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We argue that the most conservative geometric extension of Einstein gravity describing both positive

and negative mass sources and observers is bimetric gravity and contains two copies of standard model

matter which interact only gravitationally. Matter fields related to one of the metrics then appear dark from

the point of view of an observer defined by the other metric, and so may provide a potential explanation

for the dark universe. In this framework we consider the most general form of linearized field equations

compatible with physically and mathematically well-motivated assumptions. Using gauge-invariant linear

perturbation theory, we prove a no-go theorem ruling out all bimetric gravity theories that, in the

Newtonian limit, lead to precisely opposite forces on positive and negative test masses.
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I. MOTIVATION

In Newtonian mechanics and gravity, the notion of mass
appears as a generic term in quite different physical con-
texts. Taking a closer look, one needs to distinguish three
different types of mass [1]: active gravitational mass ma is
the source of gravitational fields; passive gravitational
mass mp determines the force acting on a test particle in

a gravitational field; inertial mass mi serves as the propor-
tionality factor relating force and acceleration.

Experiment, however, shows that these at first unrelated
types of mass are closely tied together. Both ratios ma=mp

and mi=mp appear to be constant independent of material,

see e.g. [2–8]. These observations are nicely explained by
well-known theoretical principles. Newton’s third law as-
serts that for every force there exists a reciprocal force of
equal strength and opposite direction. Considering the
gravitational force, this implies that the ratio ma=mp be-

tween active and passive gravitational mass must be equal
for all bodies. The weak equivalence principle states that
the acceleration of a physical body in a gravitational field is
independent of its composition. This implies that the ratio
mi=mp between inertial and passive gravitational mass is

fixed. It is conventional to choose unit ratios so that all
three masses become equal. Taking into account the ob-
servational evidence that gravity is always attractive, all
mass can be chosen positive.

One may now argue that the experiments and observa-
tions mentioned above approve the proportionality and
positivity of the different types of mass only for visible
matter, i.e., for matter observed through nongravitational
interactions, say through emitted light or other types of
radiation. However, assuming Einstein gravity, modern
astronomical observations [9] suggest that visible matter
only constitutes a small fraction of about 5% of the total

matter content of the universe. The main constituents of the
universe, known as dark matter and dark energy, have not
been observed directly. So it remains unknown whether the
same fixed ratio relations between the different types of
mass are obeyed also in the dark universe. This lack of
knowledge hence invites the interesting possibility to mod-
ify Newton’s third law, the weak equivalence principle, or
the positivity of mass.
In this article we will accept this invitation, and consider

gravity theories with a modified weak equivalence princi-
ple. We will investigate a different ratio between inertial
and passive gravitational mass in the dark sector, namely
mi=mp ¼ �1. Assuming that the inertial mass is still

positive, we thus have mp ¼ ma and jmpj ¼ mi in both

sectors. This modification introduces negative gravita-
tional masses in such a way that like masses attract while
unlike masses repel each other. Applied to cosmology, such
a framework could be particularly rewarding. Effects usu-
ally attributed to dark matter and dark energy in principle
could be explained by the presence of negative masses in
the universe. Indeed, if the intergalactic space contained
negative mass distributions, these could push positive mat-
ter back towards the respective centers of visible galaxies,
mimicking the presence of dark matter sources within the
galaxies themselves. Moreover, the repulsive gravitational
force acting on the visible positive mass galaxies could also
lead to accelerating expansion.
Neither the concept of negative mass nor its cosmologi-

cal motivation are new in the literature, and have been
discussed within several theoretical contexts and with dif-
ferent ratios and signs of ma, mp, and mi. Already in 1897,

Föppl [10] introduces negative mass as a natural extension
of Newtonian gravity. Consequences within modified
Newtonian dynamics are discussed e.g. in [11]. It has
been observed that additional negative masses with ma ¼
mp ¼ mi < 0 neither violate Newton’s third law nor the

weak equivalence principle. Forces on such bodies cause
these to accelerate in the opposite direction. Probably the
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most striking example for this behavior is the gravitational
dipole: a system of two bodies of positive and negative
mass must forever accelerate in a common direction, the
negative mass following the positive one. This effect also
exists within Einstein gravity [1,12], where the ratio
mi=mp ¼ 1 is manifestly fixed by the weak equivalence

principle. Considering only gravitational forces, such that
the acceleration of a body is determined purely by the ratio
mi=mp, the individual signs of mp and mi do not affect the

trajectories. Thus, the only possibility to introduce nega-
tive mass into Einstein gravity is to choose negative
sources for the gravitational field, i.e., ma < 0. Various
properties of such negative mass solutions have been dis-
cussed; for instance, gravitational lensing [13], gravita-
tional collapse [14], and the stability [15,16] of negative
mass black holes. More general repulsive gravitational
effects are analyzed e.g. in [17–19].

