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We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear

electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein

gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these

solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate

boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in

particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a

generalized Smarr formula is derived and it is shown that this latter encodes perfectly the different

asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat

capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In

contrast to the standard Reissner-Nordström solution, there is a first-order phase transition between a class

of these nonlinear charged black holes and the Minkowski spacetime.
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I. INTRODUCTION

The nonlinear electrodynamics models have been
proved to be excellent laboratories in order to circumvent
some problems that occur in the standard Maxwell theory.
Indeed, the interest for nonlinear electrodynamics started
with the precursor work of Born and Infeld, whose main
motivation was to modify the standard Maxwell theory in
order to eliminate the problem of infinite energy of the
electron [1]. However, due to the fact that the Born-Infeld
model did not fulfill all of its hopes, nonlinear electro-
dynamics theories became less popular. The recent re-
newed interest on the nonlinear electrodynamics theories
is essentially due to their emergence in the context of the
low-energy limit of heterotic string theory, where a Gauss-
Bonnet term coupled to quartic contractions of Maxwell
field strength appear, and black hole solutions can be
obtained [2]. It is also important to mention that nonlinear
electrodynamics theories are a powerful tool for the con-
struction of regular black hole solutions [3].

The thermodynamics properties of nonlinear electrody-
namics theories is also an active research area in the
current literature; see e.g. [4] in the case of the Born-
Infeld model. A very appealing property which is common
to all the nonlinear electrodynamics models lie in the fact
that these theories satisfy the zeroth and first law of black

hole mechanics [5]. This property renders more attractive
the studies of nonlinear electrodynamics models. However,
in contrast with the standard Maxwell theory, the formula
of the total mass, the so-called Smarr formula [6], does not
hold a priori for nonlinear electrodynamic theories [5].
Indeed, in the case of the Einstein-Maxwell system, the
Smarr formula and the first law of black hole mechanics
are closely related and each of them can be derived from
the other. This correspondence between both formulas is
due to the homogeneity of the mass in terms of the area of
the horizon and the electric charge [7,8]. However, in the
case of nonlinear electrodynamic theories, this homoge-
neity property is no longer present and there is a priori no
good reason to obtain a Smarr formula. Some attempts to
generalize the Smarr formula in order to be in accordance
with the variations expressed by the first law of black holes
mechanics have shown to be possible for some particular
magnetic solutions in four dimensions [9]. For complete-
ness, we stress that the derivation of the Smarr formula as
well as of the first law of thermodynamics are usually
performed successfully for asymptotically flat spacetime
through the Komar integrals [10]. However, their extension
to rotating asymptotically anti–de Sitter black hole solu-
tions is not a simple task as can be seen by reading the
current literature on the topic [11,12].
In the present paper, we consider higher-dimensional

gravity coupled to a nonlinear electrodynamic source given
by a rational power p of the Maxwell invariant. This theory
exhibits electrically charged black hole solutions as long as
the exponent p belongs to the set of rational numbers with
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odd denominators [13,14]. Similar considerations and mo-
tivations were previously analyzed in three dimensions in
[15]. Recently, this nonlinear model has attracted attention,
and it has been used for obtaining Lovelock black holes
[16], Ricci flat rotating black branes [17], magnetic strings
[18], and topological black holes in Gauss-Bonnet gravity
[19]. A generalization of this model for the non-Abelian
case was considered in [20]. The black hole solutions
derived in [14] are divided in four ranges for the exponent
p, and each of them corresponds to a different spacelike
asymptotic behavior of the metric. Among these different
classes, there exist black hole solutions with unusual
asymptotic properties as those that go asymptotically to
the Minkowski spacetime slower than the Schwarzschild
spacetime. There also exists a range for p for which the
solutions are not asymptotically flat and, their asymptotic
behavior is shown to grow slower that the Schwarzschild–
de Sitter spacetime. Extremal black hole solutions general-
izing the extremal Reissner-Nordström solution are also
known for this model [14].

The main objective here is to provide a detailed analysis
of the thermodynamical properties of these black hole
solutions. In particular, we would like to explore the rela-
tion between the thermodynamical properties and the dif-
ferent asymptotic behaviors of the solutions. The
thermodynamics of the electrically charged black hole
solutions will be performed through the Regge-
Teitelboim approach [21], in which an appropriate bound-
ary term is added to the Euclidean action such that the total
action presents an extremum. On the other hand, owing to
the fact that the Euclidean action is related to the Gibbs
free energy, the identification of the mass and the charge, as
well as the study of the global stability of the black holes
will be considerably facilitated. We will derive a general-
ized Smarr formula by using the explicit expressions of the
temperature and the entropy. Interesting enough, we will
show that the different asymptotic behaviors of the black
hole solutions are reflected through this Smarr formula. In
addition, we will present two other different ways of
obtaining of the Smarr formula. The first derivation is
operated through the Komar integrals for all the class of
solutions, even those that are not asymptotically flat. The
same formula will also be obtained with the use of a
Noether conserved current which is associated to a scale
symmetry of the reduced action. The local stability of the
black holes is analyzed by computing the heat capacity and
the electrical permittivity. For a certain range of the ex-
ponent p, small black hole solutions with positive and
negative mass will be shown to be locally stable. Finally,
the global stability is studied through the Gibbs free energy
in order to determine whether the electrically charged
black hole solutions are more likely than the Minkowski
background. As a result, wewill establish that there exists a
phase transition for a certain range of the exponent p.

