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Phantom cosmology provides a unique opportunity to ‘‘connect’’ the phantom-driven (low energy meV

scale) dark energy phase to the (high energy grand unified theory scale) inflationary era. This is possible

because the energy density increases in phantom cosmology. We present a concrete model where the

energy density, but not the scale factor, cycles through phases of standard radiation/matter domination

followed by dark energy/inflationary phases, and the pattern repeating itself. An interesting feature of the

model is that once we include interactions between the ‘‘phantom fluid’’ and ordinary matter, the big-rip

singularity is avoided with the phantom phase naturally giving way to a near exponential inflationary

expansion.

DOI: 10.1103/PhysRevD.80.103521 PACS numbers: 98.80.Cq, 04.50.�h, 11.27.+d

I. INTRODUCTION

The current accelerated expansion of the Universe is
usually explained by invoking a dark energy (DE) compo-
nent1 which today comprises more than 70% of the total
energy in the Universe (for reviews, see [4–6]). The case of
a pure cosmological constant, with w� � p�=�� ¼ �1
marks the divide to the ‘‘phantom’’ realm. Phantom dark
energy models are described by systems with

wp ¼ pp

�p

<�1 (1)

and have the intriguing feature that the energy density in
the Universe increases with expansion,

�p � a�3ð1þwpÞ: (2)

Hence a Universe with low �meV scale accelerated ex-
pansion can eventually reach energy scales close to the
grand unified theory (GUT) scale, for instance. For some
examples of cosmological scenarios using phantom en-
ergy, see [7,8]. The question that we want to ask is whether
it is possible to exploit this feature of phantom cosmology
and turn the dark energy driven acceleration into a GUT
scale inflationary phase.2 The idea then would be to con-
struct a cyclic model where dark energy/inflationary
phases are interspersed with decelerating radiation/matter
phases.

Several problems immediately appear. First, unless the
equation of state for the phantom phase, wp, is extremely

close to �1, the phantom acceleration will be much faster
than the de Sitter expansion, and cannot be reconciled with

data. Density perturbations produced during a phantom
phase will give rise to a blue spectrum, and consistency
with the current WMAP 5-yr data at the 2� level with
tensor modes included [10] require �1>wp >�1:01.

Second, it is well known that phantom cosmology typically
ends in a big-rip singularity, rather than the standard ra-
diation phase which follows inflation. Remarkably, we find
that both of these problems can be addressed when we
include interactions between the ‘‘phantom fluid’’ and
some hidden sector matter. Such interactions ameliorate
the phantom acceleration phase to an asymptotic de Sitter
type expansion, once the phantom energy density reaches a
critical value. It is easy to arrange this transition to occur
around the GUT scale, which is appropriate for inflationary
cosmology. This also automatically avoids the big-rip sin-
gularity as the space-time now approaches a de Sitter uni-
verse. The density perturbations can have a variety of
possibilities, allowing for agreement with observations
[10]. Moreover, in our scenario the Universe transitions
to an asymptotic de Sitter phase independent of the value of
!p, and thus avoids having to fine-tune wp very close to

�1. As an additional advantage over the usual slow-roll
inflationary scenario, in our phantom-driven inflationary
model one does not have to tune the flatness of the potential
usually necessary to obtain the large number of e-foldings
and near scale-invariant spectrum. In addition, the hier-
archy between the �meV dark energy scale and the GUT
inflation scale can be reexpressed in terms of four parame-
ters that take values ofOð1Þ toOð102Þ. We cannot however
address the ‘‘coincidence’’ problem in our picture. Finally,
there is the question of how to construct a theoretically
self-consistent model of phantom energy. We will com-
ment on this problem shortly.
Before delving into the details of our specific realization

of the ‘‘phantom cyclic model,’’ let us outline the basic
picture by considering just a simple two fluid model,
phantom matter ð�pÞ þ radiationð�rÞ. The cosmology we

want to realize is the following: although the scale factor
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always increases monotonically with time, the energy den-
sity ‘‘cycles,’’ at least approximately. Each cycle is divided
into two different phases: (a) Radiation dominated phase,
which starts at an energy density �r ¼ �4

max. As the
Universe expands radiation gets diluted, the Hubble pa-
rameter decreases and reaches a minimum when �r ¼
�p ¼ �4

min. From here on we enter (b) the phantom energy

dominated phase. In realistic cosmology the radiation
phase should give way to matter domination at energy
densities �ð10 eVÞ4, before giving way to phantom domi-
nation, but for simplicity we are going to ignore this slight
complication. Thus for a typical scenario which would be
consistent with the dark energy and inflationary paradigm,
�max � 1015 GeV� 10�3Mp or the GUT scale, and

�min �meV� 10�30Mp corresponding to the scale of cur-

rent energy density. Now, in the phantom phase, as the
Universe expands the energy density increases, and so does
the Hubble rate. Initially, depending upon how negative the
phantom equation of state parameter,!p, is this increase in

energy density can be quite fast. However, in our model we
will see that once the energy density reaches close to a
critical scale �max, which is determined by the interactions
between the hidden and ordinary matter sector, the energy
density and the Hubble parameter asymptote to a constant
giving rise to a near exponential expansion. This infla-
tionary phase can end via the reheating mechanism de-
scribed in Secs. III and IV after which we enter the
radiation dominated era of the next cycle.

A similar idea to the one in this paper has previously
been presented by [11] who dubbed this model ‘‘the eter-
nally expanding cyclic universe.’’ They too (in their
Sec. 4c) suggested an alternating increasing/decreasing
energy density. However the theory behind their model is
quite different from ours, and consequently their predic-
tions for resultant density perturbations are different as
well.3 One major problem of all phantom type models is
the vacuum stability due to the null energy condition
violation. [11] examine a consistent way to solve this
problem, based on a deformation of the ghost condensate
model of Arkani-Hamed et al. [12].

Although the interactions between phantom fluid and
ordinary matter can lead to an inflationary space-time, we
are still left with a graceful exit problem, or how to ensure
that the Universe enters the standard radiation dominated
era. Depending upon the specific model, different ‘‘reheat-
ing mechanisms’’ may be able to trigger such a transition.
We focus on a model where the phantom fluid consists of a
ghostlike scalar field coupled to some hidden matter sector.
Such a fluid closely resembles the interacting DE-dark
matter models [13–16] except that the scalar field instead
of being an ordinary quintessence field, has negative ki-

netic energy like a ghost. Although field theory with ghosts
is plagued with problems of unitarity/instability [17], re-
cent developments attempting to address these problems
include progress in nonlocal [18] and Lee-Wick [19]
higher derivative models; see also [11,20]. As we will
see, in our model the transition from phantom to radiation
phase and vice versa is achieved partly by suitably choos-
ing the interaction strength between the scalar field and the
hidden matter sector, and partly due to the presence of
interactions between the hidden and ordinary matter sector.
(There is no direct coupling between the ghost field and
ordinary matter.)
As emphasized before, the main reason why the cosmol-

ogy described above can replace the standard inflationary
paradigm is because in the phantom phase the energy
density increases even though the Universe continues to
expand. Thus after the usual dilution in a radiation domi-
nated phase, the phantom phase followed by reheating
ensures that the Universe again becomes hot and therefore
can reproduce the successes of the big bang model, such as
big bang nucleosynthesis and cosmic microwave back-
ground (CMB) radiation. There is another essential simi-
larity between our scenario and the inflationary paradigm.
The essential reason why inflation solves the standard
cosmological puzzles is because our observable universe
(of radius �H�1

0 ) can originate from a very tiny region at

the beginning of inflation. Something very similar happens
in our model as well, the Universe expands by a huge factor
in every cycle. In our model the number of e-foldings in the
radiation and the phantom phase is given by

N rad � ln

�
�max

�min

�
and N phan � �4

3ð1þ!pÞ ln
�
�max

�min

�
:

(3)

In order to have a successful GUT scale inflationary para-
digm we need N inf * 60. Thus one gets

N tot ¼ N phan þN rad þN inf

�
�
1� 4

3ð1þ!pÞ
�
ln

�
�max

�min

�
þN inf : (4)

Just to get an idea, if we take �min �meV, �max �
1015 GeV, !p ��1:3, and N inf � 60, we get N tot �
400. What this means is that only a very, very tiny portion
(for the chosen example, e�400th) of our observable uni-
verse will ultimately grow to become the observable uni-
verse in the next cycle at the same energy density scale.
Another essential similarity between the standard infla-
tionary scenario and our phantom based model, is the
production of a huge amount of entropy in every cycle.
Even in a ‘‘cyclic’’ scenario if one wants to address the
usual cosmological puzzles, such as flatness, homogeneity,
etc., as well as produce cosmological perturbations with
the correct amplitude required for galaxy formation, en-
tropy production seems to be an inevitable requirement