A consequence of the weak equivalence principle is that
all test masses, and all observers, follow the same set of
preferred curves, namely, geodesics. In other words, there
is only one type of observers. Since we wish to relax this
condition by allowing the ratio mi=mp ¼ �1 for a second

type of matter, we have to extend the framework of
Einstein gravity. Indeed, it seems natural to introduce a
second metric to generate another set of geodesics describ-
ing the response of the negative mass observers to the
gravitational field. Only then can the gravitational force
of a given source be attractive for one class of test particles,
while being repulsive for a second class. Such bimetric
theories with an antisymmetry between the forces acting
on positive and negative masses have become popular
under the name ‘‘antigravity’’ [20], but their consistency,
in particular their diffeomorphism invariance, has been
doubted [21]. Moreover, the findings of this article place
further strong constraints on the construction of such
theories:

We will prove a theorem which rules out the possibility
of gravitational forces of equal strength and opposite di-
rection acting on the two classes of test particles in bimet-
ric gravity theories.

The outline of this article is as follows. In Sec. II, wewill
state the assumptions that restrict the class of bimetric
gravity theories under consideration. Each of these as-
sumptions is motivated and its physical relevance and
implications are discussed. At the end of this section we
will formulate the no-go theorem, which will be proven in
Sec. III. The proof is based on the most general form of
linearized gravitational field equations consistent with our
assumptions. Using gauge-invariant perturbation tech-
niques, we will decompose the metric perturbations and
identify the components relevant in the Newtonian limit.
Then wewill show by contradiction that it is not possible to
obtain a theory with precisely opposite forces acting on
positive and negative matter. We will conclude with a
discussion in Sec. IV.

II. FORMULATION OF THE THEOREM AND ITS
ASSUMPTIONS

We will begin by explaining the theoretical context in
which our no-go theorem for antigravity is formulated. In
particular, we will give strong motivation for why we
consider bimetric theories in order to describe both attrac-
tive and repulsive gravitational forces. Then we will dis-
cuss in some detail the assumptions entering the no-go
theorem which is formulated at the end of this section.
The proof of the theorem will be contained in Sec. III.
We wish to consider gravity theories allowing for posi-

tive and negative gravitational masses, so that like or unlike
masses attract or repel each other, respectively.
Observations tell us that the standard model contains
only one type of mass, say the positive type, and we will
denote the fields of the standard model collectively by�þ.
We thus need to introduce a copy �� of the standard
model fields but with negative mass.
Observers follow the curves of massive objects in the

small mass limit where backreaction on the geometric
background can be neglected. If fields �� of positive
and negative gravitational mass are available, this limit
will produce two distinguished classes of curves �� on
the spacetime manifold. In extension of standard general
relativity, it is reasonable to assume that these curves are
described by the autoparallels of two linear connections
r�. In order to make measurements, observers attach
frames fe��g with e�0 ¼ _�� to their spacetime paths ��;
these frames must be orthonormalized with respect to some
metrics g�, i.e., g�ðe��; e�� Þ ¼ ���. In standard fashion,

we define observers as inertial, when their frames are
nonaccelerated and nonrotating; this is equivalent to
Fermi-Walker transport according to r�

e�
0
e�� ¼ 0. From

the orthonormality relation, it now follows that the two
metrics are covariantly constant, r�g� ¼ 0. Assuming
vanishing torsion of both connections, we thus find that
r� are the Levi-Cività connections related to the metrics
g�.
Note that observers by this construction follow the time-

like geodesics defined by just one of the metrics g�. To
achieve consistency of this notion of causality with that
following from the matter field equations, we are led to
assume that the fields�þ and�� couple exclusively to the
respective metrics gþ and g�. We also assume that there is
no nongravitational interaction between the two types of
matter fields, which is consistent with the lack of direct
nongravitational observational evidence for a second type
of matter. In other words, matter of type�� should appear
to be dark from the viewpoint of an observer measuring his
world with the metric gþ, and vice versa.
This is arguably the most conservative framework for

gravity and matter that we can choose to model attractive
and repulsive gravitational forces. We simply double the
standard ingredients �þ, gþ in the standard model by
introducing additional negative mass fields �� and nega-
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tive mass observers defined with respect to a second metric
g�. This yields a theory with two sectors in both of which
gravity, in the absence of sources and observers of the
second, nonstandard type, appears exclusively attractive.
The interesting possible implications of the existence of
both positive and negative masses are discussed in the
Introduction, and would only arise from the gravitational
interplay of the visible and the dark sector.

We will now formulate, and discuss the physical rele-
vance of, a number of technical assumptions restricting the
class of bimetric theories introduced above. These assump-
tions will be the basic ingredients for our no-go theorem
below. For convenience we use in the following underlined
quantities to denote two-component vectors (withþ and�
components), and doubly underlined quantities to denote
two by two matrices. Our assumptions are:

(i) The gravitational field equations are a set of two
symmetric two-tensor equations of the form

K ab½gþ; g�� ¼ Mab½gþ; g�;�þ;���: (1)

This assumption is consistent with the naive count-
ing argument by which the number of equations
agrees with the number of algebraic components of
the two metrics g�. More importantly, one can think
of these gravitational field equations as arising from
a combined diffeomorphism-invariant matter and
gravity action of the form SG½gþ; g�� þ
SM½gþ; g�;�þ;���. Then variation with respect
to the metric gþ would provide the first vector
component equation, variation with respect to the
metric g� the second.

(ii) The gravitational tensorKab in the field equations (1)
contains at most second derivatives of the metrics gþ
and g�.
This assumption is one of mathematical simplicity. It
makes available a number of theorems on the solv-
ability of partial differential equations, as are also
relevant in Einstein gravity. Important for us in the
proof of our no-go theorem will be the consequent
restriction of the number of terms that can appear in
the gravitational field equations.

