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In this work, we construct traversable wormhole geometries in the context of fðRÞ modified theories of

gravity. We impose that the matter threading the wormhole satisfies the energy conditions, so that it is the

effective stress-energy tensor containing higher order curvature derivatives that is responsible for the null

energy condition violation. Thus, the higher order curvature terms, interpreted as a gravitational fluid,

sustain these nonstandard wormhole geometries, fundamentally different from their counterparts in

general relativity. In particular, by considering specific shape functions and several equations of state,

exact solutions for fðRÞ are found.

DOI: 10.1103/PhysRevD.80.104012 PACS numbers: 04.50.�h, 04.20.Jb, 04.50.Kd

I. INTRODUCTION

Various independent high-precision observational data
have confirmed with startling evidence that the Universe is
undergoing a phase of accelerated expansion [1]. Several
candidates have been proposed in the literature to explain
this phenomenon, ranging from dark energy models to
modified theories of gravity. In the latter context, one
may assume that at large scales Einstein’s theory of general
relativity breaks down, and a more general action describes
the gravitational field. The Einstein field equation of gen-
eral relativity was first derived from an action principle by
Hilbert, by adopting a linear function of the scalar curva-
ture, R, in the gravitational Lagrangian density. However,
there are no a priori reasons to restrict the gravitational
Lagrangian to this form, and indeed several generalizations
have been proposed. In particular, a more general modifi-
cation of the Einstein-Hilbert gravitational Lagrangian
density involving an arbitrary function of the scalar invari-
ant, fðRÞ, was considered in [2], and further developed in
[3].

In this context, a renaissance of fðRÞ modified theories
of gravity has been verified in an attempt to explain the
late-time accelerated expansion of the Universe (see
Ref. [4] for a review). Earlier interest in fðRÞ theories
was motivated by inflationary scenarios as for instance,
in the Starobinsky model, where fðRÞ ¼ R��þ �R2

was considered [5]. In fact, it was shown that the late-
time cosmic acceleration can be indeed explained within
the context of fðRÞ gravity [6]. Furthermore, the conditions
of viable cosmological models have been derived [7], and
an explicit coupling of an arbitrary function of R with the
matter Lagrangian density has also been explored [8].

Relative to the Solar System regime, severe weak field
constraints seem to rule out most of the models proposed
so far [9,10], although viable models do exist [11]. In the
context of dark matter, the possibility that the galactic
dynamics of massive test particles may be understood
without the need for dark matter was also considered in
the framework of fðRÞ gravity models [12].
The metric formalism is usually considered in the lit-

erature, which consists in varying the action with respect to
g��. However, other alternative approaches have been
considered in the literature, namely, the Palatini formalism
[13,14], where the metric and the connections are treated as
separate variables; and the metric-affine formalism, where
the matter part of the action now depends and is varied with
respect to the connection [14]. The action for fðRÞ modi-
fied theories of gravity is given by

S ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi�g
p

fðRÞ þ SMðg��; c Þ; (1)

where � ¼ 8�G; throughout this work we consider � ¼ 1
for notational simplicity. SMðg��; c Þ is the matter action,
defined as SM ¼ R

d4x
ffiffiffiffiffiffiffi�g

p
Lmðg��; c Þ, where Lm is the

matter Lagrangian density, in which matter is minimally
coupled to the metric g�� and c collectively denotes the

matter fields.
Now, using the metric approach, by varying the action

with respect to g��, provides the following field equation

FR�� � 1

2
fg�� �r�r�Fþ g��hF ¼ Tm

��; (2)

where F � df=dR. Considering the contraction of Eq. (2),
provides the following relationship

FR� 2fþ 3hF ¼ T; (3)

which shows that the Ricci scalar is a fully dynamical
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degree of freedom, and T ¼ T�
� is the trace of the stress-

energy tensor.
In this work, we extend the analysis of static and spheri-

cally symmetric spacetimes considered in the literature
(for instance, see [15]), and analyze traversable wormhole
geometries in fðRÞ modified theories of gravity.
Wormholes are hypothetical tunnels in spacetime, possibly
through which observers may freely traverse. However, it
is important to emphasize that these solutions are primarily
useful as ‘‘gedanken experiments’’ and as a theoretician’s
probe of the foundations of general relativity. In classical
general relativity, wormholes are supported by exotic mat-
ter, which involves a stress-energy tensor that violates the
null energy condition (NEC) [16,17]. Note that the NEC is
given by T��k