3They always predict a negative, even if extremely small, tilt
of the spectral index while our model will allow a variety of
possibilities (as discussed in later sections of this paper).
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[21]. Like in inflation, in our scenario a huge amount of
entropy is produced during reheating when most of the
phantom energy is converted into radiation. This is essen-
tial to ensuring the cyclicity of energy density even though
the scale factor of the Universe is monotonically
increasing.4

It is worth mentioning that in most cyclic models that
proposed the scale factor aðtÞ have a contracting-
expanding behavior, where both a bounce, near the big
bang, and a turnaround, when the scale factor becomes
large are needed. A brief and incomplete compilation of
some of the papers that have proposed cyclic cosmologies
can be found in [8,23]. Such cosmologies provide natural
solutions to the flatness and horizon problems of the stan-
dard big bang scenario. Some variants also avoid the issue
of initial conditions, provided entropy produced during one
cycle is not transferred to the next. In this case the cycles
will not grow, i.e., become larger (Tolman’s argument [24])
from one to the next, so we can no longer define a begin-
ning of the Universe. For instance the authors of [25]
developed an ekpyrotic inspired cyclical model as an alter-
native to inflation, where a phase of slow contraction
before the bang is responsible for generating a nearly
scale-invariant spectrum of perturbations that seed the
large scale structure formation. In contrast, the standard
inflationary scenario assumes a short phase that occurs
after the big bang when the Universe is rapidly expanding
and nearly scale-invariant perturbations are generated.

The paper is organized as follows. In Sec. II we present
our model of phantom fluid and discuss the cosmology
relevant for dark energy. In Sec. III, we discuss how
including interactions can lead to an inflationary space-
time along with partially reheating the Universe. In Sec. IV
we provide a specific example where transitions from the
phantom-inflation phase to radiation and vice versa can be
orchestrated giving us a cyclic model of the Universe. In
Sec. V we discuss the different observational constraints
coming from inflation, big bang nucleosynthesis (BBN),
and dark energy experiments. Finally, we conclude with a
summary of the scenario presented and issues that need to
be addressed further.

II. PHANTOM DARK ENERGY

The purpose of this section is to implement a model for
the phantom component that would drive the superaccel-
erated expansion. For now we will not include regular
matter nor radiation, but rather focus solely on the compo-
nents necessary to obtain a phantom phase. One can pos-
sibly implement the cosmology sketched before in many
different ways. Here we are going to realize the above
picture using a ghostlike scalar field (with negative kinetic

energy) � coupled to a hidden matter sector which we
denote by index ‘‘h.’’ There are two equivalent approaches
to describe this type of coupling. One starting from an
action, where we allow for a direct coupling term between
the hidden sector and the scalar field. The second approach
is to consider two fluids that can exchange energy while
maintaining the conservation of the total stress-energy
tensor, as required by diffeomorphism invariance, although
the individual stress-energy tensors are not conserved.
Our system will be described by the following action:

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
M2

p

R

2
þ ðr�Þ2

2
þ Cð�ÞLh

�
; (5)

where Lh does not depend on �, being the action describ-
ing a perfect barotropic fluid. Here wework with a spatially
flat Friedmann-Robertson-Walker metric with signature
ð�;þþþÞ. Notice that the kinetic term for the scalar
field comes with the ‘‘wrong’’ sign, as appropriate for a
ghost. In the phantom dominated phase, described here, the
Hubble equation derived from the action above looks like

H2 ¼ 1

3M2
p

ð�� þ �hÞ ¼ 1

3M2
p

�
�

_�2

2
þ Cð�Þ~�h

�
; (6)

where we have assumed the field � to be homogenous.
Here a dot represents the derivative with respect to cosmic
time, t and ~�h denotes the bare energy density of the hidden
sector, which is � independent. We will assume that it
behaves like a perfect barotropic fluid, satisfying the con-
tinuity equation:

_~� h þ 3Hð~�h þ ~phÞ ¼ 0 (7)

with an equation of state

~p h ¼ !~�h: (8)

One can also include a potential for the scalar field, and its
effects are discussed briefly in Appendix A, but for the
purpose of illustration we are going to set it to zero.
The interaction that we are going to consider between

the hidden matter sector and � is going to be very similar
to the interactions considered in coupled quintessence (or
interacting DE-dark matter) models [13–15]. From the
action in Eq. (5) we get two additional equations of motion:

€�þ 3H _� ¼ 2�h�ð�Þ=Mp (9)

_� h þ 3Hð1þ!Þ�h ¼ 2�h
_��ð�Þ=Mp; (10)

where we have defined

�ð�Þ � 1

C

dC

d�
; (11)

and we are going to assume hence forth that �ð�Þ always
remains positive. As one can see, both the Klein-Gordon
equation for � and the continuity equation for the hidden
matter sector �h are augmented by interaction terms in the

4It may be possible to embed the scenario in phantom cyclic
models [8,22] with actual phases of contraction, but we are not
going to explore this possibility here.
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right-hand side of Eqs. (9) and (10). Although� in general
depends on �, to understand the phantom phase let us
consider a constant � to begin with. It is easy to check
that the above interaction is consistent with the conserva-
tion of the total energy momentum tensor:

_� tot þ 3Hð�tot þ ptotÞ ¼ 0; (12)

where �tot � �h þ ��. To see this we remind the readers

that the Klein-Gordon equation can be recast as

d

dt

�
�

_�2

2

�
� 3H _�2 ¼ �2�h� _� ) _�� þ 3Hð�� þ p�Þ

¼ �2��
_��ð�Þ; (13)

since the energy density and pressure for a phantom scalar
field are given by

�� ¼ p� ¼ K ¼ �
_�2

2
: (14)

Thus the source terms in the individual conservation equa-
tions (10) and (13) cancel each other.

One can solve the hidden matter continuity equation
exactly to find

�h ¼ �h0Cð�Þ
�
a

a0

��3ð1þ!Þ
; (15)

where we have chosen the convention that at a ¼ a0,

Cð�Þ ¼ 1, and �h ¼ �h0. The a�3ð1þ!Þ dependence re-
flects the usual dilution of the energy density of an ideal
fluid with expansion. Depending upon the scale of energy
density relative to the mass of the hidden matter particles,
they can either behave as nonrelativistic matter (! ¼ 0) or
like a relativistic species (! ¼ 1=3).5 We will for the most
part consider a light degree of freedom, so that approxi-
mately it behaves like radiation.

For the special case when � is a constant, the coupling
function is given by

Cð�Þ ¼ e2�ð���0Þ=Mp: (16)

Now, coming back to the evolution equations, we only
need to solve the Hubble equation (6) and the Klein-
Gordon equation, the latter simplifying to

€�þ 3H _� ¼ 2��h0

Mp

e2�ð���0Þ=Mp

�
a

a0

��3ð1þ!Þ � V 0
effð�Þ:
(17)

It is as if the phantom scalar field is evolving under the
influence of an ‘‘effective potential’’ given by

Veffð�Þ ¼ �hð�Þ ¼ �h0e
2�ð���0Þ=Mp

�
a

a0

��3ð1þ!Þ
: (18)

An important thing to note is the þve sign appearing in
front of V 0

eff in Eq. (17) because � is a ghost field with

negative kinetic energy. It is clear now that because of the
peculiar properties of the phantom field,� actually rolls up

the effective potential e2��=Mp .
We have the following late time attractor power-law

solutions:

aðtÞ � a0

�
t

t0

�
n

and � ¼ �0 þ pMp ln

�
t

t0

�
()e�=Mp ¼ e�0=Mp

�
t

t0

�
p
;

(19)

with

n ¼ � 1�!

4�2 � 3=2ð1�!2Þ and

p ¼ � 4�

4�2 � 3=2ð1�!2Þ :
(20)

We have verified (see Appendix A) that these late time
attractors are indeed stable.6

In this phase the scalar field and the hidden matter are
tightly coupled and evolve as a single fluid with an effec-
tive equation of state parameter

!p � p� þ ph

�� þ �h

! � 8

3

�2

ð1�!Þ þ!: (21)

The asymptotic value is attained during the late time
attractor phase. In the phantom phase, expansion of the

scale factor is controlled by !p, since aðtÞ � t2=½3ð1þ!pÞ�.
These are analogues to the coupled quintessence solutions
[13–15]. A detailed derivation of all results presented in
this section can be found in Appendix A. The crucial thing
to note is that as long as

�2 > 3
8ð1�!2Þ (22)

we have a phantom phase, i.e., !p <�1. In particular for

! ¼ 1=3 the last condition gives a constraint on �,

�>
1ffiffiffi
3

p : (23)

In passing we also note that in this phase most of the energy
density is actually stored in the hidden sector; one can

5In this context we note that we have a choice in how we
interpret the augmentation of the energy density with the growth
of �. One can either think of this growth as simply the increase
in mass of the hidden matter particles if the mass depends on �,
or creation of the hidden matter particles through its interactions
with �, or a combination of the two. To keep things simple we
are going to assume that the mass of the hidden matter particles
remains a constant, but its number density increases.