(iii) The matter source in the field equations (1) is of the
formMab ¼ J � Tab, where J is a constant invertible

matrix, and the components of Tab are the respective
standard energy momentum tensors T�

ab½g�;��� of
positive and negative mass fields.
This seemingly complicated assumption is easily
motivated by recalling that matter fields �þ should
only couple to the metric gþ, and fields �� only to
g�. If such field equations come from an action by
variation, then this matter action would take the form
SM½gþ;g�;�þ;���¼ jþS½gþ;�þ�þj�S½g�;���
for constant j� � 0. Variation with respect to gþ and
g� then produces precisely the assumed matter

source Mab, the matrix J having jþ, j� on the

diagonal.
(iv) The vacuum solution is given by two flat metrics

g�ab ¼ ���ab with constants �� > 0.
This is another assumption of mathematical simplic-
ity. This vacuum solution has the maximal number of
Killing symmetries for both metrics g� simulta-
neously. The constants �� correspond to the free-
dom of global rescalings of the Cartesian
coordinates. Cosmological constants are excluded;
after all, one of the motivations for this framework
with both positive and negative mass is the potential
explanation of cosmological constants.

(v) Stationary solutions with @0g
�
ab ¼ 0 exist for arbi-

trary nonmoving dust matter T�
00 ¼ ���� with

small energy densities �� �OðhÞ, so that the
Newtonian potentials�� are small of the same order
OðhÞ and the (gauge-fixed) linearly perturbed vac-
uum metrics are

g� ¼ ��½�ð1þ 2��Þdt � dt

þ ð1� 2����Þ�	
dx
	 � dx
�: (2)

This simply states that the theory has a (post)
Newtonian limit. Dust matter, nonmoving in a given
coordinate system, has the energy momentum ten-
sors T�ab ¼ ��u�au�b, where u� � @0. The nor-
malizations g�ðu�; u�Þ ¼ �1, corresponding to
each type of observer, explain the occurrence of
the factors �� in T�

00. That it should be possible to

choose arbitrary small dust distributions �� reflects
that metric solutions should exist for all appropriate
choices of boundary conditions. We shall see below
that it is not possible to gauge fix both metrics g� at
the same time to have the form displayed above; the
reason is that there are just the standard diffeomor-
phisms of the manifold available, but there is a
second metric tensor. However, there exists a
gauge-invariant vector of Newtonian potentials I1,
and gauges can be chosen so that either Iþ1 ¼ �þ or
I�1 ¼ ��. Note that no specific values for the post-
Newtonian parameters �� are assumed, but experi-
ment in our sector of the theory strongly supports the
value �þ ¼ 1 [22].

These assumptions suitably restrict the class of bimetric
gravity theories in which we wish to analyze the behavior
of attractive and repulsive gravitational forces. Using the
normalization 8�GN ¼ 1 for Newton’s constant, we are
now in the position to formulate our no-go theorem.
Theorem.—We assume a bimetric theory with positive

and negative mass sources and observers satisfying points
(i)–(v) detailed above. It is not possible to achieve a
Newtonian limit with antisymmetric mass mixing in the
Poisson equations for the vector I1 of gauge-invariant
Newtonian potentials,
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4 I1 ¼ 1

2

1 �1
�1 1

� �
� �: (3)

This is a very surprising no-go statement, and we will
prove it in Sec. III. Antisymmetric mass mixing is pre-
cisely what one would want from a canonical extension of
Newton and Einstein gravity. It implies that the Newtonian
force on positive test masses m in any gravitational field is
precisely opposite to the force felt by negative test masses
�m in the same place. Moreover, positive and negative
mass sources generate precisely opposite forces on the
same test mass. So the theory excluded by the no-go
theorem is exactly that which would allow for a switch
of sign in gravitational mass.

III. PROOF OF THE NO-GO RESULT

We will now prove by contradiction the no-go theorem
for bimetric gravity theories with positive and negative
mass as formulated at the end of Sec. II. Since this theorem
takes recourse to the Newtonian limit, it is sufficient to use
linearized field equations. After discussing the general
form of the field equations we will apply the gauge-
invariant linear perturbation formalism which is known
from cosmological perturbation analysis [23–25]. This
important technique enables us to avoid gauge ambiguities
that otherwise might invalidate the proof. We will then
show that the scalar, vector, and tensor modes of the metric
perturbations decouple. Within the sector of scalar pertur-
bations, which is relevant in the (post)Newtonian limit, we
will finally construct the contradiction constituting the
proof.

A. Field equations

The starting point of our proof is the most general
gravitational field equations consistent with the assump-
tions of the no-go theorem. In agreement with assumptions
(i) and (ii) these must be symmetric two-tensor equations
containing at most second order derivatives of the metric
tensors g�. We may easily list all tensorial building blocks
that may enter the equations according to their derivative
order.

(1) no derivatives: the two metrics g�, and the endo-
morphism j ¼ ðgþÞ�1g�;

(2) single derivative: the connection difference S which
is a (1, 2)-tensor field defined by the decomposition
r�

X Y ¼ rþ
X Y þ SðY; XÞ, so that Sabc ¼ ��a

bc � �þa
bc ;

(3) double derivative: r�S, and the two Riemann cur-
vature tensors R� of the two metrics.