�k� � 0, where k� is any null vector. Thus,

it is an important and intriguing challenge in wormhole
physics to find a realistic matter source that will support
these exotic spacetimes. Several candidates have been
proposed in the literature, among which we refer to solu-
tions in higher dimensions, for instance in Einstein-Gauss-
Bonnet theory [18,19], wormholes on the brane [20]; so-
lutions in Brans-Dicke theory [21–23]; wormhole solutions
in semiclassical gravity (see Ref. [24] and references
therein); exact wormhole solutions using a more system-
atic geometric approach were found [25]; geometries sup-
ported by equations of state responsible for the cosmic
acceleration [26], solutions in conformal Weyl gravity
were found [27], and thin accretion disk observational
signatures were also explored [28], etc. (see Refs. [29,30]
for more details and [30] for a recent review).

Thus, we explore the possibility that wormholes be
supported by fðRÞ modified theories of gravity. It is an
effective stress energy, which may be interpreted as a
gravitational fluid, that is responsible for the null energy
condition violation, thus supporting these nonstandard
wormhole geometries, fundamentally different from their
counterparts in general relativity. We also impose that the
matter threading the wormhole satisfies the energy
conditions.

This paper is organized in the following manner: In
Sec. II, the spacetime metric, the effective field equations
and the energy condition violations in the context of fðRÞ
modified theories of gravity are analyzed in detail. In
Sec. III, specific solutions are explored, and we conclude
in Sec. IV.

II. WORMHOLE GEOMETRIES IN fðRÞ GRAVITY

A. Spacetime metric and gravitational field equations

Consider the wormhole geometry given by the following
static and spherically symmetric metric

ds2 ¼ �e2�ðrÞdt2 þ dr2

1� bðrÞ=rþ r2ðd�2 þ sin2�d�2Þ;
(4)

where �ðrÞ and bðrÞ are arbitrary functions of the radial
coordinate, r, denoted as the redshift function, and the
shape function, respectively [16]. The radial coordinate r
is nonmonotonic in that it decreases from infinity to a
minimum value r0, representing the location of the throat
of the wormhole, where bðr0Þ ¼ r0, and then it increases
from r0 back to infinity.
A fundamental property of a wormhole is that a flaring

out condition of the throat, given by ðb� b0rÞ=b2 > 0, is
imposed [16], and at the throat bðr0Þ ¼ r ¼ r0, the condi-
tion b0ðr0Þ< 1 is imposed to have wormhole solutions. It is
precisely these restrictions that impose the NEC violation
in classical general relativity. Another condition that needs
to be satisfied is 1� bðrÞ=r > 0. For the wormhole to be
traversable, one must demand that there are no horizons
present, which are identified as the surfaces with e2� ! 0,
so that �ðrÞ must be finite everywhere. In the analysis
outlined below, we consider that the redshift function is
constant,�0 ¼ 0, which simplifies the calculations consid-
erably, and provide interesting exact wormhole solutions
(if �0 � 0, the field equations become fourth order differ-
ential equations, and become quite intractable).
The trace equation (3) can be used to simplify the field

equations and then can be kept as a constraint equation.
Thus, substituting the trace equation into Eq. (2), and
reorganizing the terms we end up with the following
gravitational field equation

G�� � R�� � 1

2
Rg�� ¼ Teff

��; (5)

where the effective stress-energy tensor is given by Teff
�� ¼

TðcÞ
�� þ ~TðmÞ

�� . The term ~TðmÞ
�� is given by

~T ðmÞ
�� ¼ TðmÞ

�� =F; (6)

and the curvature stress-energy tensor, TðcÞ
��, is defined as

TðcÞ
�� ¼ 1

F

�
r�r�F� 1

4
g��ðRFþhFþ TÞ

�
: (7)