6We have not investigated whether these solutions suffer from
any hydrodynamic instabilities of the nature found in some
interacting quintessence models [13], and we leave this for a
future exercise.
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check that the tracking ratio between scalar field and the
hidden matter density is given by

� ��

�h

¼ � K

�h

¼ 8�2

3ð1�!Þ2 þ 8�2
< 1: (24)

One can also evaluate the amount by which � evolves
during this phase. A straightforward calculation gives us

��p ¼ 2

�

�
1� 4

3ð1þ!Þ
�
ln

�
�max

�min

�
: (25)

Here �min and �max represent the energy scale at which the
phantom phase begins and ends, respectively.

In summary, in this section we have found under what
conditions a phantom phase could be described by a stable
late time attractor for ghostlike fields coupled exponen-
tially to a perfect fluid. The purely phantom sector we have
studied in this section is problematic as an inflationary
model. For example, for a constant (purely) phantom equa-
tion of state !p <�1, typically one would obtain a blue

spectrum [see Eq. (59)] which would be inconsistent with
theWMAP data. This conclusion is of course valid with the
assumption that primordial perturbations are generated
mostly during the phantom phase. Thus unless � is fine-
tuned to be very close to the critical value (which gives rise
to !p ¼ �1), we will not be able to reproduce the infla-

tionary near scale-invariant spectrum. Thus far we have
considered the phantom sector alone; in the next section we
include interactions with the standard model which ameli-
orate some of the problems of a phantom sector alone.

III. ‘‘PARTIAL REHEATING’’ AND LATE TIME
DE SITTER PHASE

In the previous section we realized the phantom phase
through an interacting phantom scalar field and hidden
matter sector. In the absence of any new physics this phase
is going to last until the big-rip singularity, as is well
known in phantom cosmology. In order for the next cycle
to begin we need to first find a ‘‘reheating’’ mechanism
which converts most of the phantom energy density to
radiation.

What we find, quite remarkably, is that once we include
interaction between the hidden matter sector and standard
model particles (namely we allow the hidden sector parti-
cles to be converted to light degrees of freedom of the
standard model), which generically exist, it naturally amel-
iorates the phantomlike acceleration to a near exponential
inflationary expansion.

As we will see, such interactions begin the process of
reheating the Universe by producing a radiation bath.
Unfortunately the interactions do not provide us with a
graceful exit from the inflationary phase, but we will dis-
cuss how this issue can also be addressed in the next
section.

To understand how interactions affect the cosmological
evolution we will use Boltzmann equations in the follow-
ing form:

_� h þ 3Hð1þ!Þ�h ¼ ��h�þ 2�h
_�
�

Mp

; (26)

€�þ 3H _� ¼ 2�h

�

Mp

; (27)

_� � þ 4H�� ¼ �h�; (28)

along with the Hubble equation

H2 ¼ 1

3M2
p

�
�h �

_�2

2
þ ��

�
: (29)

Here by �� we denote the energy density of all the light

degrees of freedom which do not couple directly to the
phantom field, and � is the annihilation rate of the hidden
matter particles into all these other light degrees of free-
dom. We have ignored the inverse process of creation of
the hidden matter particles from the rest of the matter under
the assumption that the equilibrium density of the hidden
matter sector is small compared to normal radiation. The
annihilation rate, per hidden sector particle, is given in
general by

�h �h!�� ¼ nh < �jvj>h �h!��; (30)

where <�jvj> is the average over all initial and final
states of the differential cross section times the relative
velocities of the annihilating particles. Usually one is used
to consider the opposite process while trying to determine
when a given species freezes out. In the latter case since the
photons are in thermal equilibrium, one can use thermal
distribution functions to compute the ‘‘thermally aver-
aged’’<�jvj> . However, in our case in order to compute
<�jvj> we would need information regarding the veloc-
ity distribution of the produced hidden particles from�. In
the absence of any microphysical theory of such an inter-
action, for the purpose of illustration, here we are simply
going to assume that <�jvj> is a constant set by the
details of the interaction, so that the interaction rate per
hidden sector particle is given by

� ¼ �h

m3
: (31)

Herem is an energy scale we introduce as a free parameter.
More generally one expects � to go as some power law,
�� ��

h , the power being determined by the microphysics,

but most of our results and conclusions should hold quali-
tatively as long as � > 1.
It is easy to check that the above set of equations (26)–

(28) has an asymptotic de Sitter late time attractor solution
where all the energy densities and the Hubble parameter
tend to a constant. Defining the following dimensionless
variables,
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� � �h

M2
pH

2
and � � �

H
¼ �h

m3H
;

we have

� ! 27!� 9þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð3!� 1Þ2 þ 192�2

p
8�2

; (32)

� ! 3!� 9

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9ð3!� 1Þ2 þ 192�2

q
; (33)

_� ¼ 2�h�

3H
! 2�m3�

3Mp

; (34)

�� ¼ �2
h

4Hm3
! m6�3

4M2
p�

: (35)

As a consistency check we have evolved Eqs. (26)–(28)
numerically, see Fig. 1, and have verified that the asymp-
totic values are exactly the ones predicted by the above set
of equations. Let us make a few observations. Since we are
specializing to! ¼ 1=3, let us look at the asymptotic value
of the energy densities in this case:

�� ¼ 16
ffiffiffi
3

p
�m6

9M2
p

ð ffiffiffi
3

p
�� 1Þ3;

�h ¼ 16
ffiffiffi
3

p
�m6

9M2
p

ð ffiffiffi
3

p
�� 1Þ2;

�� ¼ � 32�2m6

9M2
p

ð ffiffiffi
3

p
�� 1Þ2:

(36)

Note that the solutions above are consistent only if�> 1ffiffi
3

p ,

but we know this is also a requirement for the existence of a
phantom phase [see Eq. (23)] which will eventually settle
to this de Sitter attractor. In particular, we find that for
� � 1, which is the case we will eventually be focusing
on, radiation dominates over the hidden sector:

R � �h

��

� 1

4
ffiffiffi
3

p
�

� 1 for � � 1: (37)

In other words, as � increases, the conversion from hidden
matter to radiation becomes more efficient, and, in particu-
lar, radiation can easily dominate the total energy density.
However, this does not mean that we can enter into the
usual radiation dominated epoch because the equation of
state for all the energy densities essentially approach!p ¼
�1, as all the energy densities approach the constant
asymptotic values in Eq. (36). Physically, the energy den-
sity that the phantom field was pumping into the hidden
matter sector is now transferred to radiation through its
interaction with the hidden sector, in such a way that we
approach a de Sitter universe. This phase however is good
for inflationary cosmology as fluctuations produced during
this de Sitter phase are expected to give rise to a near scale-
invariant spectrum (allowed, although not favored, by the
WMAP data). In order for the amplitude of the fluctuations
to be consistent with observations we require

�� � 10�12M4
p ) m� 10�2Mp: (38)

We will return to the constraint coming from the number of
e-foldings required for a successful inflationary paradigm
later.
In this section we have found that the big-rip singularity

could be avoided in this model if the hidden sector particles
are converted to light degrees of freedom of the standard
model. As the energy densities approach their asymptotic
values, the Universe will enter in a de Sitter phase. Of the
three components, radiation is dominant, yet the Universe
is inflating. This is due to the interplay between the cou-
pling of the hidden sector to the phantom field and light
degrees of freedom of the standard model which leads to a
state where all the energy densities approach a constant
value.

t [M    s]p
-1

[M
  ]

II
I. A II
I. B

I. 
A

I. 
B

II
. A

II
. B

FIG. 1 (color online). Numerical solutions for the energy
densities as we complete a cycle from a de Sitter phase back
to it. Here we have chosen ! ¼ 1

3 , �p ¼ 5, �r ¼ :1, m ¼
10�2Mp and we have setMp to one. Note the six distinct phases:

I.A and I.B corresponding to reheating; II.A and II.B corre-
sponding to a radiation dominated universe; III.A and III.B
corresponding to the phantom and dS phase, respectively. In
order to make all phases clearly distinct we set the minimum
energy density at around 10�45M4

p instead of the realistic meV4.
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IV. TRANSITION TO RADIATION AND
CYCLICITY

In the above section we saw that interactions between
hidden matter and radiation can ameliorate the phantom
like acceleration to exponential inflation but cannot pro-
vide a graceful exit from the de Sitter inflationary phase. So
far we have assumed that � remains a constant leading to
an exponential coupling between the hidden sector and the
phantom field as in Eq. (16). If �ð�Þ is not a constant, a
graceful exit becomes possible. Here we explore the case
when �ð�Þ is periodic. For simplicity we will just assume
a step function for �ð�Þ, where

� ¼ �p � 1 for 0<�<�R (39)

� ¼ �r � 1 for �R <�<�0 (40)

and then the pattern repeats itself. The first phase, when
� � 1, reproduces the phantom phase discussed in the
previous section, leading eventually to the late time
de Sitter-like attractor evolution. However, now this infla-
tionary phase ends once � reaches the transition value �R.
We are also going to assume that! ¼ 1=3 in this scenario.
We remind the readers that ! describes the hidden sector,
as in Eq. (8). As we will see shortly, the periodicity in �
will ensure that we enter the standard radiation dominated
era which lasts until � rolls to �0.