The plan of the paper is organized as follows. In the next
section, we review the nonlinear electrodynamics model

and its general black hole solutions [14]. In Sec. III, the
thermodynamics properties of the system are studied
through the Euclidean Hamiltonian formalism. The mass
M and the charge Q are explicitly identified and a gener-
alized Smarr formula is derived. In Sec. IV the local and
global stability of these black holes is analyzed, while the
last section is devoted to the conclusions and further pros-
pects. Finally, two appendixes are devoted to the different
derivations of the Smarr formula.

II. NONLINEAR ELECTRODYNAMICS AND
BLACK HOLE SOLUTIONS

In [13,14], a nonlinear electrodynamics coupled to grav-
ity in d spacetime dimensions1 was considered. This model
is described by the action

I½g��; A�� ¼
Z

ddx
ffiffiffiffiffiffiffi�g

p �
R

2�
� �ðF��F

��Þp
�
; (1)

where � denotes the gravitational constant, � the coupling
constant for the electrodynamical action, F�� ¼ @�A� �
@�A� is the field strength, and p is a rational number whose

range will be fixed later. The field equations obtained by
varying this action are given by

G�� ¼ 4��

�
pF��F�

�Fp�1 � 1

4
g��F

p

�
;

(2a)

@�ð ffiffiffiffiffiffiffi�g
p

F��Fp�1Þ ¼ 0; (2b)

where F ¼ F��F
�� is the Maxwell invariant. The most

general spherically symmetric solution with a radial elec-
tric field was found in [13] for the conformal case p ¼
d=4, and in [14] for p belonging to the set of rational
numbers with odd denominators.2 The general solution is
described by the line element

ds2 ¼ �N2ðrÞf2ðrÞdt2 þ dr2

f2ðrÞ þ r2d�2
d�2; (3)

with

N2ðrÞ ¼ 1; (4a)

f2ðrÞ ¼ 1� A

rd�3
þ B

rb
; (4b)

Ftr ¼ C

rðd�2Þ=ð2p�1Þ ; (4c)

where for convenience we have defined

1Throughout the present article, we consider d > 3.
2This restriction on p arises from considering spherically

symmetric real solutions with a purely electric radial field.
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B ¼ � 2��ð�1ÞpC2p2pð2p� 1Þ2
ðd� 2Þðd� 2p� 1Þ ;

b ¼ 2ðpd� 4pþ 1Þ
2p� 1

:

(5)

These solutions contain black hole configurations depend-
ing on the values of d and p, and the integration constants
A and C.

Apart from the restriction of being a rational numbers
with odd denominators, the exponent p cannot belong to
the set ð0; 1=2� since in this case the scalar curvature of the
solutions diverges at the infinity. The form of the lapse
function suggests a natural partition depending on the
exponent b that appears in (4b). These different ranges
are given by b > d� 3, 0< b< d� 3, b < 0, and b ¼
d� 3, which correspond to the different spacelike asymp-
totic behaviors of the metric, as it is shown in Table I.
Solutions of type I have a behavior similar to the standard
Reissner-Nordström one. By similar, we mean that the
charge term in the metric decays faster than the mass
term in the asymptotic region. At the opposite, solutions
of type II correspond to black hole solutions which go
asymptotically to the Minkowski spacetime slower than
the Schwarzschild spacetime. In case III, the black hole
solutions are not asymptotically flat, and their asymptotic
behavior is shown to grow slower that the Schwarzschild–
de Sitter spacetime. Finally, the critical value b ¼ d� 3,
which can only occur for odd dimensions d ¼ 2pþ 1,
corresponds to the limit between the solutions which re-
semble to the standard Reissner-Nordström solution
(type I) and those for which the asymptotic decaying to
Minkowski spacetime are slower than the Schwarzschild
spacetime (type II). The spherically symmetric solution in
this special case involves a logarithmic dependence on the
radial coordinate and is given by

Ftr ¼ C

r
; (6a)

f2ðrÞ ¼ 1� A

r2p�2
þ ��ð�1Þp2pþ1C2p lnr

r2p�2
: (6b)

