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In loop quantum gravity the classical point of departure is the Einstein-Hilbert action modified by the

addition of the so-called Holst term. Classically, this term does not affect the equations of motion, but it

induces a well-known quantization ambiguity in the quantum theory, parametrized by the Barbero-

Immirzi parameter. Recently, it has been suggested to promote the Barbero-Immirzi parameter to a field.

The resulting theory, obtainable starting from the usual Holst action, is general relativity coupled to a

pseudoscalar field. However, this theory turns out to have an unconventional kinetic term for the Barbero-

Immirzi field and a rather unnatural coupling with fermions. The main goal of this work is twofold: First,

to propose a further generalization of the Holst action, which yields a theory of gravity and matter with a

more natural coupling to the Barbero-Immirzi field; second, to study the possible implications for

cosmology correlated to the existence of this new pseudoscalar field.
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I. INTRODUCTION

Loop quantum gravity [1–3] is a nonperturbative and
mathematically rigorous formulation of a quantum theory
of gravity. It is the result of the Dirac quantization proce-
dure [4] applied to the Ashtekar-Barbero (AB) canonical
constraints [5–7] of general relativity (GR), which are
classically equivalent to the usual constraints of canonical
tetrad gravity in the temporal gauge. The equivalence of
the two formulations relies on the fact that they essentially
describe the same classical system in two different sets of
fundamental variables, related by a one-parameter canoni-
cal transformation. According to Rovelli and Thiemann
[8], this canonical transformation cannot be unitarily im-
plemented in the quantum theory, so that the quantization
procedure necessarily generates a one-parameter family of
unitarily inequivalent representations of the quantum com-
mutation relations. As a result, the spectra of the quantum
geometrical observables are not uniquely determined,
being affected by the presence of a constant, known as
the Barbero-Immirzi (BI) parameter. Specifically, the area
spectrum is

A� ¼ 8��‘2P
X
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkðjk þ 1Þ

q
; (1)

where � is the BI parameter, while ‘P is the Planck length.
The numerical value of the BI parameter can be determined
by studying the modes of isolated horizons of nonrotating
black holes [9,10], but its physical origin is still an argu-
ment of discussions.

Recently, the idea that the BI parameter has a topologi-
cal origin has shed light on the nature of this ambiguity,
reinforcing the analogy with the so-called �-angle of Yang-
Mills gauge theories as initially suggested by Gambini,
Obregon and Pullin [11], and lately supported by other
works [12–14].
It is worth remarking that in pure gravity this interpre-

tation is not completely convincing, because the Holst
action, which is the Lagrangian counterpart of the AB
canonical formulation of gravity, does not contain any
topological term. In fact, the so-called Holst modification
[15],1

SHol½e;!� ¼ 1

2��

Z
ea ^ eb ^ Rab; (2)

where ea is the gravitational field 1-form and Rab is the
Riemann curvature 2-form defined as Rab ¼ d!ab þ
!a

c ^!cb (!ab being the Ricci spin connection 1-form),
does not have the properties ascribable to a topological
density, rather it is an on-(half)shell identically vanishing
term. Nevertheless, the Holst framework can be further
generalized and a true topological term can be naturally
introduced in the action [13,14,16], providing new inter-
esting insights into the physical origin of the BI parameter
[14].
In order to clarify this point, let us summarize the main

motivations to consider a generalization of the Holst
framework. Generally, the coupling of fermion fields to
first-order Palatini gravity has a nontrivial effect on the
geometry of spacetime: it generates a nonvanishing torsion
tensor proportional to the spinor axial current. This fact has
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an interesting implication if we wish to describe the gravi-
tational sector of the theory by using the Holst action,
instead of the usual Hilbert-Palatini one. It turns out that
in fact, in this more general case, the Holst modification no
longer vanishes on-shell; consequently, the effective action
differs from that of the Einstein-Cartan theory [17–21].
Specifically, the new effective action depends explicitly on
the BI parameter, which, consequently, acquires a classical
meaning [18]. But, interestingly enough, the resulting
modification diverges as soon as we set � ¼ �i, which,
respectively, correspond to the self and antiself dual for-
mulation of gravity [5]. This induces one to look for a
different formulation of the Holst action with matter [19],
satisfying the requirement that it exactly reduces to the
Ashtekar-Romano-Tate action for � ¼ �i [22].

In fact, the Holst term has a fermionic counter-term. In
other words, it is possible to modify the Dirac as well as the
gravitational action in such a way that the effective action
exactly corresponds to the usual Einstein-Cartan one
[19,20]. Basically, the two modifications sum up recon-
structing the so-called Nieh-Yan topological density [23].
This intriguing result was later confirmed in the framework
of supergravities by Kaul [24], who demonstrated that to
preserve supersymmetry, the Holst modification of the
gravitational sector has to be counterbalanced by a specific
modification of the fermionic sector, which exactly corre-
sponds to the one previously argued in [19] for the ordinary
theory.

These results strongly suggest that the Nieh-Yan density
plays an important role in gravity. In particular, its role
seems to reflect that of the Chern-Pontryagin densities in
Yang-Mills gauge theories [25–27]. Moreover, as adver-
tised before, in this extended framework, the BI parameter
can in fact be interpreted as a topological ambiguity analo-
gous to the �-angle of Yang-Mills gauge theories [12–14].
Specifically, such an ambiguity can be correlated to a
specific large gauge sector of tetrad gravity in the temporal
gauge [14]. This can also clarify why the appearance of the
BI parameter is an unavoidable feature of the quantum
theory of gravity based on the AB canonical formulation
of GR.