The evolution of the Universe during one cycle can be
described in our model using three phases, as indicated in
Fig. 1. Phase I provides the reheating from inflationary
expansion. Phase II describes a standard radiation domi-
nated era. Then a short phantom phase III.A ensues, during
which the energy is driven from the meV to the GUT scale.
This is followed by a de Sitter inflationary phase III.B.
After one such cycle is complete, the next one begins,
again cycling through phases I, II, III.A, and III.B
successively.

A. Phase I: Reheating

The reheating process is most easily understood when
�r ¼ 0 [defined in Eq. (40)], so let us first focus on this
simple case. As we discussed in the previous section, as
long as � is large, although radiation is the dominant
energy density, the de Sitter phase continues. However, if
and when � sharply falls to zero, the phantom phase
indeed ends. Two things happen. First, since initially � is
comparable to H, as it can be seen from Eq. (33), there is
rapid conversion of the hidden matter to radiation, but the
hidden matter sector now no longer gets replenished by the
scalar field. Second, the driving term in the right-hand side
of the Klein-Gordon equation for the phantom scalar field
(9) is now absent and as a result � slows due to Hubble
damping, �� � a�6, and eventually comes to a halt. At the

beginning of the reheating phase the energy densities of
radiation, hidden matter, and� are approximately given by

the asymptotic values of the late time de Sitter phase (36).
As we had pointed out before, for � � 1 radiation is the
dominant energy density component in this asymptotic
phase. The reheating phase further ensures that radiation
continues to dominate the energy density. If one tracks the
ratio of the energy densities between hidden matter and
radiation,R, then it starts with the asymptotic value given
by Eq. (37), decreases rapidly during conversion, and then
approaches a constant, Rmin, once the conversion ends.
Note, since � slows down, �h redshifts almost as radiation
and therefore maintains an approximately constant track-
ing ratio approaching Rmin. In Appendix B we calculated
this asymptotic ratio to be

R min � 1

6

ffiffiffi
3

p
�2

p

for �r ¼ 0; �p � 1: (41)

Qualitatively, it turns out that one can distinguish two
different regimes in the reheating phase depicted in Fig. 1
as phases I.A and I.B. Numerically we found that even after
� ! 0, it takes a while for the radiation energy density to
start decreasing substantially. The reason is somewhat
technical and the reader is referred to Appendix B for
details. Intuitively, the main reason is that initially the
Hubble damping of radiation is compensated by the hidden
matter decays into radiation, 4H�� � �h�. Since radiation

is the dominant component of the energy density, this in
turn leads to H being approximately constant, as can be
seen in phase I.A of Fig. 1. Once �h decreases appreciably
so that �h� � 4H��, the radiation energy density starts to

decrease appreciably and therefore so does the Hubble rate.
This is depicted in phase I.B of Fig. 1. At some point, the
conversion from hidden matter to radiation effectively
stops, marking the end of the reheating phase.
Although the above discussion has been for �r ¼ 0, we

note that for a nonzero but small �r, the reheating phases
(I.A, I.B) follow basically the same pattern as in the �r ¼
0 case. The asymptotic tracking ratio7 between hidden
matter and radiation receives a slight correction:

R min � 1

18

ffiffiffi
3

p ð3þ 8�rÞ
�2

p

for �r � 1; �p � 1:

(42)

We have checked this numerically, and some of the more
technical details are discussed in Appendix B.

B. Phase II: ‘‘Standard’’ radiation domination

After the reheating phase, since hidden matter is no
longer converted into radiation, the latter starts to evolve

7Unlike in the �r ¼ 0 case where the tracking ratio keeps
decreasing and asymptotically approaches Rmin, when �r � 0,
Rmin is actually a minimum of the tracking ratio that is attained.
Since � never comes to a halt, the ratio does increase from its
minimum value of Rmin, but this increase is very slight.
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as aðtÞ�4, and consequently H� 1=2t as in the standard
radiation dominated era. In the meantime� continues to be
Hubble damped. Once the scalar field effectively stops
evolving, the hidden matter starts redshifting as radiation
and thus settles down to its constant tracking ratio given in
Eq. (41). In particular, one can see from (42) that for
sufficiently large values of�p, this ratio can be quite small

and easily satisfy constraints coming from BBN and CMB.
BBN/CMB only constrains the abundance of the dark
radiation component to be less than around 10% [26]. In
Fig. 1 we refer to the phase when � is being Hubble
damped as phase II.A, and the subsequent radiative phase
as phase II.B.

If �r is precisely zero, then the radiation dominated
phase II.A can continue forever because � will effectively
come to a halt, and unless the value of �0 is fine-tuned, �
will never make it to the next large� phase. As a result the
next phantom phase will not begin and the cyclic picture
cannot be sustained. This is why a small but nonzero value
of�r is essential to maintaining cyclicity without having to
resort to unnatural fine-tuning.

For a nonzero but small �r, the reheating phases (I.A,
I.B) and the Hubble damping phase (II.A) follow very
much the same pattern as in the �r ¼ 0 case, as discussed
at the end of the previous section (IVA). The main differ-
ence when �r � 0, as compared to the �r ¼ 0 case,
appears in the radiative phase II.B. This is because the
nonzero driving term in the Klein-Gordon (KG) equation
now ensures that instead of coming to a halt, � now tracks
radiation. After the initial phase of Hubble damping, the
driving term on the right-hand side of the KG equation
catches up with the Hubble damping term. At this point the
scalar field enters a phase where its energy density ap-
proximately tracks that of radiation. This can be seen in
Fig. 1 where we have divided the radiation phase into two
parts. II.A refers to the regime when the scalar energy
density is still being Hubble damped, while phase II.B
refers to the tracking phase where both the hidden matter
and the scalar energy densities are tracking that of
radiation.

This tracking behavior can be approximately obtained as
follows: From the KG equation we have

3H _� ¼ 2�h�r

Mp

� 2Rmin���r

Mp

� 6RminMp�rH
2: (43)

In the above we have ignored the e2�r� dependence of
�h, as � is rolling very slowly, and �r � 1. We will
perform a consistency check later. Also, we have ignored
the contributions to the energy density coming from the
hidden matter and the scalar field as compared to normal
radiation. Again, this is justified as Rmin � 1 and � is
rolling slowly. Choosing the ansatz

� ¼ Mppr ln

�
t

tR

�
) _� ¼ Mppr

t
; (44)

we find that (43) can indeed be satisfied provided

pr ¼ Rmin�r: (45)

In the above analysis we have used the fact that in a
radiation dominated universe H� 1=2t. In particular our
analysis tells us that the tracking ratio between the kinetic
energy of � and radiation is indeed very small

K�

��
¼ � 2

3
ð�rRminÞ2; (46)

justifying our earlier assumption. In the next subsection we
will also see that during this phase� evolves rather slowly,
so that Cð�Þ changes only by an Oð1Þ factor ensuring that
the hidden matter indeed behaves as radiation to a very
good approximation.
This radiation dominated tracking era lasts until �

reaches �0 and rolls over to the large � region. The next
phase of phantom domination, phase III.A, can now begin.