III. THERMODYNAMICS

It is well known that the partition function for a thermo-
dynamical ensemble can be identified with the Euclidean
path integral in the saddle point approximation around the
Euclidean continuation of the classical solution [22]. In
this case, the Euclidean action IE evaluated on the classical
solution is related to the free energy G of a thermodynam-
ical ensemble by IE ¼ �G, where � is the inverse of the
temperature which corresponds to the period of the
Euclidean time �.
As a first step we write the action in the Hamiltonian

form, and since we are concerned only with the static,
spherically symmetric case without magnetic field, it is
enough to consider a reduced action principle. The class of
the Euclidean metric and electric potential to be considered
are given by

ds2 ¼ NðrÞ2fðrÞ2d�2 þ dr2

fðrÞ2 þ r2d�2
d�2;

A ¼ AðrÞd�;

where the radial coordinate r belongs to ½rþ;1Þ. In this
case, the Euclidean reduced action obtained from (1) reads

IE ¼ ���d�2

Z 1

rþ
dr

�ð2p� 1Þ�Nð�2Þp=ð2p�1Þ

rðd�2Þ=ð2p�1Þ

�
�
P
4�p

�
2p=ð2p�1Þ � d� 2

2�
Nrd�2

�ðf2Þ0
r

� d� 3

r2
ð1� f2Þ

�
þ�P 0

�
þ K; (7)

where P � 4�pN1rd�2Fp�1Frt is the rescaled canonical
radial momentum, � � AðrÞ is the electrostatic potential,
and�d�2 is the area of the d� 2-dimensional unit sphere.
The boundary term K appearing in (7) will be fixed by
requiring that the action has an extremum on-shell [21].
Moreover, owing to the fact that the Hamiltonian action is a
linear combination of the constraints, the value on the
action on-shell is given by the boundary term K.
The equations of motion obtained by varying the re-

duced action with respect to N, f2, P , and � are given by

TABLE I. Classification of the solutions depending on its asymptotic behavior. The cases are
labeled in the first column. In the second column the different cases are defined by the parameter
b and, equivalently, by p in the third column. In the last column we describe the main spacelike
asymptotic feature for each case.

Type b p Remarks

I b > d� 3 1=2< p< ðd� 1Þ=2 Standard asymptotically flat case

II 0< b< d� 3 p > ðd� 1Þ=2 or p <�1=ðd� 4Þ Electric term with relaxed falloff

III b � 0 �1=ðd� 4Þ � p < 0 Asymptotically nonflat case

Log b ¼ d� 3 p ¼ ðd� 1Þ=2 with d odd Logarithmic case
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ðf2Þ0
r

� d� 3

r2
ð1� f2Þ ¼ 2��ð2p� 1Þ

d� 2

ð�2Þp=ð2p�1Þ

rð2pðd�2ÞÞ=ð2p�1Þ

�
P
4�p

�
2p=ð2p�1Þ

; (8a)

N0 ¼ 0; (8b)

�0 ¼ Nð�2Þp=ð2p�1Þ

2rðd�2Þ=ð2p�1Þ

�
P
4�p

�
1=ð2p�1Þ

; (8c)

P 0 ¼ 0: (8d)

Note that these equations are consistent with the original Einstein equations (2). The general solution reads

f2ðrÞ ¼
� 1� A

rd�3 þ B
rb
; if b � d� 3;

1� A
r2p�2 þ ��ð�1Þp2pþ1C2p lnr

r2p�2 ; if b ¼ d� 3;
(9a)

NðrÞ ¼ N1 (9b)

�ðrÞ ¼
� 2p�1
d�2p�1

N1C
rðd�2p�1Þ=ð2p�1Þ þ�0; if b � d� 3;

�N1C lnðrÞ þ�0; if b ¼ d� 3;
(9c)

P ðrÞ ¼ P 0; (9d)

where N1, P 0, A, and �0 are integration constants (with-
out loss of generality, we can setN1 ¼ 1 and�0 ¼ 0), and
where we have defined

B ¼ � 2��ð�2Þp=ð2p�1Þð2p� 1Þ
ðd� 2Þðd� 2p� 1Þ

�
P 0

4�p

�
2p=ð2p�1Þ

and

C ¼ ð�2Þð1�pÞ=ð2p�1ÞðP 0Þ1=ð2p�1Þð4�pÞ1=ð1�2pÞ: (10)

In what follows, we consider the formalism of the grand
canonical ensemble, and hence we will consider the varia-
tion of the action keeping fixed the temperature ��1 and
the electric potential, � ¼ �ðrþÞ. This variation gives
bulk terms proportional to the constraints, some surface
terms, and the variation 	K. As we shall see, the require-
ment that the action has an extremum, i.e. 	IE ¼ 0 on-
shell, will fix properly the boundary term. The condition
	IE ¼ 0 implies that the variation of the boundary term,
which cancels out the extra surface terms coming from
variation of the action, is given by

	K ¼ ��d�2

�
�d� 2

2�
Nrd�3	f2 þ�	P

�1
rþ

� 	Kð1Þ � 	KðrþÞ: (11)

Since the metric solution f2ðrÞ differs drastically for b �
d� 3 and b ¼ d� 3, we shall consider both cases sepa-
rately. Interesting enough, we shall see that in both cases,
the apparently divergent contributions at the infinity will
cancel yielding to a finite and same expression in these two
distinct cases.