It is also interesting to consider the conservation law for
the above curvature stress-energy tensor. Taking into ac-
count the Bianchi identities, r�G�� ¼ 0, and the diffeo-

morphism invariance of the matter part of the action, which

yields r�TðmÞ
�� ¼ 0, we verify that the effective Einstein

field equation provides the following conservation law

r�TðcÞ
�� ¼ 1

F2
TðmÞ
��r�F: (8)

Relative to the matter content of the wormhole, we
impose that the stress-energy tensor that threads the worm-
hole satisfies the energy conditions, and is given by the
following anisotropic distribution of matter

T�� ¼ ð�þ ptÞU�U� þ ptg�� þ ðpr � ptÞ	�	�; (9)

where U� is the four-velocity, 	� is the unit spacelike
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vector in the radial direction, i.e., 	� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� bðrÞ=rp


�
r.

�ðrÞ is the energy density, prðrÞ is the radial pressure
measured in the direction of 	�, and ptðrÞ is the transverse
pressure measured in the orthogonal direction to 	�.
Taking into account the above considerations, the stress-
energy tensor is given by the following profile: T�

� ¼
diag½��ðrÞ; prðrÞ; ptðrÞ; ptðrÞ�.

Thus, the effective field equation (5) provides the fol-
lowing relationships

b0

r2
¼ �

F
þH

F
; (10)

� b

r3
¼ pr

F
þ 1

F

��
1� b

r

��
F00 � F0 b0r� b

2r2ð1� b=rÞ
�
�H

�
;

(11)

� b0r� b

2r3
¼ pt

F
þ 1

F

��
1� b

r

�
F0

r
�H

�
; (12)

where the prime denotes a derivative with respect to the
radial coordinate, r. The term H ¼ HðrÞ is defined as

HðrÞ ¼ 1

4
ðFRþhFþ TÞ; (13)

for notational simplicity. The curvature scalar, R, is given
by

R ¼ 2b0

r2
; (14)

and hF is provided by the following expression

hF ¼
�
1� b

r

��
F00 � b0r� b

2r2ð1� b=rÞF
0 þ 2F0

r

�
: (15)

Note that the gravitational field equations (10)–(12) can
be reorganized to yield the following relationships:

� ¼ Fb0

r2
; (16)

pr ¼ �bF

r3
þ F0

2r2
ðb0r� bÞ � F00

�
1� b

r

�
; (17)

pt ¼ �F0

r

�
1� b

r

�
þ F

2r3
ðb� b0rÞ; (18)

which are the generic expressions of the matter threading
the wormhole, as a function of the shape function and the
specific form of FðrÞ. Thus, by specifying the above func-
tions, one deduces the matter content of the wormhole.

One may now adopt several strategies to solve the field
equations. For instance, if bðrÞ is specified, and using a
specific equation of state pr ¼ prð�Þ or pt ¼ ptð�Þ one
can obtain FðrÞ from the gravitational field equations and
the curvature scalar in a parametric form, RðrÞ, from its
definition via the metric. Then, once T ¼ T�

� is known as

a function of r, one may in principle obtain fðRÞ as a
function of R from Eq. (3).

B. Energy condition violations

A fundamental point in wormhole physics is the energy
condition violations, as mentioned above. However, a
subtle issue needs to be pointed out in modified theories
of gravity, where the gravitational field equations differ
from the classical relativistic Einstein equations. More
specifically, we emphasize that the energy conditions arise
when one refers back to the Raychaudhuri equation for the
expansion where a term R��k

�k� appears, with k� any null

vector. The positivity of this quantity ensures that geodesic
congruences focus within a finite value of the parameter
labelling points on the geodesics. However, in general
relativity, through the Einstein field equation one can write
the above condition in terms of the stress-energy tensor
given by T��k

�k� � 0. In any other theory of gravity, one

would require to know how one can replace R�� using the

corresponding field equations and hence using matter
stresses. In particular, in a theory where we still have an
Einstein-Hilbert term, the task of evaluating R��k