Note that terms of the type r�j can be combined from
the connection difference S and the metrics; similarly,
terms of type r�r�j, r�r�j can be combined from
derivatives of S.

We have already argued that it is sufficient to work with
the linearized field equations. Because of assumption (iv),
this is a weak field approximation around maximally sym-

metric Minkowski vacua. Then the metric tensors take the
form

g�ab ¼ ��ð�ab þ h�abÞ (4)

for constants ��. In the course of the following calculation
we will keep only terms linear in the perturbations h�,
which we assume are of the same order OðhÞ.
The terms that may now occur in the linearized field

equations are the symmetric two-tensors with at most
second order derivatives formed from the linearization of
the building blocks listed above. Looking at these in more
detail, one realizes that terms without derivatives cannot
appear; that terms of the type @ah

�
bc always appear qua-

dratic, and so cancel; that all remaining terms are obtained
by the various contractions of @a@bh

�
cd. With assumption

(iii) this leads to the following most general form of the
linearized field equations:

Kab ¼ P � @p@ðahbÞp þQ �hhab þ R � @a@bh
þM � @p@qhpq�ab þ N �hh�ab

¼ J � Tab: (5)

Indices are raised with the metric �, and h ¼ �pq@p@q.

The matrices P, Q, R, M, N on the geometry side Kab of

the equations are constant parameters. These are deter-
mined by the nonlinear field equations, and also absorb
the factors �� in the linearization ansatz (4). We neither
need to know their precise form nor do we need to make
any additional assumptions about these matrices to carry
out our proof below.

B. Gauge-invariant formalism

Since our proof is based on linearized field equations we
must take care to ensure that none of our conclusions
finally depend on changes of gauge, i.e., on possible
changes of coordinates that do not alter the structure of
the linearization ansatz (4) as a small perturbation of
maximally symmetric Minkowski vacua. Therefore we
will now apply the formalism of gauge-invariant linear
perturbation theory known from cosmology [23–25] to
the ansatz (4) and equations (5).
First, we perform a purely algebraic (1þ 3) split of the

spacetime coordinates xa ¼ ðx0; x	Þ into time and space,
and decompose the corresponding components of the per-
turbations hab of the metric tensors as

h 00 ¼ �2�; h0	 ¼ B	;

h	
 ¼ �2c�	
 þ 2E	
;
(6)

where E	
 is trace free, i.e., �	
E	
 ¼ 0. Under purely

spatial coordinate transformations, the quantities � and c

transform as scalars, B	 as a vector, and E	
 as a sym-

metric, trace-free two-tensor. The geometry sideKab of the
linearized equations (5) now decomposes as
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K00¼2ðPþQþRþMþNÞ �@20��2ðQþNÞ �4�

�6ðRþNÞ �@20c þ2ðMþ3NÞ �4c

þðPþ2MÞ �@0@	B	�2M �@	@
E	
; (7a)

K0	¼ðPþ2RÞ �@0@	��ðPþ6RÞ �@0@	c
�ð12PþQÞ �@20B	þ 1

2P �@	@
B


þQ �4B	þP �@0@
E	
; (7b)

K	
¼�2ðMþNÞ �@20��	
þ2N �4��	


þ2R �@	@
�þ2ðQþ3NÞ �@20c�	


�2ðQþMþ3NÞ �4c�	
�2ðPþ3RÞ �@	@
c
�P �@0@ð	B
Þ�2M �@0@�B��	
þ2P �@�@ð	E
Þ�
þ2Q �hE	
þ2M �@�@�E���	
; (7c)

where spatial indices are raised with the flat spatial metric
�.

In the second step we perform a differential decompo-
sition of the spatial vectors B	 and tensors E	
 in (6)

according to

B	 ¼ @	 ~Bþ ~B	; E	
 ¼ 4	

~Eþ 2@ð	 ~E
Þ þ ~E	
;

(8)

where 4	
 ¼ @	@
 � 1
3�	
4 denotes the trace-free sec-

ond derivative and

@	 ~B	 ¼ @	 ~E	 ¼ 0; @	 ~E	
 ¼ 0; �	
 ~E	
 ¼ 0:

(9)

This differential decomposition is unique as has been
shown in [25,26]. The essential fact entering the unique-
ness argument is that the spatial sections in a Minkowski
background are of constant curvature.
In consequence of the algebraic and differential decom-

positions, the perturbations now are summarized by the so-
called scalar modes �, c , ~B, ~E, by the divergence-free (or

transverse) vector modes ~B	, ~E	, and by the transverse
trace-free tensor modes ~E	
. These enter the geometry side

of the linearized equations as follows:

K00 ¼ 2ðPþQþ RþMþ NÞ � @20�� 2ðQþ NÞ � 4�� 6ðRþ NÞ � @20c þ 2ðMþ 3NÞ � 4c þ ðPþ 2MÞ � @0 4 ~B

� 4

3
M � 4 4 ~E; (10a)

K0	 ¼ ðPþ 2RÞ � @0@	�� ðPþ 6RÞ � @0@	c � ð12PþQÞ � @20@	 ~Bþ ð12PþQÞ � @	 4 ~Bþ 2
3P � @0@	 4 ~E

� ð12PþQÞ � @20 ~B	 þQ � 4 ~B	 þ P � @0 4 ~E	; (10b)