So, we claim that a natural generalization of the Holst
framework can be easily obtained by adding to the usual
Hilbert-Palatini action, the Nieh-Yan density, i.e.
[13,14,16,28]

S½e;!� ¼ � 1

2�

Z
ea ^ eb ^ ?Rab

þ �

2�

Z
ðTa ^ Ta � ea ^ eb ^ RabÞ; (3)

where for later convenience we defined � ¼ � 1
� . Above,

Ta is the torsion 2-form defined as Ta ¼ dea þ!a
b ^ eb,

while the symbol ‘‘?’’ denotes the Hodge dual operator. It
is worth remarking that the above action is classically
equivalent to the usual Hilbert-Palatini action, the Nieh-

Yan being reducible to a total divergence, i.e.

Z
ðTa ^ Ta � ea ^ eb ^ RabÞ ¼

Z
dðea ^ TaÞ: (4)

Furthermore, action (3) can be straightforwardly extended
to torsional spacetimes; in particular, it is dynamically
equivalent to the unmodified Einstein-Cartan action, as
can be easily demonstrated by considering spinor matter
fields minimally coupled to gravity [13].
An intriguing possibility for a further nontrivial general-

ization of the theory is to promote the BI parameter to be a
field. Some interesting results have been obtained perform-
ing this generalization in the Holst framework [29] (see
also [30]).2

Recently, a strong motivation to promote the BI parame-
ter to be a field has been proposed by one of us [28],
clarifying, simultaneously, that the most natural starting
point to study the dynamics of the BI field is, in fact, the
following action,

S½e;!;�� ¼ � 1

2�

Z
ea ^ eb ^ ?Rab

þ 1

2�

Z
�ðxÞðTa ^ Ta � ea ^ eb ^ RabÞ; (5)

where the BI field couples to gravity via the Nieh-Yan
term, instead of the Holst term. Essentially, the naturalness
of the interaction between gravity and the BI field through
the Nieh-Yan invariant is a consequence of the gravita-
tional contribution to the chiral anomaly. It results that, in
fact, the gravitational chiral anomaly in torsional space-
times contains a divergent term proportional to the Nieh-
Yan invariant. The necessity to reabsorb the divergence
represents the motivation to promote the BI parameter to
be a field [28]. This also clarifies the role played by the
Nieh-Yan invariant in gravity, especially in relation with
possible torsion sources as, e.g., spinor fields. In this
respect, we recall that starting from the Holst action and
promoting the BI parameter to be a field, it is’ ¼ sinh� to
play, in the effective action, the role of a scalar field rather
than � itself. Moreover, considering the presence of fer-
mions, the Holst framework generates an unnatural cou-
pling between the BI field and the fermionic matter fields
[30], motivating, initially, the choice of a different and
more natural starting point to describe the dynamics of
the system in accordance with [16].

2Interestingly enough, the same model was considered a long
time ago by Castellani, D’Auria and Frè [31], who in a com-
pletely different framework, mainly suggested by string theory,
proposed the idea of considering a field interacting with gravity
through the Holst modification. It is worth remarking that this
proposal was precedent to the papers by Barbero and Immirzi: in
this sense it has no relation with the BI field considered in the
recent works [29,30].
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We note that, following a common procedure, the
BI parameter can be associated with the expectation value
of the field � [28]. As a consequence its value can be
correlated to some topological ambiguity through a dy-
namical Peccei-Quinn-like mechanism as, in fact, argued
in [28].

In this paper, we clarify many aspects about the effective
dynamics of the BI field, providing also some hints to study
possible physical effects it could produce in a cosmological
scenario. Specifically, the organization of the paper is the
following: In Sec. II we study the effective dynamics of the
BI field, considering as a starting point the action (5). In
Sec. III we discuss possible physical effects produced by
the interaction of the BI field with matter. In particular, we
calculate the low-energy effective theory, extracting the
mass of the BI field and the possible purely quantum
contribution to the effective dynamics. In Sec. IV, we argue
that the BI field can solve the strong CP problem through
the Peccei-Quinn dynamical mechanism. In fact, the effec-
tive action obtained in Sec. III suggests to identify the BI
field with the axion. The scale of the interaction and, as a
consequence, the mass of the particle are both fixed by the
theory. The large value of the coupling constant could be
unnatural, motivating the argument of Sec. V, where be-
sides the BI field we consider also the presence of the
axion. The coexistence of these two pseudoscalar degrees
of freedom is particularly interesting as they interact with
matter in a linear combination. Physically, only one par-
ticular linear combination can acquire an anomaly-induced
mass, so that we expect one massive and one massless
physical particle as a result of the coexistence of the BI
field and the axion. The massless particle interacting
with bosonic matter can produce interesting effects; in
particular, we consider the perturbations it can produce
on the cosmic microwave background (CMB), and digress
on the known experimental limit on the magnitude of this
effect.

In Appendix A, we further generalize the theory by
relaxing the scale of the interaction between the BI field
and gravity, introducing a dimensional parameter M.
Surprisingly enough, this generalization does not change
the scale of the effective interaction between the BI field
and matter, which is determined by the theory itself.
Appendix B is devoted to a brief description of the effec-
tive dynamics of the BI field coupled to the original Holst
modification, so that the outcomes of the different models
can be easily compared. A discussion of the proposed
model concludes the paper.

II. EFFECTIVE DYNAMICS OF NIEH-YAN
MODIFIED GRAVITY WITH FERMIONS

In order to study the dynamics of the BI field �, we
consider a further generalization of the action (5), by
introducing fermion fields, which will play an essential

role in our argumentation. So, let us couple spinor fields to
gravity through the usual minimal prescription, i.e.3

S½e;!;�;c ; �c � ¼� 1

2�

Z
ea ^ eb ^?Rab

þ 1

2�

Z
�ðxÞðTa ^Ta� ea ^ eb ^RabÞ

þ i

2

Z
?ea ^

�
�c�aDc �Dc�ac

þ i

2
mea �c c

�
: (6)

The covariant derivatives are defined as

Dc ¼ dc � i

4
!ab�abc ; (7a)

Dc ¼ d �c þ i

4
�c�ab!

ab; (7b)

where �ab ¼ i
2 ½�a; �b� are the generators of the Lorentz

group.
Now by varying the action with respect to the dynamical

fields, we can extract the equations of motion. First, let us
calculate the equation resulting from the variation with
respect to the connection 1-form !ab, i.e.