�k� is

trivial. However, in fðRÞmodified theories of gravity under
consideration, things are not so straightforward.
Now the positivity condition, R��k

�k� � 0, in the

Raychaudhuri equation provides the following form for
the null energy condition Teff

��k
�k� � 0, through the modi-

fied gravitational field equation (5), and it is this relation-
ship that will be used throughout this work. For this case, in
principle, one may impose that the matter stress-energy
tensor satisfies the energy conditions and the respective
violations arise from the higher derivative curvature terms

TðcÞ
��. Another approach to the energy conditions consists in

taking the condition T��k
�k� � 0 at face value. Note that

this is useful as using local Lorentz transformations it is
possible to show that the above condition implies that the
energy density is positive in all local frames of reference.
However, if the theory of gravity is chosen to be non-
Einsteinian, then the assumption of the above condition
does not necessarily imply focusing of geodesics. The
focusing criterion is different and will follow from the
nature of R��k

�k�.

Thus, considering a radial null vector, the violation of
the NEC, i.e., Teff

��k
�k� < 0 takes the following form

�eff þpeff
r ¼ �þpr

F
þ 1

F

�
1� b

r

��
F00 �F0 b0r�b

2r2ð1�b=rÞ
�
;

(19)

where �eff þ peff
r < 0. Using the gravitational field equa-

tions, inequality (19) takes the familiar form

�eff þ peff
r ¼ b0r� b

r3
; (20)
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which is negative by taking into account the flaring out
condition, i.e., ðb0r� bÞ=b2 < 0, considered above.

At the throat, one has the following relationship

�eff þ peff
r jr0 ¼

�þ pr

F

��������r0

þ 1� b0ðr0Þ
2r0

F0

F

��������r0

<0: (21)

It is now possible to find the following generic relation-
ships for F and F0 at the throat: F0

0 <�2r0ð�þ
prÞjr0=ð1� b0Þ if F > 0; and F0

0 >�2r0ð�þ prÞjr0=ð1�
b0Þ if F < 0.

Consider that the matter threading the wormhole obeys
the energy conditions. To this effect, imposing the weak
energy condition (WEC), given by � � 0 and �þ pr � 0,
then Eqs. (16) and (17) yield the following inequalities:

Fb0

r2
� 0; (22)

ð2Fþ rF0Þðb0r� bÞ
2r2

� F00
�
1� b

r

�
� 0; (23)

respectively.
Thus, if one imposes that the matter threading the worm-

hole satisfies the energy conditions, we emphasize that it is
the higher derivative curvature terms that sustain the
wormhole geometries. Thus, in finding wormhole solutions
it is fundamental that the functions fðRÞ obey inequalities
(19), (22), and (23).

III. SPECIFIC SOLUTIONS

In this section, we are mainly interested in adopting the
strategy of specifying the shape function bðrÞ, which yields
the curvature scalar in a parametric form, RðrÞ, from its
definition via the metric, given by Eq. (14). Then, using a
specific equation of state pr ¼ prð�Þ or pt ¼ ptð�Þ, one
may in principle obtain FðrÞ from the gravitational field
equations. Finally, once T ¼ T�

� is known as a function of

r, one may in principle obtain fðRÞ as a function of R from
Eq. (3).

A. Traceless stress-energy tensor

An interesting equation of state is that of the traceless
stress-energy tensor, which is usually associated to the
Casimir effect, with a massless field. Note that the
Casimir effect is sometimes theoretically invoked to pro-
vide exotic matter to the system considered at hand. Thus,
taking into account the traceless stress-energy tensor, T ¼
��þ pr þ 2pt ¼ 0, provides the following differential
equation

F00
�
1� b

r

�
� b0rþ b� 2r

2r2
F0 � b0r� b

2r3
F ¼ 0: (24)

In principle, one may deduce FðrÞ by imposing a specific
shape function, and inverting Eq. (14), i.e., RðrÞ, to find

rðRÞ, the specific form of fðRÞmay be found from the trace
equation (3).
For instance, consider the specific shape function given

by bðrÞ ¼ r20=r. Thus, Eq. (24) provides the following

solution

FðrÞ ¼ C1 sinh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ��

þ C2 cosh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ��
: (25)