K	
 ¼ �2ðMþ NÞ � @20��	
 þ 2N � 4��	
 þ 2R � @	@
�þ 2ðQþ 3NÞ � @20c�	
 � 2ðQþMþ 3NÞ � 4c�	


� 2ðPþ 3RÞ � @	@
c � P � @0@	@
 ~B� 2M � @0 4 ~B�	
 þ 4
3P � @	@
 4 ~Eþ 2Q � 4	
h ~Eþ 4

3M � 4 4 ~E�	


� P � @0@ð	 ~B
Þ þ 2P � 4@ð	 ~E
Þ þ 4Q �h@ð	 ~E
Þ þ 2Q �h ~E	
: (10c)

In Sec. III C we will show that the scalar, vector, and
tensor modes in this decomposition completely decouple,
i.e., that they lead to equations that can be solved sepa-
rately. This fact will be important for our proof because it
will allow us to set vector and tensor modes to zero. As we
will see in the final part of our proof in Sec. III E, the scalar
equations then will provide the crucial information about
the (post)Newtonian limit needed to prove the theorem.

C. Decoupling of modes

To demonstrate the decoupling of the scalar, vector, and
tensor perturbations we consider in turn the 00, 0	 and 	

components of the linearized equations of motion Kab ¼
J � Tab, see (5).

A quick inspection of the equation K00 ¼ J � T00 shows

that only scalar modes occur; this becomes obvious from
(10a) and by noting that T00 are scalar modes.

Next consider the equation K0	 ¼ J � T0	 ¼ W	.

Clearly the geometry side displayed in (10b) contains
scalar and vector modes; schematically we have

K0	 ¼ @	ðscalar containing only scalar modesÞ
þ ðdivergence-free vector containing only

vector modesÞ	: (11)

Also the matter side W	 can be decomposed into appro-
priate scalar and vector modes, i.e., into a gradient and a
transverse vector as W	 ¼ @	 ~W þ ~W	 with @	 ~W	 ¼ 0.
The uniqueness of these decompositions on both sides now
implies that we obtain two separate equations,

~W ¼ ðPþ 2RÞ � @0�� ðPþ 6RÞ � @0c
� ð12PþQÞ � @20 ~Bþ ð12PþQÞ � 4 ~Bþ 2

3P � @0 4 ~E;

(12a)

~W	 ¼ �ð12PþQÞ � @20 ~B	 þQ � 4 ~B	 þ P � @0 4 ~E	;

(12b)

the first containing only scalar modes, the second only
vector modes.
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A very similar argument serves to show that the scalar,
vector, and tensor modes in K	
 ¼ J � T	
 ¼ Z	
 de-

couple. Both the geometry side explicitly displayed in
(10c) and the matter contribution have to be decomposed
as

1
3K�	
 þ4	


~K þ 2@ð	 ~K
Þ þ ~K	


¼ 1
3Z�	
 þ4	


~Zþ 2@ð	 ~Z
Þ þ ~Z	
 (13)

into scalar modes K, Z determining the traces, further

scalar modes ~K, ~Z, transverse vector modes ~K	, ~Z	, and
transverse trace-free tensor modes ~K	
, ~Z	
. The impor-

tant point to observe is that the respective modes on the
curvature side only contain contributions from the same
type of mode, e.g., the vector ~K	 is fully determined by
vector modes. The uniqueness of the decomposition on
both sides finally yields four separate equations, each
containing only a single type of perturbation modes,
namely

Z ¼ 2ðRþ 3NÞ � 4�� 6ðMþ NÞ � @20�� 2ðPþ 3Qþ 3Rþ 3Mþ 9NÞ � 4c þ 6ðQþ 3NÞ � @20c
� ðPþ 6MÞ � @0 4 ~Bþ ð43Pþ 4MÞ � 4 4 ~E; (14a)

~Z ¼ 2R ��� 2ðPþ 3RÞ � c � P � @0 ~Bþ 4
3P � 4 ~Eþ 2Q �h ~E; (14b)

~Z	 ¼ �1
2P � @0 ~B	 þ P � 4 ~E	 þ 2Q �h ~E	; (14c)

~Z	
 ¼ 2Q �h ~E	
: (14d)

The arguments above show that the decoupling of scalar,
vector, and tensor perturbations is essentially a conse-
quence of the uniqueness and cleverness of the algebraic
and differential decomposition involved. The relevance of
the decoupling will become obvious in Sec. III E, since it
will allow us to limit our discussion to the scalar perturba-
tions which determine the (post)Newtonian limit. Before
we can approach this final part of our proof, however, we
need to determine the gauge-invariant quantities contain-
ing the physical information contained in the metric
perturbations.

D. Gauge invariance and consistency

In this section we will discuss gauge transformations.
We will calculate how the scalar, vector, and tensor modes
in the metric perturbations change under changes of gauge,
and we will find the set of all gauge-invariant quantities.
Since gauge transformations are special diffeomorphisms,
we must require certain consistency conditions so that the
gravitational field equations can be rewritten in terms of
gauge-invariant quantities only. Otherwise the solutions of
the field equations would not be diffeomorphism invariant.