1

4�
�abcdDðea ^ ebÞ þ 1

8
? ea �c f�a;�cdgc

þ 1

2�
ec ^ ed ^ d� ¼ 0; (8)

which, by using the formula f�a;�bcg ¼ 2�abcd�
5�d, can

be rewritten as

1

4�
�abcdðTa ^ eb � ea ^ TbÞ � 1

4
�abcd ? eaJbðAÞ

þ 1

2�
ec ^ ed ^ d� ¼ 0; (9)

where JbðAÞ ¼ �c�b�5c is the spinor axial current. This

equation can be further reduced with some algebra; we
have,

Ta ^ eb � ea ^ Tb � ?e½að�Jb�ðAÞ � 2�b�c@c�Þ ¼ 0: (10)

The variation of the action in Eq. (6) with respect to �, �c ,
c and ea respectively yields,

3For notations see [32].
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ea ^ eb ^ Rab � Ta ^ Ta ¼ 0; (11a)

?ea ^
�
i�aDc �m

4
eac

�
¼ 0; (11b)

?ea ^
�
iDc�a þm

4
ea �c

�
¼ 0; (11c)

1

�
eb ^ ?Rab � 1

�
d� ^ Ta þ i

4
? ðea ^ ebÞ

^ð �c�bDc �Dc�bc Þ � ?eam �c c ¼ 0: (11d)

The set of the equations of motion is complicated, never-
theless interesting consequences can be extracted from the
effective dynamics. First, let us reexpress the connection 1-
form!ab as a function of the other dynamical fields. In this
respect, we recall that the connection!ab has to satisfy the
second Cartan structure equation

dea þ!a
b ^ eb ¼ Ta; (12)

which, being a linear equation, admits a natural decom-
position of the connection. Specifically, recalling that the
contorsion 1-formKab captures the part of the gravitational
connection that depends on torsion, a natural decomposi-
tion of the connection 1-form !ab is

!ab ¼ o!abðeÞ þ Kab: (13)

o!abðeÞ is the usual Ricci spin connection and satisfies the
homogeneous structure equation, namely

dea þ o!a
b ^ eb ¼ 0; (14)

while the contorsion 1-form is related to the torsion 2-form
as follows,

Ka
b ^ eb ¼ Ta; (15)

so that the full connection 1-form in (13) satisfies the
inhomogeneous structure Eq. (12).

As a first step we extract the expression of the torsion 2-
form from Eq. (10): we easily obtain

Ta ¼ � 1

2
? ½ea ^ ebð�JbðAÞ � 2�bf@f�Þ�

¼ � 1

4
�abcdð�JbðAÞ � 2�bf@f�Þec ^ ed: (16)

It is important to note that, in order to preserve the standard
transformation properties of the torsion tensor under the
Lorentz group, the field � has to be a pseudoscalar [16,28].
In other words, the geometrical content of the theory
suggests the pseudoscalar nature of the BI field �, which
is a consequence of the peculiar interaction with the Nieh-
Yan density and is not assumed a priori. The explicit
expression for torsion in (16) corresponds to the following
expression for the contortion 1-form,

Kab ¼ 1

4
�abcde

cð�JdðAÞ � 2�df@f�Þ: (17)

Hence, the full connection 1-form satisfying the inhomo-
geneous second Cartan structure equation is

!ab ¼ o!abðeÞ þ 1

4
�abcde

cð�JdðAÞ � 2�df@f�Þ: (18)

Now, by substituting the solution (18) into the other
equations of motion we can study the effective dynamics.
It is particularly interesting to note that by Eq. (11a) we
obtain

? d ? d� ¼ �

2
? d ? JðAÞ ¼ m� �c�5c ; (19)

where we have used ?d ? JðAÞ ¼ 2m �c�5c , JðAÞ ¼ JaðAÞea
being the axial current 1-form and dV the natural volume
element. This equation establishes a dynamical relation
between the BI field and the composite pseudoscalar

c�5c , implying that the BI field has to be a pseudoscalar
too, as previously suggested by geometrical arguments.
It is worth noting that the same effective equations can

be obtained by pulling back the action (6) on the solution of
the structure Eq. (18), obtaining the effective action,
namely

Seff ¼� 1

2�

Z
ea ^ eb ^?oRab

þ i

2

Z
?ea ^

�
�c�aoDc � oDc�ac þ i

2
eam �c c

�

þ 3

16
�
Z

?JðAÞ ^ JðAÞ þ 3

4�

Z
?d�^ d�

� 3

4

Z
?JðAÞ ^ d�; (20)

and varying it with respect to the other dynamical fields. It
is worth remarking that the action (20) contains only
torsionless objects, in particular, the symbol ‘‘o’’ denotes
that the 2-form oRab is the curvature associated with the
Ricci spin connection o!ab and, analogously, the covariant
derivatives action on spinors are defined as in (7), where
the full connection is replaced by o!ab. The nonvanishing
torsion tensor contributes to the kinetic term of the field �
and generates the four-fermion Fermi-like term as well as
the interaction between the field � and the spinor axial
current. The pseudoscalar nature of the BI field prevents
the theory from any possible parity violation, in contrast
with what was argued elsewhere in the literature [30].
Finally, in order to reabsorb the constant factor in front

of the kinetic term for the BI field, we can define the new
dimensional field � by rescaling the original adimensional
field � in a suitable way, i.e.