The stress-energy tensor profile threading the wormhole
is given by the following relationships

�ðrÞ ¼ � r20
r4

�
C1 sinh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ��

þ C2 cosh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ���
; (26)

prðrÞ ¼ � r0
r4

�
ð2C2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 � r20Þ

q
þ 3r0C1Þ

� sinh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ��

þ ð2C1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 � r20Þ

q
þ 3r0C2Þ

� cosh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ���
; (27)

ptðrÞ ¼ r0
r4

�
ðC2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 � r20Þ

q
þ r0C1Þ

� sinh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ��

þ ðC1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðr2 � r20Þ

q
þ r0C2Þ

� cosh

� ffiffiffi
2

p
arctan

�
r0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20

q ���
: (28)

One may now impose that the above stress-energy tensor
satisfies the WEC, which is depicted in Fig. 1, by consid-
ering the values C1 ¼ 0 and C2 ¼ �1.
For the specific shape function considered above, the

Ricci scalar, Eq. (14), provides R ¼ �2r20=r
4 and is now

readily inverted to give r ¼ ð�2r20=RÞ1=4. It is also conve-

nient to define the Ricci scalar at the throat, and its inverse

provides r0 ¼ ð�2=R0Þ1=2. Substituting these relationships
into the consistency equation (3), the specific form fðRÞ is
given by
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fðRÞ ¼ �R

�
C1 sinh

� ffiffiffi
2

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR0=RÞ1=2 � 1
q ��

þ C2 cosh

� ffiffiffi
2

p
arctan

�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðR0=RÞ1=2 � 1
q ���

; (29)

which is depicted in Fig. 2, by imposing the values C1 ¼ 0
and C2 ¼ �1.

B. Specific equation of state: pt ¼ ��

Many of the equations of state considered in the litera-
ture involving the radial pressure and the energy density,
such as the linear equation of state pr ¼ ��, provide very
complex differential equations, so that it is extremely
difficult to find exact solutions. This is due to the presence
of the term F00 in pr. Indeed, even considering isotropic
pressures does not provide an exact solution. Now, things
are simplified if one considers an equation of state relating
the tangential pressure and the energy density, so that the
radial pressure is determined through Eq. (17). For in-
stance, consider the equation of state pt ¼ ��, which
provides the following differential equation:

F0
�
1� b

r

�
� F

2r2
½b� b0rð1þ 2�Þ� ¼ 0: (30)

In principle, as mentioned above one may deduce FðrÞ by
imposing a specific shape function, and inverting Eq. (14),
i.e., RðrÞ, to find rðRÞ, the specific form of fðRÞ may be
found from the trace equation (3). In the following analysis
we consider several interesting shape functions usually
applied in the literature.

1. Specific shape function: bðrÞ ¼ r20=r

First, we consider the case of bðrÞ ¼ r20=r, so that

Eq. (30) yields the following solution

FðrÞ ¼ C1

�
1� r20

r2

�ð1=2Þþð�=2Þ
: (31)

The gravitational field equations, (16)–(18), provide the
stress-energy tensor threading the wormhole, given by the
following relationships

prðrÞ ¼ C1r
2
0

r6

�
1� r20

r2

��ð1=2Þþð�=2Þ

� ½2ðr2 � r20Þ þ 3�r2 � 4r20�� r20�
2�; (32)

ptðrÞ ¼ ��ðrÞ ¼ �C1r
2
0�

r4

�
1� r20

r2

�ð1=2Þþð�=2Þ
: (33)

One may now impose that the above stress-energy tensor
satisfies the WEC, which is depicted in Fig. 3, by imposing
the values C1 ¼ �1 and � ¼ �1.
As in the previous case of the traceless stress-energy

tensor, the Ricci scalar, Eq. (14), is given by R ¼ �2r20=r
4

and its inverse provides r ¼ ð�2r20=RÞ1=4. The inverse of

the Ricci scalar evaluated at the throat inverse is given by

r0 ¼ ð�2=R0Þ1=2. Substituting these relationships into the
consistency relationship (3) provides the specific form of
fðRÞ, which is given by

0

1

2

3

4

f(
R

)/
R

0

0 0.2 0.4 0.6 0.8 1

R/R0

FIG. 2. The specific form of fðRÞ, for the specific case of the
traceless stress-energy tensor equation of state, by imposing
the values C1 ¼ 0 and C2 ¼ �1. The range is given by 0 �
R=R0 � 1.

