q�@q�
½ ���; ���; (14)

with the non-Hermitian supercharges

Q ¼ ��
�
�� þ i

@�

@q�

�
; �Q ¼ ���

�
�� � i

@�

@q�

�
;

(15)

where �� and ��� satisfy the spinor algebra

f ���; ���g ¼ 0; f��; ��g ¼ 0; f ���; ��g ¼ G��:

(16)

For our model (4) U ¼ �48e�2
ffiffi
3

p
� and the Hamilton-

Jacobi equation is then

�
�
@�

@�

�
2 þ

�
@�

@�

�
2 ¼ �48e�2

ffiffi
3

p
�; (17)

a solution is

� ¼ �4e
ffiffi
3

p
�; (18)

then according to (15) and (16) the supercharges are given
by

Q ¼ ��ð�� þ i4
ffiffiffi
3

p
e�

ffiffi
3

p
�Þ þ ����;

�Q ¼ ���ð�� � i4
ffiffiffi
3

p
e�

ffiffi
3

p
�Þ þ �����;

(19)

where � and � are the minisuperspace coordinates.

To obtain the supersymmetric Hamiltonian operator it is
necessary to find appropriate representations for the bo-
sonic variables and the fermionic ones ��, ���, �� and ���.
The momenta will be the usual differential operators
�� ! �i @

@� , �� ! �i @
@� and to realize the fermionic

variables algebra (16) we will represent them as matrices,
in the following manner

2�̂� ¼ �1 � i�2; 2 �̂�
� ¼ �1 þ i�2;

2�̂� ¼ �0 þ �3; 2 �̂�
� ¼ �0 � �3;

(20)

for the �-matrices we will use the representation

�0 ¼
0 0 0 �i
0 0 i 0
0 �i 0 0
i 0 0 0

0
BBB@

1
CCCA;

�1 ¼
i 0 0 0
0 �i 0 0
0 0 i 0
0 0 0 �i

0
BBB@

1
CCCA;

�2 ¼
0 0 0 i
0 0 �i 0
0 �i 0 0
i 0 0 0

0
BBB@

1
CCCA;

�3 ¼
0 �i 0 0
�i 0 0 0
0 0 0 �i
0 0 �i 0

0
BBB@

1
CCCA:

(21)

Making use of these operators representation, the Q̂ and �̂Q
operators can be constructed from (19) and with them, a

diagonal Hamiltonian operator Ĥ is obtained, since the first
and third as well as the second and fourth operators are
equal, the wave function has only two components. The
usual WDW equation (4) is by these means generalized to
two quantum equations for the Kantowski-Sachs-
Schwarzschild minisuperspace, namely

� @2

@�2
c� þ @2

@�2
c� þ 12e�2

ffiffi
3

p
�ð4� e

ffiffi
3

p
�Þc� ¼ 0;

(22)

where cþ and c� correspond to the wave function asso-
ciated with the (þ ) and the (� ) signs in the potential.
Note that both quantum equations differ from the usual

WDWequation (4) by the same extra term but with differ-
ent sign. This is similar to what happens in standard super-
symmetric quantum mechanics where also extra terms
arise in the potential. Even though, the last term in (22),
is expected to be relevant only when the supersymmetric
contribution is larger or of the order of the usual one, it is of
interest to study the behavior of these other asymptotic
solutions that considerable differ from the Schwarzschild
solution, as will be shown.
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It is clear that to certain linear combinations of the

fermionic operators �̂�, �̂�, �̂�
�
, and �̂�

�
, one can associate

the eigenvectors

1
0
0
0

0
BBB@

1
CCCA;

0
1
0
0

0
BBB@

1
CCCA;

0
0
1
0

0
BBB@

1
CCCA and

0
0
0
1

0
BBB@

1
CCCA: (23)

So, for example, the first eigenvector is an eigenstate with
eigenvalue þ1 corresponding to one of these particular
combinations, having then that the eigenvectors (23) are
linear combinations of the eigenstates of the operators (20)
and (21). Through an appropriate rotation one could asso-
ciate the above four eigenstates directly with the fermionic

operators �̂� and �̂�
�
[17,22], and by this means identify

their contribution to wave function components.