C. Cyclicity

To better understand the transition from one cycle to the
next let us discuss the various phases we observe in Fig. 1,
where we plot a numerical solution for the energy densities
of the three components from one de Sitter inflationary
phase to the next. The plot does not correspond to realistic
values for �max or �min, but captures all the essential
features of the different phases. The plot starts (extreme
left) at t ¼ 0 and � ¼ �R, corresponding to the beginning
of the reheating phase I.A. We have estimated in
Appendix B, Eq. (B8), how long (t1A) the I.A subphase
lasts

t1A ¼
�
3M4

p�

m6�3

�
1=2

: (47)

During this phase the field � evolves approximately a
distance of

��1A ¼ _�dS

Z t1A

0
dte�3HdSt ¼

_�dS

3HdS

½1� e�3HdSt1A�:
(48)

Above we have used

_�ðt1AÞ ¼ _�dSe
�3HdSt1A ; (49)

where _�dS represents the asymptotic value in the de Sitter
phase, given by (34) and HdS is the Hubble rate during the
inflationary phase and can be solved from the definitions of
� and �.
Phase I.A is followed by phase I.B, where although the

conversion from hidden matter to radiation takes place, the
Hubble rate starts to decrease appreciably as well. As soon
as the conversion is no longer efficient we enter a regime,
phase II.A, where radiation starts to redshift as a�4 mark-
ing the beginning of a standard radiation dominated era. In
phase II.A radiation and the hidden sector energies ap-
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proximately track each other while the field� is still being
Hubble damped. This phase ends when the scalar field is no
longer Hubble damped and starts to track radiation as well,
a phase we refer to as II.B. Next we estimate the time t2A,
when this transition from the Hubble damping phase II.A
to tracking phase II.B occurs. It can be defined as the time
when the Hubble damping term in the left-hand side of
Eq. (27) is equal to the coupling term on the right-hand side
(rhs). Under the assumption that we are in a radiation
dominated phase and that the hidden sector energy density
tracks the radiation energy density with the ratio Rmin we
get

3 _�ðt2AÞ
2t2A

¼ 2�r

Mp

Rmin��ðt2AÞ ) t2A ¼ t31A
_�2ðt1AÞ

M2
p�

2
rRmin

:

(50)

This last equation can be rewritten in terms of our parame-
ters in the following form:

t1A
t2A

¼ 1

144

�2
rð3þ 8�rÞ2�

��6
p

e6HdSt1A : (51)

With ! ¼ 1=3 and in the limit �p � 1 the exponent

6HdSt1A becomes
ffiffiffi
3

p
, so we see, as expected, that t2A �

t1A.
We can compute the distance the field � evolves during

phases I.B and II.A since the Hubble friction term is
dominant during this time.

��1Bþ2A ¼
Z t2A

t1A

dt _� ¼ 2 _�ðt1AÞt1A
�
1�

ffiffiffiffiffiffi
t1A
t2A

s �

� 4�pffiffiffi
3

p
ffiffiffiffi
�

�

s
Mpe

�ð ffiffi
3

p
=2Þ: (52)

In the next phase, II.B, as one can see from the plot, all
the energy components are tracking each other. Since this
phase will lasts until almost ‘‘today’’ and it began at t2A we
have

��2B

Mp
� 2Rmin�r ln

�ð��ðt2AÞÞ1=4
meV

�
� 120Rmin�r;

(53)

where ��2B is the distance the scalar field evolves during
phase II.B. In particular we note that this means

e�r��2B=Mp � e120Rmin�
2
r : (54)

SinceRmin is a small number, for sufficiently small values
of �r it is easy to see that the exponential will only
contribute to an Oð1Þ factor to the energy density of the
hidden matter sector. In other words unlike the �r ¼ 0
case, although the ratio R does not monotonically de-
crease during the radiation phase, but rather starts to in-
crease as � evolves, this increase is very slow. This

justifies our earlier assumption of hidden matter approxi-
mately behaving as radiation.
The advantage of having a nonzero�r is that it keeps the

scalar field rolling, albeit slowly, ensuring passage to the
next phantom phase when � reaches �0. Therefore, no
fine-tuning is involved in restarting the phantom era. To see
this, observe that

��2B ¼ ð�0 ��RÞ � ð��1A þ��1Bþ2AÞ (55)

and crucially for realistic values of the parameters the three
different ��’s are of the same order of magnitude, as we
shall see in Sec. V. If for instance, it turned out that
��2B � ��1A þ ��1Bþ2A, that would have meant fine-
tuning the range �0 ��R to cancel ��1A þ��1Bþ2A to
very high precision. In fact, this is what one has to do as
�r ! 0.
A related nice feature of the model is that the exponen-

tial hierarchy between the scales of inflation and dark
energy is rather easy to arrange. To see this let us try to
obtain �min in terms of �0 ��R. By rearranging Eq. (53)
one finds that the energy density at the beginning of the
phantom phase is given by8

�min � �max exp

�
� ��2B

2Rmin�rMp

�

� 10�3Mp exp

�
��0 ��R ���1A ���1Bþ2A

2Rmin�rMp

�
:

(56)

Since Rmin, �r are small numbers as compared to
��=Mp’s, it is easy to arrange the exponential suppression

of �0 as compared to the GUT scale. Conversely, we can
reformulate the ‘‘smallness’’ problem associated with dark
energy in terms of four parameters:�p,�r,�R,�0, which

as we shall see shortly have values that range fromOð1Þ to
Oð102Þ. In the next section [see discussion below Eq. (62)]
we will provide specific numerical examples which make
this more evident.
Finally, we come to the phantom phases III.A, III.B. The

transition to the phantom phase, which is supposed to be
happening during the present cosmological epoch, occurs
once � reaches �0 and � transitions suddenly to its high
value, �p. The hidden matterþ scalar field energy den-

sities catch up with radiation, start evolving as a phantom
fluid with equation of state given by (21), and come to
dominate the Universe. The radiation keeps getting diluted
as a�4 during this phase which we refer to as phase III.A.
Since the increase in energy density in the phantom phase

8Above we have used a value for �1=4
� ðt2AÞ of 10�3MP, slightly

overestimating it. The actual value is typically lower than this,
because of the additional Hubble dilution of the energy density
of radiation from t1A to t2A. For instance, with the parameters
used in the numerical solution for Fig. 1 we have �1=4

� ðt2AÞ �
10�5Mp.
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occurs at a very short time scale, all the features of this
phase are not very discernible in the log-log plot in Fig. 1,
but we have checked them numerically. As we have seen
before, the annihilation term will ultimately cause this
behavior to transition to a de Sitter phase, when ��H
or �h �m6=M2

p. At this point we enter, what we call

phase III.B, when all the energy densities become compa-
rable and then tend towards constant values, leading to an
asymptotic de Sitter space-time. It is during this phase we
expect to generate a scale-invariant spectrum of perturba-
tions. This phase will last until the field � has evolved a
distance of �0 þ�R, when we restart the cycle.

V. NUMBERS AND CONSTRAINTS

So far we have provided general constraints coming
from different observations on the couplings and the scales.
For the purpose of illustration let us provide some typical
values which conform to these constraints and in the
process we will also be able to understand the different
phases of evolution better. Let us start with the inflationary
phase. As already discussed, to obtain the correct ampli-
tude of inflationary fluctuations we will take the reheating
to occur at approximately GUT scale energy densities
which implies

m� 10�2Mp: (57)

During the course of 60 e-foldings,9 we find, using
Eqs. (33) and (34), that the field � evolves a distance of

��3B ¼ 40Mp�p�: (58)

As a prototype example, for �p ¼ 4 this gives ��3B �
200. This only gives us a constraint on the range when� is
large. For instance, for �p ¼ 4 the number of e-foldings

during the phantom phase turns out to be [using Eq. (25)]
��3A � 30. To be consistent with inflation we must have
�R * 200þ 30 ¼ 230. Given the fact that these field
values are transPlanckian, it is possible that higher order
terms in the Lagrangian should not be neglected; we pro-
ceed here with the assumption that our starting point is
sensible nonetheless.

Depending on the number of e-foldings during the
de Sitter phase we find two distinct cases for the spectrum
of fluctuations. Case I: If the range of � is such that one
gets more than 60 e-foldings of de Sitter, then the CMB
fluctuations are scale invariant. As we noted in the
Introduction, ns � 1 is still consistent with observations
[10] once one allows the possibility of running of the tilt
and/or tensor modes. If the range in � is such that we have
only around 60 e-foldings then the CMB fluctuations at
large scales can show a transition from a blue (when the

phantom phase will be operating and the reheating mecha-
nism has not kicked in completely) to a scale-invariant
spectrum. This could be an interesting and rather unique
signature of the model. Case II: If the number of e-foldings
in the de Sitter (dS) phase is shorter than 60 e-foldings, the
fluctuations that we are observing in the sky must have
been generated in the phantom phase. This gives a rather
stringent constraint on how far below �1 the phantom
equation of state !p can be. For a ‘‘superinflationary’’

space-time sourced by phantom fluid, the spectral tilt is
expected to be given by