Gauge transformations in linear perturbation theory are
defined as diffeomorphisms that do not change the formal
structure of the perturbation ansatz; here this means that
the metrics should retain the form of Eq. (4),

g ab ¼ ��ab þOðhÞ: (15)

Every diffeomorphism is generated by a vector field � and
changes a tensor field by the Lie derivative; hence ��g ¼
L�g. From the corresponding component expression for

the Lie derivative, it is clear that the diffeomorphism
generated by � is a gauge transformation only if �a �
OðhÞ. Writing �a ¼ �ap�

p, we then find ��gab ¼

�ð@a�b þ @b�aÞ, and so

��hab ¼ 1
1

� �
ð@a�b þ @b�aÞ: (16)

We will now compute how the different components of
the metric perturbations hab transform under such a gauge
transformation. As done above for the metric perturba-
tions, we split the gauge transformation � into space and
time components, and also employ the differential decom-
position. We write

�0 ¼ �; �	 ¼ @	 ~�þ ~�	 (17)

for a divergence-free spatial vector mode ~�	. According to
(16), the metric perturbations hþab and h�ab transform in

precisely the same way, namely, as would be the case for
a single metric theory. Employing our previous definitions
of scalar, vector, and tensor modes, we thus obtain for þ
and � components the same transformation behavior
under gauge transformations as known from standard cal-
culations [25],

��� ¼ �@0�
1
1

� �
; ��c ¼ � 1

3
4 ~�

1
1

� �
;

��
~B ¼ ð@0 ~�þ �Þ 1

1

� �
; ��

~E ¼ ~�
1
1

� �
;

��
~B	 ¼ @0 ~�	

1
1

� �
; ��

~E	 ¼ 1

2
~�	

1
1

� �
;

��
~E	
 ¼ 0:

(18)

We are now in the position to deduce gauge-invariant
linear combinations of modes. A minimal set of such
combinations in terms of which all gauge-invariant quan-
tities can be expressed is
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I 1 ¼ �þ @0 ~B� @20
~E; I2 ¼ c þ 1

3 4 ~E;

I3 ¼ ~Bþ � ~B�; I4 ¼ ~Eþ � ~E�;

I	 ¼ ~B	 � 2@0 ~E	; I0	 ¼ ~Eþ
	 � ~E�

	 ; ~E	
:

(19)

Among the gauge-invariant quantities remain six scalars,
three vectors, and two tensors. This matches expectations

because the gauge transformation, via �, ~�, ~�	, contains
two scalars and one vector which are eliminated from the
originally eight scalars, four vectors, and two tensors in the
metric perturbations.

The next step is to find the conditions under which the
gravitational field equations can be rewritten in terms of
the above gauge invariants. As discussed previously this is
necessary to ensure diffeomorphism invariance of the so-
lutions. First note that the tensor equations (14d) are al-
ready written in terms of gauge invariants. We will now
illustrate how to proceed for the two vector equations (12b)
and (14c). We replace all occurrences of ~B	 by I	 þ
2@0 ~E	, and then ~E	 by

1

2

1
�1

� �
I0	 þ 1

2

1
1

� �
ð ~Eþ

	 þ ~E�
	 Þ: (20)

The two vector equations now read

~W	 ¼ �
�
1

2
PþQ

�
�
�
@20I	 þ 1

�1

 !
@0hI0	

�
þQ � 4I	

þ
�
1

2
PþQ

�
� 1

1

 !
@0hð ~Eþ

	 þ ~E�
	 Þ; (21a)

~Z	 ¼ � 1

2
P � @0I	 þ

�
1

2
PþQ

�
� 1

�1

 !
hI0	

þ
�
1

2
PþQ

�
� 1

1

 !
hð ~Eþ

	 þ ~E�
	 Þ; (21b)

and are expressed in terms of gauge-invariant quantities
provided that

ðPþ 2QÞ � 1
1

� �
¼ 0: (22)

The procedure of rewriting the scalar equations (10a),
(12a), (14a), and (14b) is very similar. One expresses �

and c in terms of I1 and I2, and then uses I3 and I4 to

substitute ~B and ~E as in (20). The additional conditions
needed so that the scalar equations only contain gauge
invariants are

ðPþ 2RÞ � 1
1

� �
¼ 0; ðMþ NÞ � 1

1

� �
¼ 0: (23)

Under these conditions the field equations for the scalar
modes become

K00 ¼ 2ðPþQþRþMþNÞ � @20I1 � 2ðQþNÞ � 4I1 � 6ðRþNÞ � @20I2 þ 2ðMþ 3NÞ � 4I2

þ ðPþQþ RþMþNÞ � 1

�1

 !
ð�@30I3 þ @40I4Þ þ

�
1

2
PþQþMþN

�
� 1

�1

 !
@0 4 I3

� ðQ�RÞ � 1

�1

 !
@20 4 I4 � ðMþNÞ � 1

�1

 !
44I4; (24a)

~W ¼ ðPþ 2RÞ � @0I1 � ðPþ 6RÞ � @0I2 �
�
3

4
Pþ 1

2
QþR

�
� 1

�1

 !
@20I3 þ

1

2

�
1

2
PþQ

�
� 1

�1

 !
4 I3

þ
�
1

2
Pþ R

�
� 1

�1

 !
@0ð@20 þ4ÞI4; (24b)