� :¼
ffiffiffiffiffiffi
3

2�

s
�; (21)

so that the last two terms of the effective action can be
rewritten as follows,
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3

4�

Z
?d� ^ d�� 3

4

Z
?JðAÞ ^ d�

¼ 1

2

Z
?d� ^ d��

ffiffiffiffiffiffi
6�

p
4

Z
?JðAÞ ^ d�: (22)

The last term above contains interesting dynamical infor-
mation about the interaction of the rescaled BI field and
matter: the study of this interaction will be the focus of the
next section.

III. INTERACTION WITH MATTER

This section is dedicated to study the properties of the
interactions between the BI field and ordinary matter. For
the sake of clarity, we divided the discussion into two parts:
in the first one, we consider the classical effective theory,
extracting some physical properties of the BI field; in the
second part, we take into account also some purely quan-
tum effects, correlated with the existence of the chiral
anomaly.

A. Classical effective theory

The interaction between the rescaled BI field � and
spinor matter through the last term in (22) is particularly
interesting in view of the description of the dynamics of the
dynamical BI field. In particular, it is worth noting that the
interaction vanishes in the case of massless fermions,
which preserve chirality. The case of massive fermions,
though, is more interesting from a physical perspective. In
this case, in fact, the interaction term can be reabsorbed by
transforming the spinor fields in a suitable way. The non-
trivial dynamical content of this interaction reflects in the
mass term by introducing a modification in the low-energy
theory.

Specifically, the interaction contained in the last term of
(22) can be reabsorbed by operating the following trans-
formation:

c ! c 0 ¼ e�ið ffiffiffiffi
6�

p
=4Þ��5

c ; (23a)

�c ! �c 0 ¼ �c e�ið ffiffiffiffi
6�

p
=4Þ��5

; (23b)

which modifies the mass term in such a way that the
effective action becomes:

Seff ¼ � 1

2�

Z
ea ^ eb ^ ?oRab þ 1

2

Z
?d� ^ d�

þ 3

16
�
Z

?JðAÞ ^ JðAÞ

þ i

2

Z
?ea ^

�
�c�aoDc � oDc�ac

þ i

2
eam �c e�ið ffiffiffiffi

6�
p

=2Þ��5
c

�
: (24)

Now, in order to extract a low-energy effective action for
the field � and the neutral pion �0, let us consider the
modified mass term in the Lagrangian for the first two

generations of quarks, i.e. the up and down quark, respec-
tively, denoted by u and d. We have

Lmass ¼ �mu �ue
�ið�=F�Þ�5

u�md
�de�ið�=F�Þ�5

d: (25)

Now by using the following formulas [25],

�uu!�vcos

�
�0

F�

�
; �dd!�vcos

�
�0

F�

�
; (26a)

�u�5u!�ivsin

�
�0

F�

�
; �d�5d! ivsin

�
�0

F�

�
; (26b)

i �u�a�5u! 1

2
F�@

a�0þ . . . ; i �d�a�5d! 1

2
F�@

a�0þ . . . ;

(26c)

where F� ’ 93 MeV is the pion decay constant, measured
in the decay �þ ! 	þ þ 
	 and v ¼ h �uui ¼ h �ddi is a

constant, we can rewrite the mass term in the Lagrangian as

Lmass ¼ muv cos

�
�0

F�

� �

F�

�
þmdv cos

�
�0

F�

þ �

F�

�
;

(27)

where for convenience we defined F� ¼ 2ffiffiffiffi
6�

p ’
2:0� 1018 GeV, which determines the scale of the inter-
action between the field � and matter. It is important to
note that this constant is not a free parameter, but it is fixed
by the theory.4

Interestingly enough, by making the replacements in
(26c), the four fermion term in the effective action (24)
generates a modification of the kinetic term of the effective
low energy pion Lagrangian, namely:

3

16
�JaJa ¼ � 1

16

F2
�

F2
�

@a�
0@a�0: (28)

Since F� � F� we can safely neglect this modification, so

that the low energy theory is, essentially, unaffected by the
four-fermion interaction.
In order to extract information about the low-energy

limit, we are mainly interested in the quadratic part of
the Lagrangian for the pion and BI field. In particular,
the modified mass term represents a nontrivial potential
which deserves to be studied, because it could producein-
teresting dynamics. But for the scope of this work we only
consider the quadratic part, postponing a deeper investiga-
tion for a following work [33]. So, expanding the
Lagrangian up to the second order in the fields, we obtain
the following result:

4In Appendix A we tried to introduce a free parameter in the
topological sector of the initial action in order to relax the value
of the scale of the interaction, but surprisingly enough, the theory
is not sensitive to this modification, and the scale of the inter-
action cannot be naively relaxed.
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Lmass ’ � 1

2
ð�0 �ÞM2 �0

�

� �
; (29)

where the 2� 2 matrix M2 is given by

M2 ¼
ðmu þmdÞ v

F2
�

ð�mu þmdÞ v
F�F�

ð�mu þmdÞ v
F�F�

ðmu þmdÞ v
F2
�

0
@

1
A: (30)

Now, considering that F� � F�, one of the eigenvalues of

the above mass matrix corresponds to the mass of the pion,
namelym2

� ¼ ðmu þmdÞ v
F2
�
, while the other is the mass of

the BI field �. By a simple calculation, we obtain

m� ¼ F�

F�

m�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mumd

p
mu þmd

’ 3:0� 10�12 eV: (31)

So, this procedure has allowed to evaluate the mass of the
BI field, which is completely determined by the theory. The
small mass of the field � makes this particle undetectable
in accelerator experiments. Moreover, by calculating the
cross section of the process of decaying into two photons, it
results that its lifetime is longer than the present age of the
Universe; so that the BI field can travel for a cosmological
distance before decaying.