�s � 1 ¼ 6ð1þ!pÞ
1þ 3!p

> 0; (59)

implying a blue spectrum. Therefore to be consistent with
the observations !p has to be very close to �1. For

instance, if we include tensor modes, according to [10] at
the 2� level we find

�s < 1:01 ) !p >�1:01; (60)

implying �p < :581. This bound is very restrictive, re-

membering that in order to have a phantom phase we

need �p > 1=
ffiffiffi
3

p � 0:577. In the rest of the section we

are not going to discuss this possibility any further and
concentrate on case I with �p � 1 which seems more

attractive.
Let us next look at the constraint coming from BBN and

WMAP on the amount of dark radiation [26]. To be con-
sistent with the data the amount of dark radiation has to be
limited to within 10% of ordinary radiation. This essen-
tially imposes a constraint on �p, but a rather weak one

R min < 0:1 ) �p * 0:17; (61)

which is easily satisfied.
What about the range of �� during radiation domina-

tion? This of course depends on the values of �p, �r. Just

to get an idea, we find for �p ¼ 4, �r ¼ 0:2, we need

�� ¼ ��1A þ ��1Bþ2A þ ��2B

¼ �0 ��R � 0:70þ 2:16þ 0:66: (62)

As one can see, all the values in the above equation are of
the same order of magnitude and therefore no fine-tuning
seems to be involved.
Thus the picture that emerges from the above estimates

is that for the scenario to work we need relatively longer
phases in � when � is large (58), followed by shorter
phases when � is small. However, the discrepancy in ��
between Eqs. (58) and (62) is only a few orders of magni-
tude. Similarly, �r and �p (in the above example) differ

again by only a few orders of magnitude. It is these
numbers (the values of �� and the two values of �) that
determine the hierarchy between today’s meV scale and
the GUT scale of inflation via Eq. (56). So we see that,

9We choose 60 as a generic typical example for GUT scale
inflation; the actual number of e-foldings might be lower or
larger than this.
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indeed, little fine-tuning is required to explain these dispa-
rate mass scales.

Finally, let us come to constraints from dark energy. The
main constraint comes from the equation of state parame-
ter. A combined 2� bound from CMBþ BAOþ SN is
given by �0:88>!p >�1:14 [10]. This provides a con-

straint on �p

�p < 0:61: (63)

This may seem too small, but we realize that currently we
are undergoing the phase transition from small� to a large
� region, and therefore it is easy to arrange that the
‘‘current’’ value of � satisfies inequality (63) and has not
yet reached the constant maximum value�p. Equivalently,

the equation of state parameter today has not yet reached
its late time phantom phase value given by Eq. (21).

VI. CONCLUSIONS

In this paper we have studied a cyclical model of the
Universe where the energy density cycles between a mini-
mum value, typically of the order ofmeV4 and a maximum
value roughly set by the GUT scale. This effectively pro-
vides a connection between the current accelerated expan-
sion we observe today and the inflationary era in the past.
The scale factor continues to grow from one cycle to the
next (there is no ‘‘turnaround’’). In order to achieve this
model we postulated the existence of some ‘‘hidden’’
sector matter coupled to a ghostlike scalar field. This
mechanism is responsible for a superaccelerated phantom
expansion. Allowing for hidden sector particles to be con-
verted to light degrees of freedom of the standard model
ameliorates the phantom behavior, effectively transitioning
to a de Sitter-like expansion, therefore avoiding the big-rip
singularity. Although dominated by radiation, in this phase
all the energy densities remain constant. Therefore, if most
of the cosmological perturbations are generated during this
exponential inflationary era, the spectrum is expected to be
scale invariant. Even if not favored by the data, this is still a
possibility. Another possibility would be to have some of
the fluctuations generated during the phantom phase which
will show up as a blue tilt in the spectrum. In that case we
will see a running of the tilt which could be a unique
possible signature of the model.

In order to achieve the cyclic behavior, we have postu-
lated that the coupling between the ghost scalar field and
the hidden sector is constant piecewise. This procedure
might seem ad hoc, but it is just the simplest possibility.
We found that no fine-tuning seems to be involved when
requiring one to have a long enough radiation/matter domi-
nated phase. It is also worth mentioning that the smallness
problem associated with dark energy is circumvented. The
only parameter we need in order to describe the current
acceleration is the coupling between the hidden sector and
the ghost field, and it has a value not much greater than 1.
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APPENDIX: A STABILITY OF SCALING
SOLUTIONS IN PHANTOM COUPLED MODELS

We will look at ghost fields coupled to radiation or
matter via the term �� ¼ ~��	

2�� and study the stability

of the critical points, generalizing the analysis done in [27].
In this way we will find the stable attractors and conditions
necessary to obtain them. Here the subscript � refers to the
adiabatic index of the fluid the phantom field couples to,
defined as � ¼ 1þ!h. Throughout the main body of the
paper we have used �h, but for notational convenience here
we will replace it by ��. It will be assumed that the

phantom field has a self-interaction potential of the follow-
ing forms: Vð�Þ ¼ V0	

�2
� and Vð�Þ ¼ �V0	
2
�. We

have not used a potential in deriving our main results in the
paper, but we keep it here for generality and further
reference.
For

Vð�Þ ¼ V0e
�2
� (A1)

we have the following equations:

€�þ 3H _� ¼ Veffð�Þ0 _H ¼ � 1

2
ð� _�2 þ �~��	

2��Þ

H2 ¼ 1

3

�
�

_�2

2
þ Vð�Þ þ ~��	

2��

�
; (A2)

where Veff ¼ Vð�Þ þ ~��	
2��. Although we are treating

here only two fluids, this case is relevant during the phan-
tom phase, when the energy density of any (third) compo-
nent not coupled to the phantom field, such as regular
matter, will quickly become subdominant. Introducing
the variables

x ¼
_�ffiffiffi
6

p
H

(A3)

and

y ¼
ffiffiffiffiffiffiffiffiffiffiffi
Vð�Þp
ffiffiffi
3

p
H

(A4)

and using � � logaðtÞ as the independent variable, instead
of the cosmological time t, we can rewrite the equations in
the form of an autonomous system supplemented with the
Hubble constraint,
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x0 ¼ �3xþ ffiffiffi
6

p ½�ð1þ x2 � y2Þ � 
y2�
þ 3

2x½�ð1þ x2 � y2Þ � 2x2�;
y0 ¼ � ffiffiffi

6
p


xyþ 3
2y½�ð1þ x2 � y2Þ � 2x2�;

1 ¼ ½y2 � x2 þ���:

(A5)

In order to find the critical points one has to set the rhs of
the first two equations to zero and solve for x and y. We find
five distinct solutions,

ðx; yÞ ¼

8>>>>>>>><
>>>>>>>>:

ði; 0Þ I:
ð�i; 0Þ II:

ð� 2
3

ffiffi
6

p
�

�2þ� ; 0Þ III:

ð14
ffiffi
6

p
�


þ� ;
1
4

ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�
þ8�2�6�þ3�2

p

þ� Þ IV:

ð� 1
3

ffiffiffi
6

p

;� 1

3

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2
2

p Þ V:

Note that the first two are nonphysical so we will no longer
consider them. Next we compute the fractional densities
for the phantom field and its adiabatic constant near the
five critical points. The Hubble constraint will then enforce
additional existence conditions,

�� ¼ y2 � x2 ¼
8><
>:
� 8

3
�2

ð�2þ�Þ2 III:

� 1
4
�4�
�4�2þ3�

ð
þ�Þ2 IV:
1 V:

(A6)

One solution is completely dominated by the scalar field�
and the other two exhibit a scaling behavior. For the first of
those, the Hubble constraint will not give any additional
inequalities in the parameter space since ��ðIII:Þ is clearly
negative, hence less than 1. Here the roman numeral sub-
script refers to all the solutions, including the nonphysical
ones, i.e., ðI:Þ corresponds to the solutions with ðx; yÞ ¼
ði; 0Þ and so on. Also, ��ðIVÞ < 1 is trivially satisfied for

positive parameters. Thus, the only nontrivial existence
constraint comes from imposing reality of the yIV: solution:

�ð�þ 
Þ � 3
8�ð2� �Þ: (A7)

Let us now look at the ‘‘effective’’ values of the adiabatic
constant � ¼ 1þ w for the ghost field near the critical
points. For completeness we will keep even the nonphys-
ical solutions,

�� ¼ 1þ p�

��

¼
_�2

1
2
_�2 � Vð�Þ ¼

2x2

x2 þ y2
: (A8)

With this definition we get

�� ¼ 2x2

�y2 þ x2
¼

8>>>>>><
>>>>>>:

2 I:
2 II:
2 III:
� 3�2

�4�
�4�2þ3�
IV:

� 4
3


2 V:

(A9)

The total, or effective DE equation of state parameter that
drives the expansion can be defined since we have scaling
solutions,

!tot ¼
p� þ p�

�� þ ��

: (A10)