Z¼ �6ðMþNÞ � @20I1 þ 2ðRþ 3NÞ � 4I1 þ 6ðQþ 3NÞ � @20I2 � ðQ� RÞ � 1

�1

 !
@20 4 I4 � 2ðPþ 3Qþ 3R

þ 3Mþ 9NÞ � 4I2 þ 3ðMþNÞ � 1

�1

 !
ð@30I3 � @40I4Þ �

�
1

2
Pþ Rþ 3Mþ 3N

�
� 1

�1

 !
@0 4 I3

þ ðPþQþ Rþ 3Mþ 3NÞ � 1

�1

 !
44I4; (24c)

~Z¼ 2R � I1 � 2ðPþ 3RÞ � I2 �
�
1

2
Pþ R

�
� 1

�1

 !
@0I3 � ðQ�RÞ � 1

�1

 !
@20I4 þ ðPþQþ RÞ � 1

�1

 !
4 I4: (24d)

Now all equations are manifestly rewritten in terms of gauge invariants only.
We remark that there is a second argument that allows us to understand the matrix conditions (22) and (23) for gauge

invariance: the vacuum equations Kab ¼ 0 are tensor equations according to assumption (i), and so should not change
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under diffeomorphisms, and, in particular, not under gauge
transformations. Employing the transformation (16) in the
field equations (5) we find the expression

��Kab ¼ ðPþ 2RÞ � 1
1

� �
@a@b@

p�p þ ðPþ 2QÞ

� 1
1

� �
h@ða�bÞ þ 2ðMþ NÞ � 1

1

� �
h@p�p�ab

(25)

which should vanish; the necessary conditions for this
precisely agree with (22) and (23).

E. Contradiction

We now come to the final part of our proof of the no-go
theorem formulated at the end of Sec. II. To proceed, we
will now employ the remaining assumption (v) to simplify
the equations derived above. It will be sufficient to con-
sider the scalar perturbations described by Eq. (24).

Recall that assumption (v) says that the theory should
have a (post)Newtonian limit of stationary solutions with
respect to the Killing vector field @0, and so we may drop
all terms containing time derivatives from the equations
(24). Moreover, the Newtonian limit should hold for arbi-
trary nonmoving dust sources for which the spatial veloc-
ities and internal pressures in the energy momentum
tensors vanish; the only nonvanishing components of the

energy momentum tensors then are T00 ¼ � � �, for � ¼
ð�þ
0

0
��Þ and energy densities �. Also, the metric solutions

in suitable gauges should be given by (2) for some post-
Newtonian parameters ��.

The last point implies a very useful relation between

gauge invariants, namely I2 ¼ � � I1 for � ¼ ð�þ
0

0
��Þ. To

see why this is true, consider the form of the metric gþ with
scalar perturbations, which is

gþ ¼ �þ½�ð1þ 2�þÞdt � dtþ 2@	 ~B
þdt � dx	

þ ðð1� 2cþÞ�	
 þ 24	

~EþÞdx	 � dx
�: (26)

It is clear from the gauge transformations (18) that we can

choose � and ~� so that both ~Bþ ¼ 0 and ~Eþ ¼ 0; this
gauge choice is called the longitudinal gauge. The metric
gþ then can be compared with the assumed post-
Newtonian form

�þ½�ð1þ 2�þÞdt � dtþ ð1� 2�þ�þÞdx	 � dx	�
(27)

relevant for nonmoving dust [22], and linearized in the
Newtonian potential �þ. Therefore, in longitudinal gauge,
a given value of �þ for the observer related to gþ implies
cþ ¼ �þ�þ. The corresponding gauge-invariant state-
ment is Iþ2 ¼ �þIþ1 . Repeating the same argument for
the observer related to g� then also shows that I�2 ¼
��I�1 .

The following argument is essentially unchanged by the
value of the post-Newtonian parameters ��. In order to
simplify the presentation maximally, we choose �� ¼ 1 in
which case I2 ¼ I1. Then the equations (24) for the scalar
perturbations simplify under the assumption (v) to

J � � ��¼�2ðQ�M� 2NÞ � 4I1

� ðMþNÞ � 1

�1

 !
44I4; (28a)

0¼ ðPþ 2QÞ � 1

�1

 !
4 I3; (28b)

0¼�2ðPþ 3Qþ 2Rþ 3Mþ 6NÞ � 4I1

þ ðPþQþRþ 3Mþ 3NÞ � 1

�1

 !
44I4;

(28c)

0¼�2ðPþ 2RÞ � I1 þ ðPþQþRÞ � 1

�1

 !
4 I4:

(28d)

We now eliminate the term containing 44 I4 in the third
equation by substituting an appropriate combination of the
first and last equations. This yields the simple result

� 4Q � 4I1 ¼ J � � � �; (29)

from which our contradiction will now follow. We must
consider two possible cases:
(1) Q is not invertible. In this case, the dimension of the

image of Q, viewed as an endomorphism of R2, is

less than two. From assumption (v) we know that �

can be chosen arbitrarily; since J and � by assump-

tions (iii) and (iv) are invertible, it follows that J �
� � � spans R2. This is a contradiction.

(2) Q is invertible. In this case, we obtain the equation

4 I1 ¼ �1
4Q

�1 � J � � � �; (30)

which is the Poisson equation for the two Newtonian
potentials I1 of the two different observers related to
the metrics g. Antisymmetric mass mixing, as de-

fined in the no-go theorem, occurs if and only if

� 1

2
Q�1 � J � � ¼ 1 �1

�1 1

� �
: (31)

Since the left-hand side of the equation is invertible
while the right hand side is not, this immediately
leads to the desired contradiction.