For b � d� 3, the variations of the fields at infinity
(r ! 1) are given by

	f2j1 ¼ �r�ðd�3Þ	Aþ r�b	B; (12)

	P j1 ¼ 	P 0; (13)

and hence we have

	Kð1Þ ¼ ��d�2

�
d� 2

2�
	Aþ

�
�d� 2

2�
	B

þ 2p� 1

d� 2p� 1
C	P 0

�
rd�3�b

�
: (14)

For b < d� 3, the contribution proportional to rd�3�b

may blow up at infinity, but since the factor between round
brackets multiplying this term identically vanishes, the
variation of the boundary term at infinity yields to a finite
expression given by

	Kð1Þ ¼ d� 2

2�
��d�2	A: (15)

For the case b ¼ d� 3, which corresponds to an expo-
nent p ¼ ðd� 1Þ=2, we have a similar derivation. Indeed,
the variations of the fields at infinity read

	f2j1 ¼ �r�ðd�3Þ	Aþ ��ð�1Þp2pþ1	C2pr�ðd�3Þ lnðrÞ;
(16)

	P j1 ¼ 	P 0; (17)

and hence,

	Kð1Þ ¼ ��d�2

�
d� 2

2�
A� ððd� 2Þ�ð�1Þp2p	C2p

þ C	P 0Þ lnðrÞ
�
: (18)

As in the previous case, since the following equality ðd�
2Þ�ð�1Þq2q	C2q þ C	P 0 ¼ 0 holds for p ¼ ðd� 1Þ=2,
the logarithmic dependence disappears yielding to the
same variation (15). We conclude that in both cases, the
integration of the variation (15) leads to a finite expression
given by
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Kð1Þ ¼ d� 2

2�
��d�2A: (19)

In order to evaluate the variation of the metric function
f2ðrÞ at the horizon rþ, we use the fact that the solution
satisfies f2ðrþÞ ¼ 0 together with the condition that en-
sures the absence of conical singularities at the horizon,
that is ðf2Þ0jrþ ¼ 4
=�. This condition fixes the tempera-

ture of the ensemble while the electric potential � and the
variation of P are evaluated directly,

	f2jrþ ¼ �ðf2Þ0jrþ	rþ ¼ � 4


�
	rþ; (20)

�	P jrþ ¼ �ðrþÞ	P 0: (21)

The variation of the boundary term is easily integrated at
the horizon yielding

KðrþÞ ¼ ���P 0�d�2 þ 2


�
�d�2r

d�2þ :

Finally, the on-shell Euclidean action, which reduces to the
boundary term K ¼ Kð1Þ � KðrþÞ, reads3

IE ¼ �
d� 2

2�
�d�2A� ��P 0�d�2 � 2


�
�d�2r

d�2þ :

(22)

As it will be shown below, this expression is useful in order
to identify the thermodynamical quantities and in the study
of the global stability of the black hole solutions. Indeed,
the Euclidean action is related to the Gibbs free energy by
IE ¼ �G ¼ �M� ��Q� S. This relation allows one to
easily identify the mass (M), the electric charge (Q), and
the entropy (S) as

M ¼
�
@IE
@�

�
�
��

�

�
@IE
@�

�
�
¼ ðd� 2Þ�d�2

2�
A; (23a)

Q ¼ � 1

�

�
@IE
@�

�
�
¼ �d�2P 0; (23b)

S ¼ �

�
@IE
@�

�
�
� IE ¼ 2


�
�d�2r

d�2þ : (23c)

As a first and direct consequence, these quantities must
satisfy the first law of thermodynamics 	M ¼ T	Sþ
�	Q which is indeed the case. In a more unexpected
way, these expressions (23) permit one to derive a gener-
alized Smarr formula. In order to achieve this task, we first
express the event horizon radius in terms of the thermody-
namical quantities (23) as

rd�3þ ¼ 2�M

�d�2ðd� 2Þ �
�ð2p� 1Þ

�d�2pðd� 2ÞQ�: (24)

Throughout this relation, the entropy and the temperature

can be written as

S ¼ 4


�
2�

�d�2½2pðd� 2Þ�d�2

�
1=ðd�3Þ

� ½2pM� ð2p� 1ÞQ��ðd�2Þ=ðd�3Þ;

T ¼ 1

4


�
p�d�2ðd� 2Þ

�

�
1=ðd�3Þ

� 2Mpðd� 3Þ � 2ðpd� 4pþ 1ÞQ�

ð2pM� ð2p� 1ÞQ�Þðd�2Þ=ðd�3Þ :