Some algebra leads to

!tot ¼ ��ð�� � 1Þ þ ð1���Þð�� 1Þ: (A11)

For the three physical solutions it leads to the following
values:

!tot ¼

8>><
>>:

1
3
3!hð!h�1Þþ8�2

!h�1 III:

1
2
3ð1þ!hÞ2þ2ð�þ
Þð!h
��Þ

ð
þ�Þ2 IV:

�1� 4
3


2 V:

(A12)

Next we will study the stability of the relevant critical
points, ignoring the nonphysical first two solutions. The
technique is the following. One expands around the critical
solution setting x ¼ xc þ u and y ¼ yc þ v into (A5) and
then keeps only linear terms. In order to have a stable
solution the eigenvalues of the matrix describing the line-
arized system must have negative real parts. For
solution III., one finds the following equations:

u0 ¼ � 1

2

�8�2 � 3�2 þ 12�� 12

�2þ �
u;

v0 ¼ � 1

2

ð�3�2 � 8�
� 8�2 þ 6�Þ
�2þ �

v:

(A13)

For both radiation (� ¼ 4
3 ) and dust (� ¼ 1) the coefficient

u is negative independent of the value of �. From the
second equation one gets that the node is stable when

3�ð2� �Þ< 8�ð
þ�Þ: (A14)

Otherwise we have a saddle point. It is interesting to notice
that this is exactly the same condition we got in (A7) for the
existence of the fourth solution.
Let us move on to the stability of solution IV, for which

the linearized system becomes
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u0 ¼ � 1

8

24
2 � 24��2 þ 24�2 þ 48�
þ 18�2 � 36�
�� 9�3 � 12�
2

ð�þ 
Þ2 u

� 1

8

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�
þ 8�2 � 6�þ 3�2

p ð16�
þ 3�2 þ 8�2 þ 8
2Þ
ð
þ�Þ2 v;

v0 ¼ 1

8

ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�
þ 8�2 � 6�þ 3�2

p ð�4
2 þ 3�2 � 4�
� 6�Þ
ð
þ�Þ2 u� 3

8

�ð8�
þ 8�2 � 6�þ 3�2Þ
ð
þ�Þ2 v:

(A15)

The eigenvalues are

e1ð4Þ ¼ 1

4

1


þ�
ð3
�� 6
� 6�þ B1=2Þ;

e2ð4Þ ¼ 1

4

1


þ�
ð3
�� 6
� 6�� B1=2Þ;

(A16)

where B is the following combination of the parameters:

B ¼ 72�
ð�2 þ 1þ 8
3ð�þ 
Þ2Þ þ 54�2ð�� 2Þ

þ 
2ð36þ 81�2 � 180�Þ þ 36�ð�� 
�þ 4�2Þ:
The study of stability of the solutions is quite complicated
here but there is a range of parameters for which the real
part of the two eigenvalues is negative. Independent of the
value of B one necessary condition for stability here is

2

�
1þ�




�
< �: (A17)

For positive parameters, and if � is either 1 or 4
3 this

inequality cannot be satisfied; thus the fourth attractor is
unstable if the hidden sector is comprised of some compo-
nent that behaves like matter or radiation.

Let us look now at the stability conditions for the critical
point labeled by V. The linearized autonomous system
becomes in this case:

u0 ¼ ð�3þ 2
2ð�� 3Þ � 4�
Þu
þ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2
2
p

ð2�� 
�þ 2
Þv;
v0 ¼ ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3þ 2
2
p

ð
�� 
Þu� �ð3� 2
2Þv:
(A18)

The eigenvalues read �ð3þ 2
2Þ and �ð4
2 þ 4�
þ
3�Þ which are clearly both negative and real so one has a
stable node as a late time attractor. Also remember that this
solution does not have a scaling behavior, since in this case
the energy density is dominated by the phantom. In con-
clusion we found two stable late time attractors, one of
which exhibits a scaling behavior. Notice also that this
scaling solution corresponds to a critical point where y ¼
0, so in effect it is equivalent to the case where the potential
is actually zero.

Next let us look at the tracking ratio in the two cases of
interest, namely, the third and fourth critical points. The
tracking ratio is defined to be the ratio of relic densities of
the two components,

r ¼ ��

1���

: (A19)

With this definition we find, using (A6):

r ¼

8>><
>>:
� 8

3
�2

ð�2þ�Þ2ð1þ8
3

�2

ð�2þ�Þ2Þ
III:

� 1
4

�4�
�4�2þ3�

ð�þ
Þ2ð1þ1
4
�4�
�4�2þ3�

ð�þ
Þ2 Þ
IV:

Since we have established that we will be using the late
time attractor described by critical point III. as our model
for the phantom phase, let us actually see under what
conditions we cross the ‘‘phantom divide’’ and if this phase
will be stable. Comparing !tot given by (A12) to �1 we
find the following restriction on �:

�2 �
� 3
8 for matter hidden sector
1
3 for radiation hidden sector

: (A20)

Looking back at (A14) and taking 
 ¼ 0 as appropriate for
the case of no potential one can check that the stability
conditions are actually identical with the conditions for
achieving a phantom phase, listed above. Hence, we have
verified that the late time attractor solution for Vð�Þ ¼ 0 is
stable once we have � such that we get a phantom phase.
Now for generality we will repeat the same analysis for a

negative potential,

Vð�Þ ¼ �V0 exp2
�: (A21)

Here we will define y ¼
ffiffiffiffiffiffiffiffiffiffiffi
�Vð�Þ

p ffiffi
3

p
H

. In this case the autono-

mous system will take the following form:

x0 ¼ �3xþ ffiffiffi
6

p ½�ð1þ x2 þ y2Þ � 
y2�
þ 3

2x½�ð1þ x2 þ y2Þ � 2x2�;
y0 ¼ ffiffiffi

6
p


xyþ 3
2y½�ð1þ x2 þ y2Þ � 2x2�;

1 ¼ ½�y2 � x2 þ���:

(A22)

There will be only two physical critical points in this case:

ðx; yÞ ¼
8><
>:
ð� 2

3

ffiffi
6

p
�

�2þ� ; 0Þ I:B

ð14
ffiffi
6

p
�

�
þ� ;
1
4

ffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8�
�8�2þ6��3�2

p
�
þ� Þ II:B

:

Just to clear any possible confusion, please note that the
labels I.B and II.B here are not related to the labeling of the
different regions in Fig. 1. Notice that the first critical point
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in this case is identical to the third critical point for the case
of positive potential [see the equation below (A5)]. The
existence condition for the second critical point reads
�ð�� 
Þ< 3

8�ð2� �Þ. Fractional density values are

�� ¼ �y2 � x2 ¼
8><
>:
� 8

3
�2

ð�2þ�Þ2 I:B

1
4
�4�
þ4�2�3�

ð�
þ�Þ2 II:B
: (A23)

From here we get an additional existence constraint on the
second critical point, namely:


ð�� 
Þ 	 3

4
�: (A24)

The adiabatic constant for � is

�� ¼ 2x2

y2 þ x2
¼

�
2 I:B
� 3�2

�4�
þ4�2�3�
II:B : (A25)

Notice the difference between the last value in (A25)
and the fourth in (A9). Here we can set � ! 0 and recover
� as the adiabatic index. Before the naive limit was�� but
one was not actually allowed to take that limit due to (A7).
Now the inequality has been reversed so the second critical
point in the case of the negative potential could be used for
a scaling solution in a phase where the hidden sector
decouples from the ghost field.

As before let us look at the effective equation of state
parameter:

!tot ¼
8<
:

1
3
3!hð!h�1Þþ8�2

!h�1 I:B
!h
þ�

�� II:B

: (A26)

Expanding around the critical points for the first solution
we get the following conditions for stability:

0>� 1

2

�8�2 � 3�2 þ 12�� 12

�2þ �
;

0>� 1

2

ð�3�2 þ 8�
� 8�2 þ 6�Þ
�2þ �

:

(A27)

The first inequality is trivially satisfied and the second
implies

�ð2� �Þ< 8

3
�ð�� 
Þ: (A28)

This could be used as a constraint on the steepness of the
potential in order to preserve the tracking behavior in the
phantom phase. For the second critical point we have the
following eigenvalues:

e1ð2Þ ¼ 1

4

1


��
ð3
�� 6
þ 6�þ B1=2

2 Þ;

e2ð2Þ ¼ 1

4

1


��
ð3
�� 6
þ 6�� B1=2

2 Þ:
(A29)

Here B2 is a combination of the parameters, the exact form
of which we will not be using. A necessary condition for

the stability of this critical point is


ð1�!hÞ< 2�: (A30)

The tracking ratios can be easily computed:

r ¼
8><
>:
� 8

3
�2

ð�2þ�Þ2ð1þ8
3

�2

ð�2þ�Þ2Þ
I:B

��4�
þ4�2�3�
�4
2þ4
��3�

II:B
:

In this Appendix, we have found the conditions for
scaling behavior in the phantom phase, for the cases of
positive, zero, and negative exponential potentials. An
exponential coupling between a ghostlike field and some
hidden sector fluid is used to generate a phantom phase,
where the effective equation of state is less than negative 1.
We found the stable attractors and conditions necessary to
obtain them. As a side result we notice that for negative
potentials one could have a scaling stable late time attrac-
tor even if the ghost field is decoupled from the hidden
sector. In that case the ghost will just track the hidden
sector component.