B. Quantum effects

Let us now make a detour from the classical effective
theory, considering also possible quantum effects. So far
we have only considered fermions interacting with the
gravitational field. As a further generalization, we consider
here that the spinor matter fields interact also with a
generic gauge field, described by an SUðNÞ connection,
A ¼ AI�I, where �I are the N2 � 1 Hermitian generators
of the group. The presence of this new gauge field, mini-
mally coupled to gravity and matter, does not affect the
solution of the second Cartan structure equation calculated
in the previous section (i.e. Eq. (18)). So that, by defining
the new covariant derivative acting on spinors as D ¼
oDþ iA, the effective action becomes

Seff ¼ � 1

2�

Z
ea ^ eb ^ ?oRab � 1

2

Z
tr ? F ^ F

þ 1

2

Z
?d� ^ d�þ i

2

Z
?ea ^

�
�c�aDc

�Dc�ac þ i

2
eam �c c

�
þ 3

16
�
Z

?JðAÞ ^ JðAÞ

�
ffiffiffiffiffiffi
6�

p
4

Z
?JðAÞ ^ d�; (32)

where F ¼ dAþ ½A; A� is the curvature 2-form associated
to the gauge field A.

As above, the last term in the effective action can be
reabsorbed by a chiral transformation of the spinor fields.
But as soon as we take into account possible quantum
effects, the existence of the quantum chiral anomaly in-

troduces a purely quantum contribution to the effective
action besides the modification affecting the mass term.
To be more precise, let us suppose that we quantize the
theory by using the path-integral method. The fermionic
measure is not invariant under a chiral rotation [34], gen-
erating a contribution to the divergence of the axial current
proportional to the Pontryagin densities associated with the
gauge fields contained in the theory. Specifically, we have
that [35]:

d ? JðAÞ ¼ 2m �c�5c dV þ 1

8�2
trF ^ Fþ 1

8�2
Rab ^ Rab:

(33)

So, by considering the last term in the effective action (32)
and the expression of the chiral anomaly above, we can
expect an interaction between the BI and the gauge fields.
In fact, such an interaction can be predicted by using a
quite general argument, completely neglecting the pres-
ence of fermionic fields. Indeed, once assumed that the BI
parameter is actually a field, the resulting effective action is
that of a pseudoscalar field decoupled from gravity. The
effective action is symmetric under a shift of the new field,
thus showing the existence of an additional symmetry
belonging to the group UðAÞð1Þ. This symmetry cannot

remain unbroken in the quantum regime and an anomaly
must appear. The anomalous contribution to the effective
action due to the axial rescaling of the field � corresponds
to that of a (pseudo-)Nambu-Goldstone boson correlated to
an existing broken symmetry (see [25,26]). In this frame-
work, �ðxÞ plays a role strictly analogous to that of the
axion, also suggesting that it can be used to solve the so-
called strong CP problem, as will be argued in the next
section.
Let us complete this section further motivating the ex-

pected full semiclassical action. As we showed before, the
interaction term between � and the spinor fields can be
easily eliminated by the chiral rotation (23). But taking into
account the purely quantum contribution coming from the
chiral rotation of the fermionic measure, a new nontrivial
interaction between � and the gauge fields appears in the
effective action, namely

Seff ¼ � 1

2�

Z
ea ^ eb ^ ?oRab � 1

2

Z
tr ? F ^ F

þ 1

2

Z
?d� ^ d�þ i

2

Z
?ea ^

�
�c�aDc

�Dc�ac þ i

2
eam �c e�ið ffiffiffiffi

6�
p

=2Þ��5
c

�

þ 1

8F2
�

Z
?JðAÞ ^ JðAÞ � 1

8�2

Z �

2F�

trF ^ F

� 1

8�2

Z �

2F�

Rab ^ Rab: (34)
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On the one hand, it is interesting to note that the sector of
the effective action describing the dynamics of the gravi-
tational and pseudoscalar field reproduces the so-called
Chern-Simons modified gravity [36–39]. On the other
hand, as stressed before, the explicit expression of the
effective action above suggests to use the BI field to imple-
ment the Peccei-Quinn mechanism in order to solve the
strong CP problem: that will be the focus of the next
section.

IV. SOLVING THE STRONG CP PROBLEM WITH
THE BI FIELD

Let us begin this section by introducing the strong CP
problem. As is well known, the vacuum angle of QCD, �, is
a possible source of CP violation. In the standard model,
theUð1Þ � SUð2Þ symmetry breaking is another source for
CP violation; in particular, the non-Hermitian quark mass
matrix,M, introduces a CP violating factor proportional to
Arg detM. Experimentally, one expects a violation of the

CP symmetry proportional to ~� ¼ �þ Arg detM, but,
observing the neutron electric dipole moment, an expected
and unnatural small upper limit of the order of 10�10 can be

fixed for the parameter ~�. This small value implies an
extremely precise fine-tuning between the two parameters

entering in ~�. This compensation is rather unnatural be-
cause the two parameters � and Arg detM are completely
independent; namely � is motivated by the nontrivial to-
pological structure of the group SUð3Þ of QCD, whileM is
correlated to the breaking of the SUð2Þ �Uð1Þ symmetry.
This is known as strong CP problem.

The Peccei-Quinn mechanism [40] is a dynamical solu-
tion of the strong CP problem. It is mainly based on the
assumption that a new global chiral Uð1ÞA symmetry is
present in the Lagrangian of the standard model, usually
this additional symmetry is denoted as Uð1ÞPQ. It is easy to
demonstrate that if the chiral Peccei-Quinn symmetry is an
exact symmetry of the standard model, the strong CP
problem can be easily solved. Interestingly enough, even
though the Uð1ÞPQ is spontaneously broken, it is still

possible to solve the strong CP problem through a dynami-
cal mechanism, namely, the PQ mechanism [40].