IV. THE CLASSICAL LIMIT OF THE
SUPERSYMMETRIC REGION

Following the same procedure, to apply the WKB
method presented in Sec. II, one obtains two classical
equations corresponding to (22), that written together give

12

N2
ð _�2 � _�2Þ þ e2

ffiffi
3

p
�þ2

ffiffi
3

p
�ð4� e

ffiffi
3

p
�Þ ¼ 0: (24)

Making use of the Misner parametrization (3), as in Sec. II

and using e�2
ffiffi
3

p
��2

ffiffi
3

p
� ¼ t2 and N2 ¼ e�2

ffiffi
3

p
� one has

4e�2
ffiffi
3

p
�ð1þ 2t

ffiffiffi
3

p
_�Þ � t2ð4� e

ffiffi
3

p
�Þ ¼ 0: (25)

Both of the classical equations (25) present two asymptotic

regions for 4 � e
ffiffi
3

p
� and another for 4 � e

ffiffi
3

p
�. By inter-

changing t by r, as in Sec. II, the first limit evidently gives
the Schwarzschild solution (1), (10), and (11). In the other
region, the extra term in the potential (25) dominates and
one has two equations. We will see that the corresponding
solutions present a singularity at r ¼ 0 and, depending on
the sign of the integration constant C, another singularity
could also be present at r ¼ C2 in both cases. In these
supersymmetric dominated regions, neither of the solu-
tions can be related with the Newtonian limit. Already, at

this stage, Eq. (25) tells us that the Schwarzschild horizon
can never be reached.
As we can deduce from (11), the Schwarzschild case,

changing t by r, gives

e
ffiffi
3

p
� ¼ 1

rð1� 2m
r Þ1=2

: (26)

Independently of the value of r, for 2m=r very near to one,

e
ffiffi
3

p
� can be very large, e

ffiffi
3

p
� � 4 and according to (25) we

are then in the other asymptotic regions, not the one
corresponding to Schwarzschild and these have different
solutions.
The solutions for these asymptotic regions (when

e
ffiffi
3

p
� � 4), are

e�
ffiffi
3

p
� ¼

�
3

4

�
1=3

r2=3
�
�1þ Cffiffiffi

r
p

�
1=3

; (27)

where C is a constant and taking into account the Misner
parametrization (3) and appropriately the coefficients of
dt2 and dr2 we get

ds2 ¼ �
�
3

4

�
2=3

r�2=3

�
�1þ Cffiffiffi

r
p

�
2=3

dt2

þ
�
4

3

�
2=3

r2=3
�
�1þ Cffiffiffi

r
p

��2=3
dr2

þ r2ðd�2 þ sin2�d�2Þ: (28)

As stated, these solutions are valid only in the asymptotic

region e
ffiffi
3

p
� � 4. Taking the solution with the positive

sign, in the one of the parenthesis, one should consider
two cases C> 0 and C< 0. In the first of them, solution 1,
there is a singularity only at r ¼ 0. In the second case there
is also a second singularity at r ¼ C2, solution 2. For the
solution with the negative sign the constant C can be
negative or positive. The first possibility would give a

negative value for e�
ffiffi
3

p
�, then this is not a valid case.