WEC2

WEC1

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6
x

FIG. 1. The stress-energy tensor satisfying the WEC, for the
specific case of the traceless stress-energy tensor equation of
state, and for the values C1 ¼ 0 and C2 ¼ �1. We have consid-
ered the dimensionless quantities WEC1 ¼ r20�, WEC2 ¼
r20ð�þ prÞ and x ¼ r=r0.
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fðRÞ ¼ C1R

�
1�

ffiffiffiffiffiffi
R

R0

s �ð�=2Þ�ð1=2Þ

�
� ffiffiffiffiffiffi

R

R0

s
ð�2 þ 2�þ 2Þ þ ð�þ 2Þ

�
: (34)

This function is depicted in Fig. 4 as fðRÞ=R0 as a function
as R=R0, for the values C1 ¼ �1 and � ¼ �1.

2. Specific shape function: b ¼ ffiffiffiffiffiffiffi
r0r

p
Consider now the case of b ¼ ffiffiffiffiffiffiffi

r0r
p

, so that Eq. (30)

yields the following solution

FðrÞ ¼ C1

�
1�

ffiffiffiffiffi
r0
r

r �ð1=2Þ��
: (35)

The stress-energy tensor profile threading the wormhole
is given by the following relationships

ptðrÞ ¼ ��ðrÞ ¼ C1�

2r2
ð1� ffiffiffiffiffiffiffiffiffi

r0=r
p Þð1=2Þ��ffiffiffiffiffiffiffiffiffi

r0=r
p ; (36)

prðrÞ ¼�C1r0
16r3

�
1�

ffiffiffiffiffi
r0
r

r ��ð3=2Þ��

�
�
10

ffiffiffiffiffi
r

r0

s
þ

ffiffiffiffiffi
r0
r

r
ð14�þ 10Þþ ð4�2 � 26�þ 5Þ

�
:

(37)

Rather than consider plots of the WEC as before, we note
that it is possible to impose various specific values of C1

and � that do indeed satisfy the WEC.
Following the recipe prescribed above, the Ricci scalar

is given by R ¼ ffiffiffiffiffi
r0

p
=r5=2 and is readily inverted to provide

r ¼ ð ffiffiffiffiffi
r0

p
=RÞ2=5. The inverse of the Ricci scalar at the

throat provides r0 ¼ 1=
ffiffiffiffiffiffi
R0

p
. Substituting these relation-

ships into the consistency relationship (3), the specific
form fðRÞ is finally given by

fðRÞ ¼ � 1

8

C1

Rð2=5Þ � 2ðRR0Þð1=5Þ þ Rð2=5Þ
0

� fðRð1=5Þ
0 � Rð1=5ÞÞð1=2Þ��Rð3�2�Þ=10Rð�21þ10�Þ=40

0

� ½�8RRð2=5Þ
0 þ ð11þ 10�ÞRð4=5ÞRð3=5Þ

0

þ ð2� 22�þ 4�2ÞRð3=5ÞRð4=5Þ
0

þ ð�5þ 12�� 4�2ÞRð2=5ÞR0�g: (38)

3. Specific shape function: bðrÞ ¼ r0 þ �2r0ð1� r0=rÞ
Finally, it is also of interest to consider the specific shape

function given by bðrÞ ¼ r0 þ �2r0ð1� r0=rÞ, with 0<
�< 1, so that Eq. (30) provides the following solution

FðrÞ ¼ C1ðr� �2r0Þð1=2Þ½ð�2�2��1Þ=ð�2�1Þ�r�ð�þ1Þ

� ðr� r0Þð1=2Þ½ð�2ð1þ2�Þ�1Þ=ð�2�1Þ� (39)