Essentially, the dynamical PQ mechanism works as
follows. The postulated Uð1ÞPQ symmetry cannot remain

exact at the quantum level: it is, in fact, spontaneously
broken by the presence of the chiral anomaly. The sponta-
neous breaking of this symmetry reflects in the presence of
a pseudoscalar Nambu-Goldstone boson, called axion, the
vacuum expectation value of which is nonvanishing and
driven by a nontrivial anomaly-induced potential to the

value which compensates the CP violating parameter, ~�. In
this section we argue that the role of the axion can be
played directly by the BI field, with the advantage that it
has a correlation with the gravitational theory through the
Nieh-Yan topological term. If this argument works prop-

erly, an interesting bridge can be constructed between
particle physics and gravity, through a topological sector
mainly motivated by the classical framework of loop quan-
tum gravity.
Let us enter in the details by reconsidering the effective

action (34). In particular, let us specialize the action to
describe a particular coupled system of matter and gravity:
the bosonic gauge connection 1-form A is valued on SUð3Þ
and the coupling constant g, entering in the definition of
the full covariant derivativeD, is the strong charge. For the
sake of simplicity, let us focus our attention only on the
matter content of the effective action. Moreover, in order to
make contact with the standard framework, let us also
suppose that the spacetime is described by a solution of
the Einstein equations, such that the term Rab ^ Rab iden-
tically vanishes (this class of solutions contains many
physically relevant spacetimes as, e.g., Friedmann-
Robertson-Walker and Schwarzschild). Finally, the effec-
tive action we want to consider is

Seff ¼ SGrav½e� þ SStrong½A� þ SFerm½c f; �c f; e; A;��
þ S½�� þ 1

8F2
�

Z X
f

? JðAÞf ^ JðAÞf

þ g2

8�2

Z �
~�� �

2F�

�
trG ^G; (35)

where G is the curvature 2-form associated with the strong
interaction. Above, we considered the CP-violating term

proportional to the parameter ~� as well as the presence of
different quarks flavors denoted by the symbol f.
The interaction between the field� and the gluons in the

last term of the action above is a consequence of the
quantum contribution of the chiral anomaly, as explained
in the previous section. It is worth noting that the CP

violating ~�-term combines with the � field, so that the
possible observables of the theory now depend on the

combination ~�� �
2F�

. Since experiments exclude a CP

violation of this kind, according to the Peccei-Quinn
mechanism, we can conclude that the effective potential

driving the dynamics of the BI field has to be even in ~��
�
2F�

, so that it has a stationary point in

~�� �

2F�

¼ 0: (36)

So, it seems that the BI field can be a possible candidate
to play the role of the axion, regarding a dynamical solu-
tion of the strong CP problem through the Peccei-Quinn
mechanism. The scale of the interaction between � and
matter is fixed by the theory to be of the order of F�, which

corresponds to a extremely light and weakly interacting
axion. This is a precise prediction of the theory and de-
serves to be seriously taken into consideration. If cosmo-
logical and astrophysical data excluded the identification
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of the BI field with the PQ axion, then a different possible
scenario could be taken into consideration, namely, the
existence of two pseudoscalar fields, which can be, respec-
tively, associated to the BI field and to the standard axion.
The consequences of this hypothesis are described in the
next section.

V. PSEUDOSCALAR PERTURBATIONS

According to what was said at the end of the previous
section, let us consider the possible coexistence of the BI
field and the standard axion, correlated with the dynamical
solution of the strong CP problem.

We expect that the axion and the BI field combine and
naturally interact via the chiral anomaly with the gauge
bosons in a linear combination. Considering also the pres-
ence of the electromagnetic field F, schematically we have
[41]:

Lint ¼
�
�

2g�
þ a

2ga

�
trG ^Gþ

�
�

2f�
þ a

2fa

�
F ^ F

þ
�
�

2r�
þ a

2ra

�
Rab ^ Rab; (37)

where g�, f�, r� and ga, fa, ra determine, respectively,

the scales of the interactions of the fields � and a with the
gluon, electromagnetic and gravitational fields.5

As is well known, the axion acquires an induced mass
term through the chiral anomaly. The mass of the axion
directly depends on the energy scale at which the Peccei-
Quinn chiral symmetry breaks down. Interestingly enough,
the mechanism that induces a mass is peculiar and only one
linear combination of the two pseudoscalar fields acquires
a mass [42]. At an effective level, this fact implies that
besides the usual QCD term for the massive physical axion,
one has a massless additional pseudoscalar field,�, which
interacts with the electromagnetic as well as the gravita-
tional field as follows:

L int ¼ Laxion þ �

2f�
F ^ Fþ �

2r�
Rab ^ Rab; (38)

where f�1
� and r�1

� denote the scale of the respective

interactions.
The presence of the coupling with photons induces a

rotation of the polarization, ", of an electromagnetic wave,
according to the following expression [43],

�" ¼ ��

f�
; (39)

where �� is the spacetime variation of the massless
pseudoscalar field.
So the existence of the BI field, motivated by the neces-

sity of reabsorbing a divergence in the chiral anomaly in
torsional spacetime as recently argued in [28], combined
with the pseudoscalar field associated to the additional
Peccei-Quinn symmetry [40], leads to the existence of a
massless pseudoscalar field �. Interestingly enough, from
a cosmological point of view, the existence of this massless
state superweakly interacting with photons has interesting
effects on the polarization of CMB. In particular, by study-
ing the polarization anisotropies of the observed spectra of
CMB, it is possible to put a stringent lower bound on the
scale parameter f�, as recently demonstrated by Pospelov,
Ritz, and Skordis [41], who have also proved that this
method can efficiently probe new models containing such
new pseudoscalar fields. They have found that f� > 2:4�
1014 GeV, fixing a constraint on massless pseudoscalars
more stringent of at least 2 order of magnitude with respect
to previously existing limits.