Remarkably enough, multiplying these two expressions
and, after some algebraic manipulations, we obtain a for-
mula for the total mass given by

M ¼ d� 2

d� 3
ST þ pd� 4pþ 1

pðd� 3Þ Q�; (25)

which is nothing but a Smarr formula. We first observe that
for p ¼ 1, the relation (25) reduces to the well-known
Smarr formula for the d-dimensional Einstein-Maxwell
black holes [8]. Another interesting value of the exponent
is given by p ¼ 1=ð4� dÞ for which the contribution of the
charge in the formula (25) disappears and the formula is
similar to the Smarr formula for the Schwarzschild solu-
tion. This is not surprising since in this case, the charge
contribution in the metric [see Eqs. (4b) and (5)] becomes
constant and hence, the solution resembles the
Schwarzschild metric but with a deficit solid angle. In
fact, this critical value of p corresponds to the transition
between the solutions which asymptote the Minkowski
spacetime (type II) and those that grow more slowly than
the Schwarzschild–de Sitter solutions, i.e. f2ðrÞ � r�b

with 0<�b < 2 (type III). This peculiar transition is
also reflected in the total mass formula (25) by the fact
that the term proportional to the charge changes its sign.
More precisely, the sign of the term proportional to the
charge in the case of solutions of type II is opposite to the
sign relative of those of type III, and the transition is
precisely operated at the critical value p ¼ 1=ð4� dÞ.
Another value to consider is p ¼ 0 because of the apparent
singularity of the formula (25). However, a detailed analy-
sis shows that for p ¼ 0 the formula reduces to the stan-
dard Smarr formula for the Schwarzschild–(anti) de Sitter
metric4 (with a cosmological constant � ¼ ��),

M ¼ d� 2

d� 3
ST þ 2��d�2

ðd� 3Þðd� 1Þ r
d�1þ jp¼0;

where the expression of the horizon radius (24) is evaluated
at p¼0. This is not surprising since at the level of the
action, the value p¼0 turns to be equivalent of having
the Einstein action with a cosmological constant. Within
this detailed study of the expression (25), we have pointed

3This holds up to an arbitrary additive constant that is chosen
to be equal to zero by setting IE ¼ 0 in the case of flat spacetime.

4The Smarr formula for anti–de Sitter (AdS) black holes and
an extended version of the first law including variations of �
have been studied in [23].
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out that the Smarr formula on its own reflects the dif-
ferent asymptotic behaviors of the black hole solutions.
Finally, we mention that the Smarr law can also be derived
in two different manners: by using the Komar integral even
in the cases of the nonasymptotic flat solutions, (see
Appendix A 1) or by constructing a Noether conserved
current which is associated to a scaling symmetry of the
reduced action (7) (see Appendix A 2).

For later convenience, we now express the mass and the
temperature in terms of the horizon rþ. Since we are
working in the grand canonical ensemble, these expres-
sions must be written in terms of the fixed state variables,
namely, the potential � and the temperature T. A straight-
forward computation shows that the massM expressed as a
function of rþ reads

M ¼ �d�2ðd� 2Þ
2�

�
rd�3þ þ ð2p� 1ÞD

d� 2p� 1
rd�2p�1
þ

�
: (26)

This relation is useful to analyze the behavior of the mass
with respect to the event horizon radius for the different
classes of solutions, cf. Fig. 1. On the other hand, the
square temperature is given by

T2 ¼
�
1

4


df2

dr

��������rþ

�
2
;

which, after some algebraic manipulations, can be rewrit-
ten as

T2 ¼
�
1

4


�
d� 3

rþ
� D

r2p�1
þ

��
2
; (27)

and where the constant D is given by

D ¼ �2��ð�2Þpðd� 2Þ�1ð2p� 1Þ1�2p

� ðd� 2p� 1Þ2p�2p:

It is important to mention that, due to the positive energy
condition [14], the constant D is positive for all the values
of the exponent p. For clarity, in Fig. 2, we sketch the
temperature as a function of the horizon radius for the
different ranges of the parameter p.