It is useful to write the last equation in the form FðrÞ ¼
C1X

ur�ð�þ1ÞYv, where X, Y, u, v are defined as

X ¼ r� �2r0; Y ¼ r� r0; u ¼ �2 � 2�� 1

2ð�2 � 1Þ ;

v ¼ �2ð1þ 2�Þ � 1

2ð�2 � 1Þ :
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x

FIG. 3. The stress-energy tensor satisfies the WEC, for the
specific case of the equation of state pt ¼ �� and considering
the form function bðrÞ ¼ r20=r. We have imposed the values

C1 ¼ �1 and � ¼ �1, and considered the dimensionless quan-
tities WEC1 ¼ r20�, WEC2 ¼ r20ð�þ prÞ and x ¼ r=r0.

0

0.1

0.2
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0.4

f(
R

)/
R

0

0.2 0.4 0.6 0.8 1
R/R0

FIG. 4. The profile of fðRÞ is depicted for the specific case of
the equation of state pt ¼ �� and considering the form function
bðrÞ ¼ r20=r. The values C1 ¼ �1 and � ¼ �1 have been

imposed, with the range given by 0 � R=R0 � 1.
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Thus, the stress-energy tensor profile threading the wormhole is given by the following expressions:

prðrÞ ¼ C1

2r3
fXuYv½r��ð2�2 þ 6�þ 4Þ þ r�ð1þ�Þr0ð�7�þ 2�2�2 � 3�2 � 7��2 � 2�2 � 3Þ

þ r�ð2þ�Þr20�2ð10�2 þ 4Þ� þ XuYv�1½r��r0vð��2ð5þ 4�Þ � �� 5Þ þ 4r1��vð1þ �Þ
þ r�ð1þ�Þr20�

2vð4�þ 6Þ� þ XuYv�2½2r��r0�
2vðv� �Þ þ 2r1��r0vð�vþ �2 þ 1Þ þ 2r2��vðvþ 1Þ�

þ Xu�1Yv½r��r0uð4�þ 5Þð�2 þ 1Þ � 4r1��ðu� �Þ � r�ð1þ�Þr20�2uð4�� 6Þ�
þ Xu�2Yv½2r��r20�

2uðu� 1Þ þ 2r1��r0uð1� uÞ þ 2r2��uðu� 1Þ�
þ Xu�1Yv�1½�4r��r20�

2uvþ 4r1��r0uvð�2 þ 1Þ � 4r2��uv�g; (40)

ptðrÞ ¼ �� ¼ C1��
2r20X

ur�ð5þ�ÞYv: (41)

As in the previous example, we will not depict the plot of the functions, but simply note in passing that one may impose
specific values for the constants � and C1 in order to satisfy the WEC.

The Ricci scalar, Eq. (14), provides R ¼ 2�2r20=r
4 and is now readily inverted to give r ¼ ð2�2r20=RÞ1=4. The Ricci

scalar at the throat is given by R0 ¼ 2�2=r20, and its inverse provides r0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
2=R0

p
. Substituting these relationships into

the consistency relationship (3), the specific form fðRÞ is given by

fðRÞ ¼ C1R

2

ðR0RÞð�þ1Þ=4

�2 � ðR0=RÞ1=4ð�2 þ 1Þ þ ðR0=RÞ1=2
�ðR0=RÞ1=4 � �2

R1=2
0

�ð1=2Þ½ð�2�2��1Þ=ð�2�1Þ�

�
�ðR0=RÞ1=4 � 1

R1=2
0

�ð1=2Þ½ð�2ð1�2�Þ�1Þ=ð�2�1Þ��
2�2ð�2 þ 2�þ 2Þ �

�
R0

R

�
1=4ð3�þ 4Þð�2 þ 1Þ þ

�
R0

R

�
1=2ð2�þ 4Þ

�
:

(42)