VI. DISCUSSION

In this paper, according to previous works [16,28–30],
we proposed to promote the BI parameter to a field.
Initially, this idea was motivated by the hope of associating
the constant value of the BI parameter to the expectation
value of a field through a dynamical mechanism. But,
simultaneously, the presence of this new field in the action
allows to solve another problem correlated with the chiral
anomaly on a torsional spacetime [28]. In particular, ac-
cording to a result of Chandı́a and Zanelli [44], the chiral
anomaly diverges on spacetimes with torsion, the diver-
gence being correlated to the Nieh-Yan contribution to the
anomaly itself. This divergence can be reabsorbed in the
definition of the BI field, so its presence naturally solves
this problem. It is worth remarking that an analogous
redefinition could work even if we did not consider the
possibility that � is actually a field. In other words, we
could imagine to reabsorb the divergence in the physical BI
parameter, considering the � appearing in the gravitational
action as a ‘‘bare’’ vacuum parameter. But this redefinition
would involve a shift of the parameter and to work properly
requires a sort of ‘‘fine-tuning’’. So the solution with the BI
field seems to be preferable and based on a shift symmetry
of the theory immediately recognizable looking at action
(6) or (20).
The dynamical equations show that this new field is a

pseudoscalar, suggesting two interesting perspectives. In
fact, studying the effective action and, in particular, the
peculiar interaction of the BI field with ordinary matter,
one immediately realizes that the BI field can be used to
implement the Peccei-Quinn mechanism to solve the
strong CP problem. Interestingly enough, the scale of the

5The scale of the interaction of the field � are determined by
the theory as stressed more than once. Specifically, they are
correlated to the constant F� defined above and rescaled by the
square of the coupling constant, e.g. f�1

� ¼ �
2�F

�1
� , where � is

the fine structure constant.
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interaction between the BI field and matter in this model is
fixed by the theory to such a value that the anomaly-
induced mass for the BI field is determined by the theory
and corresponds to an extremely light and weakly interact-
ing axionlike particle.

By taking seriously this suggestion of the theory, we are
left with two possibilities. One is that the PQ axion, which
dynamically solves the strong CP problem, is well de-
scribed by this model, mainly motivated by the necessity
of reabsorbing a divergence in the chiral anomaly. The
other possibility is that the BI field and the axion are, in
fact, different fields, existing simultaneously. In such a
framework, it is possible that the physical pseudoscalar
states associated to the two physical particles are a linear
superposition of the BI and the axion fields. This second
possibility is interesting from a cosmological point of view,
because if the two fields interact with the gluons as well as
photons through a linear superposition, only one of the two
physical pseudoscalar degrees of freedom can acquire an
anomaly-induced mass, the other remaining massless. As a
consequence, the massless field, interacting with photons,
generates a rotation of the polarization angle of electro-
magnetic waves, and this effect can be probed by studying
the polarization anisotropies of CMB.

In general, any massless pseudoscalar field superweakly
coupled to photons generates such an effect, which, com-
pared to the available data on the B-mode, allows to fix a
limit on the strength of the pseudoscalar coupling to pho-
tons. Many new high-energy physical theories contain or
predict two or more light pseudoscalar fields, which can
generate such an effect. Our model with the BI field
represents a possible new theoretical framework in which
a new pseudoscalar particle is present and can, in fact,
possibly encompass the physics generating a rotation of the
polarization angle of CMB in a fairly standard way.
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APPENDIX A: ON THE ROLE OF SCALE
PARAMETER

Here we consider a further generalization of the action
(6) for Nieh-Yan gravity by introducing a parameter M
with the dimensions of an energy,6

S½e;!;�; c ; �c � ¼ � 1

2�

Z
ea ^ eb ^ ?Rab

�M
Z

~�ðxÞðea ^ eb ^ Rab � Ta ^ TaÞ

þ i

2

Z
?ea ^

�
�c�aDc �Dc�ac

þ i

2
mea �c c

�
: (A1)

The introduction of the parameter M is extremely natural
and generalizes the action in Eq. (6) by relaxing the scale
of the interaction between matter and the BI field�. In fact,
we saw that the BI field couples to the Nieh-Yan density via
a term of the form

1

2�

Z
�ðxÞðea ^ eb ^ Rab � Ta ^ TaÞ; (A2)

and the coupling scale is uniquely determined by the factor
1
2� (� ¼ 8�G in natural units, i.e. c ¼ @ ¼ 1, where G is

the Newton’s constant).
One can then proceed with this action along the lines in

the main body of the paper and obtain the effective action,

Seff ¼� 1

2�

Z
ea ^ eb ^?oRab þ i

2

Z
?ea ^

�
�c�aoDc

� oDc�ac þ i

2
eam �c c

�
þ 3

16
�
Z

?JðAÞ ^ JðAÞ

þ 3�M2
Z

?d ~�^d ~�� 3

2
�M

Z
?JðAÞ ^d ~�: (A3)

Then the last two terms in the effective action suggest a
field redefinition of the form

� ¼ ffiffiffiffiffiffi
6�

p
M ~�; (A4)

upon which the effective action takes the form

Seff ¼ � 1

2�

Z
ea ^ eb ^ ?oRab þ i

2

Z
?ea ^

�
�c�aoDc

� oDc�ac þ i

2
eam �c c

�
þ 3

16
�
Z

?JðAÞ ^ JðAÞ

þ 1

2

Z
?d� ^ d��

ffiffiffiffiffiffi
6�

p
4

Z
?JðAÞ ^ d�: (A5)

Surprisingly, one obtains a coupling between � and fer-
mionic matter which is independent of the parameter M.
Thus, even though we have tried to allow an arbitrary
energy scale for the coupling of the BI field, it turns out
that the scale of the interaction is fixed by the theory to the
Planck energy.