IV. LOCAL AND GLOBAL THERMODYNAMIC
STABILITY

The thermodynamic stability of a system can be consid-
ered from many different points of view depending on
which thermodynamical variables or state functions one
is considering. Usually, in order to study the stability of a
system, it is common to consider small fluctuations of the
state functions around the equilibrium, and since the first-
order terms vanish, the stability is only a statement about
the second-order variations. An equivalent manner of
studying the local stability can be done by analyzing the
sign of the heat capacity C� at constant potential

C� � T

�
@S

@T

�
�
; (28)

as well as the sign of the electrical permittivity �T at
constant temperature

�T �
�
@Q

@�

�
T
: (29)

From these definitions, it is clear that the heat capacity
(respectively, the electrical permittivity) gives information
about the thermal stability with respect to the temperature
fluctuations (respectively to the electrical fluctuations).
The positivity of the heat capacity, C� � 0, is a necessary

M

r+

M M

r+ r+Mr Mr

FIG. 1. Mass of the black hole in terms of the event horizon radius rþ at fixed electric potential �. The left-hand graph corresponds
to the solutions with p 2 ð12 ; d�1

2 Þ, while the middle one represents the solutions with p > d�1
2 . The right-hand graph is identified with

the solutions with a negative exponent p < 0. For the two first graphs (p > 1=2), the mass is a monotonous function of the horizon
radius, with the particularity that black hole solutions with negative mass are only allowed for p > ðd� 1Þ=2. This fact occurs when
rþ < rM, where rM corresponds to the radius for which the mass vanishes. In contrast, for p < 0 the mass is not a monotonous function
and has a local maximum, as it is shown in the last graph. Moreover, in the range 1=ð4� dÞ< p< 0, only black hole solutions with
positive mass can be exhibited, since for this interval of p the negative mass solutions have a negative temperature (see Fig. 2). For the
remaining range p < 1=ð4� dÞ, the mass can be negative since its corresponding temperature is positive.
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condition for the system to be locally stable and this is a
direct consequence of the definition (28) and the fact that
the entropy is proportional to the size of the black hole
[24]. On the other hand, the black holes will be electrically
unstable under electrical fluctuations if the electrical per-
mittivity is negative. The physical interpretation of this
instability is explained by the fact that in this case the
potential decreases while the system acquires more charge,
and hence the system may leave easily the equilibrium
state [24]. The local stability of a system will be ensured
only if there exists a range of the horizon radius for which
the quantities C� and �T are both positives.

In order to express the heat capacity (28) as well as the
electrical permittivity (29) in terms of the horizon radius,
we rewrite them as

C� ¼ T

�
@T

@rþ

��1

�

�
@S

@rþ

�
�

¼ � 2


�
�d�2ðd� 2Þrd�2þ

�
�

D� ðd� 3Þr2p�2
þ

ð2p� 1ÞD� ðd� 3Þr2p�2
þ

�
; (30)

and

�T ¼
�
@�

@rþ

��1

T

�
@Q

@rþ

�
T
:

However, since we have only the dependence of the charge
Q in terms of the potential at constant horizon, we have to
rewrite each factor of the above formula as�

@Q

@rþ

�
T
¼ �

�
@T

@Q

��1

rþ

�
@T

@rþ

�
Q
;

�
@�

@rþ

�
T
¼ �

�
@T

@�

��1

rþ

�
@T

@rþ

�
�
:

Combining these last expressions, the permittivity is found
to be

�T ¼
�
@Q

@�

�
rþ

�
@T

@rþ

��1

�

�
@T

@rþ

�
Q

¼ � pðd� 2ÞD
��2ðd� 2p� 1Þ�d�2r

d�2p�1
þ

�
�ð2pd� 6pþ 1ÞD� ð2p� 1Þðd� 3Þr2p�2

þ
ð2p� 1ÞD� ðd� 3Þr2p�2

þ

�
:

(31)

From the above formulas (30) and (31), it is clear that there
is a strong influence of the exponent p on the sign of these

T

r+r0r

M<0

M>0

T

r+

T

r+T

T

r+

r0rT

rT rT

T0T0

FIG. 2. Temperature against the horizon rþ for different ranges of the exponent p at fixed electric potential �. At the top left, the
graph corresponds to the range p 2 ð12 ; d�1

2 Þ, while the top right graph represents the solutions with p > d�1
2 . The last graphs are for

p < 1
4�d (bottom left) and p 2 ð 1

4�d ; 0Þ (bottom right). For the exponent p ranging over the set ð12 ; d�1
2 Þ, the asymptotic behavior of the

solution is similar to the Reissner-Nordström black hole, and the analogy is also valid concerning the thermodynamics. In particular,
for large value of the horizon, the temperature goes to zero while it reaches its maximum T0 for a finite value of the horizon radius r0.
In addition, there exists a value rT for which the temperature vanishes, which corresponds to an extremal black hole. For p > ðd�
1Þ=2, the main difference with the previous case lies in the fact that there exist black holes with positive and negative mass, and the
extremal solution is possible only for negative mass. For p < 1=ð4� dÞ, the temperature behavior is quite different since it is a
decreasing function of the event horizon, and as before, the extremal solution is possible only with a negative mass. Finally, for
1=ðd� 4Þ< p< 0, the temperature is similar to the previous case, with the exceptions that the mass is always positive, and the value
for which the temperature vanishes does not correspond to an extremal black hole.
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two expressions. Moreover, for a positive exponent p, both
expressions will diverge at certain value of horizon radius
r0, reflecting a radical change in the thermodynamical
local stability of the system. Indeed, the sign of the specific
heat and electrical permittivity is flipped at r0. For these
reasons, it is interesting to plot C� as well as �T against the
event horizon rþ for the different ranges of the exponent p.