IV. SUMMARYAND DISCUSSION

In general relativity, the NEC violation is a fundamental
ingredient of static traversable wormholes. Despite this
fact, it was shown that for time-dependent wormhole so-
lutions the null energy condition and the weak energy
condition can be avoided in certain regions and for specific
intervals of time at the throat [31]. Nevertheless, in certain
alternative theories to general relativity, taking into ac-
count the modified Einstein field equation, one may impose
in principle that the stress-energy tensor threading the
wormhole satisfies the NEC. However, the latter is neces-
sarily violated by an effective total stress-energy tensor.
This is the case, for instance, in braneworld wormhole
solutions, where the matter confined on the brane satisfies
the energy conditions, and it is the local high-energy bulk
effects and nonlocal corrections from theWeyl curvature in
the bulk that induce a NEC violating signature on the brane
[20]. Another particularly interesting example is in the
context of the D-dimensional Einstein-Gauss-Bonnet the-
ory of gravitation [18], where it was shown that the weak
energy condition can be satisfied depending on the parame-
ters of the theory.

In this work, we have explored the possibility that
wormholes be supported by fðRÞ modified theories of
gravity. We imposed that the matter threading the worm-
hole satisfies the energy conditions, and it is the higher

order curvature derivative terms, that may be interpreted as
a gravitational fluid, that support these nonstandard worm-
hole geometries, fundamentally different from their coun-
terparts in general relativity. In the analysis outlined above,
we considered a constant redshift function, which simpli-
fied the calculations considerably, yet provides interesting
enough exact solutions. One may also generalize the re-
sults of this paper by considering �0 � 0, although the
field equations become fourth order differential equations,
and become quite intractable. The strategy adopted to solve
the field equations was essentially to specify bðrÞ, and
considering specific equation of state, the function FðrÞ
was deduced from the gravitational field equations, while
the curvature scalar in a parametric form, RðrÞ, was ob-
tained from its definition via the metric. Then, deducing
T ¼ T�

� as a function of r, exact solutions of fðRÞ as a
function of R from the trace equation were found.
Furthermore, we note that fðRÞ modified theories of

gravity are equivalent to a Brans-Dicke theory with a
coupling parameter w ¼ 0, and a specific potential related
to the function fðRÞ and its derivative. In this context, it
was shown that static wormhole solutions in the vacuum
Brans-Dicke theory only exist in a narrow interval of the
coupling parameter [21], namely, �3=2<w<�4=3.
However, we point out that this result is only valid for
vacuum solutions and for a specific choice of an integration
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constant of the field equations given by CðwÞ ¼ �1=ðwþ
2Þ. The latter relationship was derived on the basis of a
post-Newtonian weak field approximation, and it is impor-
tant to emphasize that there is no reason for it to hold in the
presence of compact objects with strong gravitational
fields.

Another issue that needs to be mentioned, is that the
above-mentioned interval imposed on w was obtained by
considering the violation of the WEC (recall that the WEC
imposes � � 0 and �þ pr � 0). Now the authors in [21]
obtained the respective constraints on w by considering
negative energy densities, i.e., � < 0. This is not a neces-
sary condition, as one may consider positive energy den-
sities and in alternative impose the condition �þ pr < 0,
which violates the WEC, and consequently the NEC. Note
that this is justified as the fundamental ingredient in worm-
hole physics is the violation of the NEC, and not the
imposition of negative energy densities. In principle, this
condition combined with an adequate choice of CðwÞ could
provide a different viability and less restrictive interval
(including the value w ¼ 0) from the case of�3=2<w<
�4=3 considered in [21].

For the vacuum case considered in the present paper, we
note that there are no viable solutions, as now we have
three gravitational field equations and two arbitrary func-
tions, bðrÞ and FðrÞ, so that the system is overdetermined.
This difficulty can be surpassed by considering the general
case of�0ðrÞ � 0, but now it is impossible to find an exact
analytical solution, and numerical methods are needed to
solve the system of equations. However, in the presence of
matter things are totally different, as this adds additional
degrees of freedom. Thus, in principle one may construct a
whole plethora of wormhole solutions (a specific equation
of state was considered in [22]), in addition to adequately
choosing CðwÞ in Brans-Dicke theory. Work along these
lines is presently underway.
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