So, we will consider only values C> 0. The singularities
for this case will be at r ¼ 0 and at r ¼ C2, solution 3. In
order to exhibit the singularities, the Kretschmann invari-
ant is calculated for the solutions (28), it is given by

K� ¼ 1

864ð�1þ Cffiffi
r

p Þ8=3r22=3
�
38 88 61=3C4 � 216 61=3C3r1=2

�
�63þ 8 61=3

�
�1þ Cffiffiffi

r
p

�
1=3

r2=3
�

þ 32r2
�
71 61=3 � 54 62=3r2=3

�
�1þ Cffiffiffi

r
p

�
1=3 þ 108r4=3

�
�1þ Cffiffiffi

r
p

�
2=3

�

� 24Cr3=2
�
431 61=3 � 216 62=3r2=3

�
�1þ Cffiffiffi

r
p

�
1=3 þ 288r4=3

�
�1þ Cffiffiffi

r
p

�
2=3

�

þ 27C2

�
659 61=3r� 192 62=3r5=3

�
�1þ Cffiffiffi

r
p

�
1=3 þ 128r7=3

�
�1þ Cffiffiffi

r
p

�
2=3

��
: (29)
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From (29) we can read the above discussed singularities at
the origin r ¼ 0 and at the radius r ¼ C2.

The SUSY-WDWequation (22) and their corresponding
classical equations (24) have in their own structure the
information of certain states related with our fermionic
variables (‘‘gravitinos’’ if we would have used the super-
gravity N ¼ 1 method), they manifest themselves in the
potential. As is well known, by solving the Dirac equation
in the Schwarzschild and Kerr backgrounds the spinors
blow up at the horizon [23]. It is then reasonable to expect
that a model where the fermionic fields are intrinsically
incorporated do not allow the existence of a horizon, as we
have shown. It is to be noted that our (quantum) super-
symmetric approach removes, in the WKB limit (27), in
this SUSY asymptotic region, the horizon but not the
singularity at r ¼ 0 that remains in all the three solutions,
in fact, in two of them another singularity arises in r ¼ C2.

V. ANALYSIS OF SOLUTION 2, AN ASSOCIATED
MASS AND A POSSIBLE RELATION WITH THE

ENTROPY

Lets us consider

ds2 ¼ �Fdt2 þ F�1dr2 þ r2ðd�2 þ sin2�d�2Þ; (30)

with F ¼ ð34Þ2=3r�2=3ð1� Cffiffi
r

p Þ2=3 andC> 0. The expression

given by Eq. (27) must be positive. This imposes the
restriction

ffiffiffi
r

p
>C. Also according to Eq. (25) solution

(30) is valid for e
ffiffi
3

p
� � 4. This implies (27) that there is

a maximum radius rm > C2 (in Planck lengths) where this
solution is valid.

Because of the fact that for large r the Minkowski metric
is not a limit of (30), one can consider this metric at rm as
the background metric. With this assumption we can fol-
low a well known proposal [28] to associate a mass to our
metric. The mass formula can be expressed as

M ¼ � 1

2GN

j~gttj1=2
j~grrj3=2

rðgrr � ~grrÞ; (31)

where ~gtt and ~grr correspond to the background metric, in
our case ~F and ~F�1, which, for a large enough rm, results in

~F �1 ¼
�
4

3

�
2=3

r2=3m ; (32)

for r ¼ �rm, � � 1, then

F�1 ¼ ~F�1�2=3

�
1þ 2

3

C

�1=2r1=2m

�
; (33)

and M ¼ � 1
2GN

~F2rðF�1 � ~F�1Þ, which results in

M ¼
�
3

4

�
2=3 1

2GN

�
�ð1� �2=3Þr1=3m � 2

3
�7=6Cr�1=6

m

�
:

(34)

As rm is proportional to C2, we have that

M� C2=3: (35)

This relation between the constant of integration C and the

mass was to be expected because F ¼ ð34Þ2=3ð1r � C
r3=2

Þ2=3, so
C2=3 would be related with r, in the same manner as the
mass appears in the usual static metric �M

r .