For the range p 2 ð1=2; ðd� 1Þ=2Þ, there exist only
black holes with positive mass. In this case, the heat
capacity (cf. Fig. 3) for p � 1 has positive and negative
branches and presents a vertical asymptote at r0. For a
black hole with horizon rþ 2 ðrT; r0Þ, the heat capacity is
positive, and hence the stability of the black hole is ensured
for the thermal fluctuations. At the Reissner-Nordström
limit, i.e. p ¼ 1, the singularity disappears and the heat
capacity is always negative reflecting the instability of the
solution. For the electrical permittivity (cf. Fig. 4), the
analysis is divided in two parts. For p 2 ð1=2; 1Þ and for
the region rþ 2 ðrT; r0Þ, the permittivity is positive and
hence we conclude that the system is locally stable. In
contrast, for p 2 ð1; ðd� 1Þ=2Þ the system is unstable

since there are no common regions where the heat capacity
and the permittivity are both positive. For p > ðd� 1Þ=2,
only small black holes with rþ 2 ðrT; r�Þ and with nega-
tive mass are locally stable. Finally for p < 0, indepen-
dently of the sign of the mass, the solution is always
unstable since the heat capacity is negative and hence the
system is locally unstable. The main result is that the
nonlinear electrodynamics theory considered in this paper
permits the existence of locally stable black hole solutions.
This result emphasizes the importance played by the non-
linearity and is put in opposition with the local thermal
instability of the standard Reissner-Nordström black hole.
We now turn to the study of the global stability in order

to determine whether our solutions are thermodynamically
preferred over the Minkowski background. The Gibbs free
energy G ¼ IE=� is an appropriate state function to com-
pare configurations in the grand canonical ensemble. For
example, it is well known that in the standard Einstein-
Maxwell theory, the Minkowski spacetime is always fa-
vored over the Reissner-Nordström black hole since in this
case the free energy of this latter is positive. In our case

εT

rT r0 r0r
T

rε

ε T

r+rT

εT

r0εr rε

εT

II

I

r+ r+

r+

FIG. 4. The electrical permittivity against rþ for p 2 ð12 ; 1Þ, p 2 ð1; d�1
2 Þ, and p > d�1

2 . For p < 0, there are two branches: branch I
corresponds to p > 1

2ð3�dÞ while branch II is relative to p < 1
2ð3�dÞ .

r+rT

M<0

M>0
CΦ CΦCΦ

rT r0 r0rT Mr r+r+

FIG. 3. Specific heat at fixed potential with p 2 ð12 ; d�1
2 Þ, p > d�1

2 , and p < 0.
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(cf. Fig. 5) and for p < 0, since the temperature is a
monotonous function of the event horizon radius, the free
energy is a positive decreasing function and hence the
Minkowski background is more likely than the black
hole configurations. For p > ðd� 1Þ=2 and for a fixed
temperature two black hole configurations with different
free energy and size coexist. In this case, in spite of the fact
that both solutions are less likely than the Minkowski
background, there is a nonvanishing probability that the
black hole with the larger rþ decays into the smaller one.
In the case where the parameter p 2 ð1=2; 1Þ and for the
temperature T < TG, the larger black holes are thermody-
namically preferred over the Minkowski background, and
since for T > TG the black hole branch has a larger free
energy than the Minkowski spacetime, a first-order phase
transition occurs at T ¼ TG. The situation is drastically
different for p 2 ð1; d�1

2 Þ. Indeed, in this case the most

probable configuration is that concerned with the small
black hole branch, but in this case, phase transitions are
not observed.

V. CONCLUSIONS AND COMMENTS

We have studied the thermodynamical properties of
black holes arising as solutions of higher-dimensional
gravity coupled to a nonlinear electrodynamics theory
given as a power p of the Maxwell invariant. These solu-
tions have the peculiarity of having different asymptotic
behaviors depending mainly on the range of the exponent
p, including nonasymptotically flat spacetimes. Metrics
with asymptotic relaxed falloff have attracted much atten-

tion [25] for AdS gravity coupled to a scalar field with
mass at or slightly above the Breitenlohner-Freedman
bound [26]. This theory allows a large class of asymptoti-
cally AdS spacetimes where the charges can be properly