This concludes the proof of the Theorem of Sec. II that the
construction of bimetric theories with antisymmetric mass
mixing is not possible. j
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IV. CONCLUSION

In this article, we have argued that the most conservative
framework for a theory of antigravity containing both
positive and negative gravitational mass sources and ob-
servers is a bimetric theory with two copies of standard
model matter. The second metric generates another set of
geodesics describing the response of negative mass observ-
ers to the gravitational field. The two matter sectors only
interact gravitationally so that the negative mass sector
appears dark from the point of view of a positive mass
observer. Such theories could offer a potential explanation
for the unaccounted dark part of the universe.

As our central result we have proven a no-go theorem
ruling out all canonical bimetric extensions of Einstein
gravity. In these excluded theories the gravitational forces
acting on the two different types of matter are precisely
opposite. Moreover, opposite matter sources yield opposite
forces on a given test mass. Our proof proceeds from the
most general form of the linearized field equations for a
bimetric theory. Using gauge-invariant linear perturbation
theory, we have computed the (post)Newtonian limit. We
have obtained the Poisson equations for the Newtonian
potentials, provided that the sources of the gravitational
fields are constituted by nonmoving dust matter. It turns out
that each copy of standard model matter contributes to both
Newtonian potentials, but with an important restriction: the
mixing matrix, which governs the contribution of each
matter source to each gravitational field, is manifestly
invertible. However, opposite forces on the different types
of matter require a noninvertible mixing, and so are
excluded.

Of course the strength of any no-go theorem highly
depends on its assumptions. Our assumptions as stated in
Sec. II are strongly motivated on physical and mathemati-
cal grounds, and apply to a very large class of bimetric
theories. Hence, our no-go theorem is highly restrictive and
puts very severe constraints on the construction of bimetric
antigravity . Now that we have a clear picture of what is not
possible, we might wonder whether antigravity theories
exist at all. We will now discuss some possibilities using
a smaller, or different, set of assumptions so that our no-go
theorem does not apply.

One simple way of avoiding the conclusion of our no-go
theorem is to allow for different strengths of the gravita-
tional forces acting on positive and negative test masses in
the same gravitational field. In the Newtonian limit, the
Poisson equation would then read

4 I1 ¼ 1

2

1 �	
�	 1

� �
� � (32)

for 	 � �1. Now the mixing matrix that determines the
contribution of the matter sources to the Newtonian poten-
tials is invertible. So the only cases excluded by the proof
of our no-go theorem are 	 ¼ 1 which corresponds to

exactly opposite forces, and 	 ¼ �1 which means equal
force on all observers (this is the situation modeled by
Einstein gravity with a single metric). One may argue,
however, that the introduction of an additional parameter
	 does not present a canonical extension of Einstein
gravity.
A second possibility is to relax the assumption that the

sources of the gravitational field originate from the stan-
dard action for matter fields. Instead one might use differ-
ent actions containing both metric tensors, which would
change the matter side of the equations. Of course, this
would also change the equations of motion for matter fields
so that all types of matter would be influenced by both
metrics. This is problematic because it would change the
causality of field propagation. However, one might argue
that our observations of matter in gravitational fields are
limited to particular settings, e.g. to the solar system. The
theory might be constructed so that the changes in causality
there might be weak or even cancel completely. In other
words, our assumption (iii), which restricts the matter side
of the field equations, could be valid within the bounds of
current observations, but may not hold in general.
Third, we may consider a less conservative framework

containing more than two metric tensors and a correspond-
ingly higher number of standard model copies. The com-
putation we have performed in our proof of the no-go
theorem can be generalized to this case. It turns out that
the Poisson equation in the Newtonian limit is formally the
same as Eq. (30). As in the bimetric case, we could now
demand that like masses attract while unlike masses repel
each other with equal strength. This corresponds to the
requirement that the Poisson equation should be

4 I1 ¼ 1

2

1 �1 � � � �1
�1 1 �1
..
. . .

.

�1 �1 1

0
BBB@

1
CCCA � �: (33)

If n metrics and n copies of the standard model are used,
the mixing matrix has nonvanishing determinant ð2� nÞ �
2n�1 for n � 2. Hence it is invertible, and the conclusion of
the no-go theorem only applies to the bimetric case n ¼ 2.
Finally we wish to mention the recent comment [27] on

this article, where it is argued that the antigravity theory of
[28] also avoids our no-go theorem. This comes from the
simple fact that this theory contains two additional (1, 1)-
tensor fields besides our two metrics and two copies of the
standard model.
The above discussion demonstrates that several ways of

circumventing our no-go theorem might exist. Further
research now must show whether one of these can be
realized, i.e., whether it is actually possible to construct a
concrete antigravity theory with attractive and repulsive
gravitational forces. Once such a theory is available, its
physical implications will have to be investigated. It would
be particularly interesting to study the predictions of the

NO-GO THEOREM FOR BIMETRIC GRAVITY WITH . . . PHYSICAL REVIEW D 80, 104011 (2009)

104011-9



theory for cosmology, and whether the extra copies of the
standard model may serve as an explanation for the dark
universe.
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