The SUSY-WDW equation (22) provides in the asymp-

totic region e
ffiffi
3

p
� � 4, the black hole solution (30). This

has an associated cosmological model inside r ¼ C2 as it
happens in the standard bosonic case (1) and (2). This
cosmological solution can be expressed as (30) but now
with

F ¼
�
4

3

�
2=3

t2=3
�
Cffiffi
t

p � 1

��2=3
: (36)

On the other hand, the holographic principle tells us that
for a given volume V, the state of maximal entropy is given
by the largest black hole that fits inside V. ’tHooft and
Susskind [29] argued that the microscopic entropy associ-
ated with the volume V should not exceed the Bekenstein-
Hawking entropy S � A

4G of a certain black hole with

horizon area A equal to the surface area of the boundary
of V. A particular model to realize this idea was given by
Verlinde [30]. He generalized the Cardy formula [31] to
arbitrary spacetime dimensions and proposed that a closed
universe has a Casimir contribution to its energy and
entropy and that the Casimir energy is bounded from above
by the Bekenstein-Hawking energy. He found that SBH ¼
ðn� 1Þ V

4�GR , where n is the number of space dimensions,

V is the volume of the universe, and R its radius. This SBH
was identified with the holographic Bekenstein-Hawking
entropy of a black hole with the size of the universe.
The largest possible radius of the universe (30) and (36)

cannot exceedC2. So, the largest standard black hole fitting
V would have also r ¼ C2 and accordingly the maximum
entropy of this universe should be S� A

4G � r2 � C4 (note

that we cannot assign an entropy to our black hole solution
outside r ¼ C2 (30) by following the usual procedure [32],
because this solution has no horizon, as already shown).

Now taking into accountM� C2=3 (34) and (35), it results
that S� C4 �M6. As mentioned, we have not found the
general solutions to the classical equations (24) and (25),
the above resulting mass and entropy were obtained in the
extreme supersymmetric (or fermionic) limit. As conse-
quence, this entropy S�M6, with M given by (34) and
(35), should be interpreted as a correction to the usual one
emerging in this (extreme) asymptotic (quantum) super-
symmetric regime.

VI. CONCLUSIONS

Based on previous works [14,15], we have first shown
that the WDW equation (4) has a classical limit (10) of
which the solution is the Schwarzschild metric (1), [or the
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Kantowski-Sachs cosmological model (2)]. A supersym-
metrization of (4) results in (22) which classical limit (25)
shows already (26) that the event horizon can never be
reached because very near to it, the other term in the
potential in (25) dominates. It is known, by solving the
Dirac equation, that the spinors blow up at the horizon of
the Schwarzschild and Kerr metrics [23]. In our supersym-
metry black hole proposal the fermionic degrees of free-
dom (the gravitinos if we would have used the first
supergravity N ¼ 1 [17,22] method mentioned in this
work) are intrinsic elements of the model and they do not
allow the presence of an event horizon. Each Eq. (25)
exhibits two asymptotic limits, neither of them correspond
to a whole exact solution of this equation. Nevertheless, the
Schwarzschild black hole is the solution to one of these
asymptotic regions. We have studied the other two possible
asymptotic regions, depending on the sign of the extra term
in the potential. The three solutions are given by (28). They
are singular at r ¼ 0 and depending on the sign of C they
can also be singular at r ¼ C2 (29). None of these super-
symmetric dominated solutions have a Newtonian limit.
We then analyzed the second solution (30), the Minkowski

space-time is not a background metric of it. However, there
is a maximum radius, rm > C2, the metric (30) calculated
at rm is assumed as the background metric. By this means a
mass (34) can be associated to this solution and it results
that we can relate it with our constant of integration C;

M� C2=3 (35). Inside r ¼ C2 one has the cosmological
solution (30) and (36) and according with the holographic
principle proposal, the state of maximum entropy should
correspond to the entropy associated with the largest stan-
dard black hole fitting its volume. The maximum radius of
this universe is r ¼ C2, consequently S� C4 and by means

of M� C2=3 (35), it results that S�M6. This arises in the
asymptotic supersymmetric (fermionic) region, so the
mass (34) and (35) and its associate entropy correspond
to this extreme regime and could be understood as a
(quantum) SUSY correction to the standard black hole
entropy.
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