APPENDIX B: ON BI FIELD IN HOLST GRAVITY

1. Effective dynamics

In [29] a different model for the BI field was considered.
The same model was already studied much earlier in [31],

6It is worth remarking that now the BI field ~� has the
dimensions of an energy as well.
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before the Holst, Barbero, and Immirzi proposals became
popular in the quantum gravity community. The model in
[31] was most likely motivated by string theory consider-
ations and led to a theory of general relativity coupled to a
pseudoscalar field �, which remarkably was not the con-
sequence of the ‘‘scalarization’’ of the BI parameter.

Here we compare the dynamical features of the BI field
as resulting from Holst gravity with that presented in this
paper and explain why the present model is more appealing
and, to a great extent, more natural from a practical per-
spective. Note the changes in convention: our field �
corresponds to the field � �� of [29], lowercase internal
indexes abc correspond to uppercase indexes IJK of
[29], our contorsion tensor is denoted Kab rather than
CIJ, and finally our metric signature isþ;�;�;�whereas
�þþþwas used in [29]. Moreover, we stress that in [29]
the Riemann 2-form was denoted by Fab, using the symbol
Rab for the torsion-free curvature; here we used the usual
symbol Rab for the full curvature and oRab for the torsion-
free Riemann 2-form.

Neglecting matter, the action considered in [29] is

S ¼ � 1

4�

Z
�abcde

a ^ eb ^ Rcd � 1

2�

Z
�ea ^ eb ^ Rab:

(B1)

At once one notices that the second term in (B1) is the
original Holst modification, but the Ta ^ Ta contribution,
which makes up the other part of the so-called Nieh-Yan
invariant, is missing. This is significant because (B1) yields
a theory with torsion as shown in [29], and the Ta ^ Ta

term affects the dynamical outcomes when � is
nonconstant.

One can then vary the action with respect to !ab and
solve the Cartan structure equation for the torsion 2-form
thus obtaining Eq. (15) in [29],

Ta ¼ 1

2

1

1þ �2
ð�abcd@d�þ �
a

½b@c��Þeb ^ ec (B2)

and the corresponding contorsion 1-form

Kab ¼ � 1

2

1

1þ �2
ð�abcdec@d�þ 2�e½a@b��Þ: (B3)

There are two main differences between these formulas
obtained in [29] and the corresponding expressions ob-
tained here in (16) and (17). First, the vector trace compo-
nent of the torsion tensor (16) vanishes, whereas it does not
for (B2). Second, the expressions (B2) and (B3) contain a
� dependent prefactor of 1

1þ�2 which complicated the

theory. The effective action then yields GR coupled to
the scalar field ’ ¼ sinh� rather than �, affecting also
the coupling with fermions that becomes quite unnatural
[30].

2. Effective dynamics with fermions

Alternatively, one can also take the theory described by
(B1), still without the complete Nieh-Yan term, and non-
minimally couple fermions to it using the nonminimal
coupling introduced in [12,19]. Then one gets a more
complicated theory than the one presented in this work.
Its action is

Sðe;!; c ; �c ; �Þ ¼ � 1

4�

Z
�abcde

a ^ eb ^ Rcd

� 1

2�

Z
�ea ^ eb ^ Rab

þ i

2

Z
?ea ^ ½ �c�að1� i��5ÞDc

�Dc ð1� i��5Þ�ac �: (B4)

The structure equation can be calculated by varying with
respect to !, i.e.

�
1

2
�abcd þ �
½a

c 

b�
d

�
dð!Þðea ^ ebÞ

�
�
1

2
�abcd þ �
½a

c 

b�
d

�
� ? ecJd þ ea ^ eb ^ d� ¼ 0:

(B5)

One can then solve (B5) for the torsion 2-form thus obtain-
ing,

Ta ¼ � 1

4
�abcd

�
�Jb � 2

1þ �2
@b�

�
ec ^ ed

þ 1

2

�

1þ �2
ea ^ d�; (B6)

and the corresponding contorsion 1-form

Kab ¼ 1

4
�abcde

c

�
�Jd � 2

1þ �2
@d�

�
þ �

1þ �2
e½a@b��:

(B7)

This is similar to the result obtained in the main body of
this work, but for the presence of the factor 1

1þ�2 and the

fact that the torsion tensor (16) has a vanishing trace
component. The theory in the main body of this work has
no �-dependent multiplicative factors nor do such
�-dependent multiplicative factors show up in the effective
theory either. Whereas, for the theory (B4) the effective
action is more complicated
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Seff ¼ � 1

4�

Z
�abcde

a ^ eb ^ oRcd

þ i

2

Z
?ea ^ ð �c�aoDc � oDc�ac Þ

þ 3

16
�
Z

dV�abJ
aJb � 2

Z
dVJa@a�

þ 3

4�

Z
dV

1

1þ �2
�ab@a�@b�: (B8)

Finally, we note that in order to have a standard kinetic
term for the scalar field, a change of variable is necessary;
specifically, we have to introduce the field ’ ¼ sinh�, but
this inevitably complicates the interaction with fermionic
matter. Summarily, the simplicity of (20), obtained from
the theory described by action (6), suggests that consider-
ing the full Nieh-Yan term leads to more appealing and
natural results, when the interaction with fermions is taken
into account.
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