APPENDIX: B ESTIMATING THE MINIMUM
VALUE OF R

Here we will estimate the minimum value of the ratio
between the hidden sector energy density and the radiation
energy density

R � �h

��

; (B1)

during the reheating phase (see Fig. 1 regions I.A and I.B).
Oncewe enter the transition phase (region I.A), if� is large
enough, most of the energy density will be stored in
radiation, followed by the phantom field, and the least
amount is contained by the hidden matter sector. To a
good approximation we will use ‘‘radiation domination’’
in what follows, since we are only interested in order of
magnitude estimates.
First we will look at the case when the hidden matter is

nonrelativistic when this transition occurs, i.e., ! ¼ 0.
Setting �r to zero, as appropriate for the transition to
radiation, we will have the following equations for the
evolution of the system:

_� h þ 3H�h ¼ ��h�; (B2)

€�þ 3H _� ¼ 0; (B3)

_� � þ 4H�� ¼ 0; (B4)

along with the Hubble equation

H2 ¼ 1

3M2
p

ð��Þ: (B5)

We have neglected the annihilation term in Eq. (B4) be-
cause �h� � 4H�� will be satisfied very quickly after the
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transition from the de Sitter phase is started. The solutions
for the energy densities are simple:

�hðtÞ ¼ 1

t3=2C1 � 2tm�3
; (B6)

��ðtÞ ¼
3M2

p

4t2
; (B7)

where C1 is an integration constant we still have to fix. We
have used the fact that during radiation domination H �
1=2t in order to get the coefficient for the radiation energy
density. Since it takes a longer time for the annihilation
term to be subdominant with respect to the Hubble damp-
ening term in the hidden matter continuity equation, we
will have a short period where the energy density in hidden
matter is decreasing faster than a�3. This yields a mini-

mum value for the parameter R. Simply setting _RðtÞ ¼ 0
leads to �ðtcÞ �HðtcÞ. In order to fix the integration con-
stant C1, we need to know at what time we start the
transition from the de Sitter to the radiation dominated
phase. Using the initial condition10 in (35) along with
Eq. (B7), the transition time is found to be

t1A ¼
�
3M4

p�

m6�3

�
1=2

: (B8)

Furthermore, C1 is obtained by requiring that the hidden
matter density �h value in the de Sitter phase matches the
value estimated at the transition time t1A, obtained from
(B6). The initial conditions (33) together with (32) allow us
to evaluate the initial value of hidden matter density at the
beginning of the transition phase. In the limit of �p � 1

we get the following simplified form for the integration
constant:

C1 ¼
ffiffiffi
3

p ð3M2
p þ 32

ffiffiffi
3

p
�3

pm
3t1AÞ

48m6�3
pt

3=2
1A

: (B9)

In order to get the minimum value forR we go back to the

condition � ¼ �hðtcÞ
m3 �HðtcÞ, where tc represents the time

at which this minimum is attained. This can be rewritten as

�h

m3 � �1=2
�ffiffiffi
3

p
Mp

; (B10)

leading to

Rmin � 2m3tc
3M2

p

: (B11)

Also, from (B10) we can solve for tc using (B6) and (B7):
tc ¼ 16

C2
1
m6 . Plugging into (B11) we get the simplified form:

R min ¼ 32

3M2
pm

3C2
1

: (B12)

Using (B8) and (B9) in the above equation we obtain the
final result, expressed only in terms of �p:

R min ¼ 16ffiffiffi
3

p
�3=2

p ð1þ 4
ffiffiffiffiffiffiffi
�p

p Þ2 : (B13)

Let us now turn our attention to the case where the
hidden matter becomes relativistic at the energy scales
where the transition between the de Sitter and the radiation
phases occurs. At the beginning there will still be a regime
where the annihilation is effective, thus lowering the value
of the ratio between the hidden matter energy density and
the radiation energy density. If �r ¼ 0, instead of a mini-
mum we will now have a constant asymptotic value to-
wards which this ratio will tend. This is due to the fact that
once the conversion is no longer efficient, both hidden
matter and radiation energy densities will scale as a�4.
For completeness and generality we will study the case
where �r � 0. As we shall shortly see here a minimum
develops, just as we have seen in the case of nonrelativistic
hidden matter. The approximative equations we need to
solve are

_� h þ 4H�h ¼ ��h�þ 2�h
_�
�r

Mp

; (B14)

€�þ 3H _� ¼ 0; (B15)

_� � þ 4H�� ¼ 0; (B16)

along with the Hubble equation

H2 ¼ 1

3M2
p

��: (B17)

Notice that we have neglected the �h terms in the second
and third equations since we are interested in the phase of
rapid conversion of hidden sector particles to radiation.
Therefore, in this regime the energy density stored in the
hidden sector will decay much faster than a�4. Essentially
the reason for this being that � has transitioned from large
to small values, i.e., �p � �r. The system admits the

following solutions:

HðtÞ ¼ 1

2t
; (B18)

��ðtÞ ¼
3M2

p

4t2
; (B19)

_�ðtÞ ¼ A�

t3=2
; (B20)

10Here we consider the transition from the dS phase to the
radiation dominated phase due to the sudden drop in the coupling
between the hidden sector fields and the ghost field. The asymp-
totic value (valid for the dS phase) for the energy density in the
rhs of Eq. (35) here becomes an initial condition for the tran-
sition phase, region I..
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�hðtÞ ¼
8m3A�

2�r
2

DðtÞ ; (B21)

where DðtÞ is
DðtÞ ¼ 4t3=2MpA��r þ t2Mp

2

þ 8t2e4ðA��r=Mp

ffiffi
t

p ÞChm
3A�

2�r
2:

In order to obtain the integration constants Ch and A�

we match the energy densities above, evaluated at the
transition time t1A with the corresponding values from
the de Sitter phase, given in (32)–(35). As before, t1A is
given by (B8). For A� this leads to

A� ¼ 2

3

�pMp
233=4�3=4

�5=4m3=2
: (B22)

The expression forCh for general�p turns out to be messy,

but it can be simplified in the limit �p � 1 to

Ch ¼ � 1

3

ffiffiffi
3

p
�pð�4�2

r þ 4�p�r þ�pÞe�4�r

Mp
2�r

2
: (B23)

Above we have used �� 3
ffiffi
3

p
�p

and �� 4
ffiffiffi
3

p
�p, expres-

sions valid in the �p � 1 limit.

Since we have �r � 0, we expect a minimum of the

ratio R to develop. Reexpressing _R ¼ 0 by use of the
definition ofR, the ratio between the hidden sector and the
radiation energy densities, and of Eqs. (B14) and (B15) we
get

�ð�h þ �rÞ ¼ 2�r
_�
�r

Mp

: (B24)

Defining tc the time at which the above equation holds,
we find that

R min � 2m3 _�ðtcÞ�r

Mp��ðtcÞ ¼ 8

3

m3�rA�

ffiffiffiffi
tc

p
Mp

3
: (B25)

From (B24) we can also obtain tc by using the solutions we
have for the energy densities in (B19) and (B21). In order
to get a closed form we will need to do some approxima-
tion of the exponent in the denominator of (B21). Since t >
t1A we can show using t1A from (B8) and A� from (B22)

that
4A��r

Mp

ffiffi
t

p 	 4�r. Since �r � 1 we will truncate the ex-

pansion of the exponential at terms of Oð�2
rÞ, leading to

tc ¼ 1024
Ch

2m6A�
6�r

6

Mp
2ðMp

2 þ 8Chm
3A�

2�r
2Þ2 : (B26)

Going back to (B25) we get, after some algebra, the
following form for Rmin:

Rmin ¼ 4ffiffiffi
3

p �r
2

�p
2
e�4�r



�������� 1

e�4�r ��pð�p þ 4�rð�p ��rÞÞ�1

��������:
We can double expand this expression in �r and ��1

p and

keep only the leading terms:

R min � 1

18

ffiffiffi
3

p ð3þ 8�rÞ
�2

p

þOð�2
r ; �

�3
p Þ: (B27)

In the limit �r ! 0 we get the result in Eq. (41).
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