defined. In the present work we have identified the inte-
gration constants with the mass and the electric charge by
using the Euclidean action in its Hamiltonian form. We
have adopted the grand canonical ensemble by keeping
fixed the temperature and the electric potential. We have
shown that although the variation of the dynamical fields
may diverge at the infinity, these divergences are canceled
yielding a finite Euclidean action. From this regularized
action we derive the different thermodynamical quantities
and a generalized version of the Smarr formula is obtained.
The different asymptotic behaviors of the solutions have
been shown to be encoded by the Smarr formula. We have
also proposed a derivation of the Smarr formula by using a
Noether conserved current which results from the scale
invariance of the reduced action. A similar derivation of the
Smarr formula has been obtained in the case of scalar hairy
black holes coupled minimally to the three-dimensional
Einstein gravity [27]. Note that in this reference the matter
field vanishes asymptotically, but this condition is not
fulfilled in our case since the Maxwell potential may be
divergent as r goes to infinity depending on the range of the
exponent p. However, these divergences, which also ap-
pear in the Komar integrals, are canceled and a Smarr
formula can be written.
The local thermodynamic stability of the solutions has

been analyzed through the heat capacity and the electrical

(A) (B)

(C) (D)

T

T

T

G

G

G

G

0
T

T
0

T

0
TT

G

T
G

FIG. 5. The Gibbs free energy in terms of temperature for p 2 ð12 ; 1Þ, p 2 ð1; d�1
2 Þ, p > d�1

2 , and p < 0 at fixed electric potential �.
A first-order phase transition can be observed only in the first graph at the temperature TG.

THERMODYNAMICS OF CHARGED BLACK HOLES WITH A . . . PHYSICAL REVIEW D 80, 104008 (2009)

104008-9



permittivity. We have shown that, contrarily to the
Einstein-Maxwell solution, there exist small black holes
that are locally stable in the sense that there exists a range
for the horizon radius for which the heat capacity and the
electrical permittivity are both positive. An interesting
problem to be dealt with is the study of the classical
dynamic stability of the model considered here and its
possible relation with the local thermodynamic stability.

It is worth noting that there exist some ranges of the
exponent p for which the black hole solutions are preferred
over the Minkowski background, and a first-order phase
transition appears in the case p 2 ð1=2; 1Þ. This situation is
clearly in contrast with what occurs in the standard
Einstein-Maxwell case where the flat spacetime is always
more likely than the Reissner-Nordström solution.
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APPENDIX: OTHER DERIVATIONS OF THE
SMARR FORMULA

1. Smarr formula from Komar integral

Owing to the fact that the black hole solution (3) is time-
translation invariant, the vector field � ¼ @t is a Killing
vector field. We are going to evaluate the Komar integral
for this vector over the (d� 2)-sphere at spatial infinity
with induced metric ,

I
1
dS��r��� ¼ �

I
1
d�d�2

ffiffiffiffi


p
rd�2grrgttgtt;r (A1a)

¼ �2�
d� 3

d� 2
M

þ 2�
pd� 4pþ 1

pðd� 2Þ ½Q�ðrÞ�1: (A1b)

Using the Stokes theorem and the properties of the Killing
vector, the expression (A1a) can be rewritten as

I
1
dS��r��� ¼

Z
H

dS��r��� þ 2
Z
�
dS�R

�
���;

(A2)

where � is a spacelike hypersurface covering the region
between the outer horizon H and the spatial infinity.
Using the equations of motion, this last expression be-
comes

I
1
dS��r��� ¼ �2�TS� 2�

�
pd� 4pþ 1

ðd� 2Þp
�

�Q½�ðrþÞ ��ðrÞ�1: (A3)

Equating the expressions (A1b) and (A3), the terms pro-
portional to the electric potential at infinity are canceled
out and one recovers the Smarr formula (25).

2. Smarr formula from Noether conserved current

The Smarr formula (25) can also be obtained from a
Noether current density by observing that the reduced
action (7), or equivalently the field equations (8) are in-
variant under the following scaling transformations

�r ¼ �r; �P ð�rÞ ¼ �ðpd�4pþ1Þ=pP ðrÞ;
��ð�rÞ ¼ �ð�pdþ4p�1Þ=p�ðrÞ; �f2ð �rÞ ¼ f2ðrÞ;

�Nð�rÞ ¼ �3�dNðrÞ;
where � is the parameter associated to the scale symmetry.
Note that a similar scale symmetry has been observed in
the case of three-dimensional scalar field minimally
coupled to gravity [27]. A straightforward application of
the Noether theorem yields the following current:

CðrÞ ¼ �

�
rP 0 � pd� 4pþ 1

p
P
�
� d� 2

2�
ðf2Þ0Nrd�2;

(A4)

which is conserved, i.e. @rCðrÞ ¼ 0. This conservation law
can also be proved directly using the equations of motion
(8). Evaluating this expression at infinity and at the horizon
rþ, one gets

Cð1Þ ¼ �d� 3

�d�2

M;

CðrþÞ ¼ � 1

�d�2

�
STðd� 2Þ þ pd� 4pþ 1

p
Q�

�
:

Finally, using the fact that C is a constant, Cð1Þ ¼ CðrþÞ,
the Smarr formula (25) is recovered.
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