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We discuss cosmological consequences of the existence of physics beyond the standard model that

exhibits Banks-Zaks and unparticle behavior in the UVand IR, respectively. We first derive the equation of

state for unparticles and use it to obtain the temperature dependence of the corresponding energy and

entropy densities. We then formulate the Boltzmann and Kubo equations for both the unparticles and the

Banks-Zaks particles, and use these results to determine the equilibrium conditions between the standard

model and the new physics. We conclude by obtaining the constraints on the effective number of degrees

of freedom of unparticles imposed by big-bang nucleosynthesis.
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I. INTRODUCTION

Recently Georgi [1,2]1 raised the interesting possibility
that physics beyond the standard model (SM) may contain
a sector that is conformally invariant in the IR region
(guaranteed by a zero of the beta function), and classically
scale invariant in the UV; we refer to these as the unparticle
(U) and Banks-Zaks (BZ) phases, respectively. The tran-
sition region between the two phases is characterized by
the scale of dimensional transmutation �U. A specific
realization of this idea can be found in [4]; following this
reference we will assume that the new sector is described
as an asymptotically free gauge theory in the BZ phase.

This novel idea has received substantial attention within
the high-energy community, mainly in connection with the
phenomenology of such models. Here we discuss some
fundamental issues in the evolution of the Universe in the
presence of this type of new physics (though studies of the
cosmological consequences of the proposal have appeared
in the literature [5–9], these publications ignore several
essential aspects which are discussed below). In Sec. II we
derive an approximate equation of state for the NP sector.
Then, in Sec. III we use this together with the expected
SM-NP interactions [1,2] to determine the conditions
under which the SM and NP sectors were in equilibrium.
In Sec. IV, using the experimental constraints derived from
big-bang nucleosynthesis (BBN) we obtain nontrivial
bounds on the parameters of the theory. The
Appendixes A and B are devoted to the presentation of
two alternative derivations of the Boltzmann equation
(BE).

II. THERMODYNAMICS OF UNPARTICLES

In order to understand the thermodynamic behavior of
the new sector,2 we use the expression for the trace anom-
aly of the energy momentum tensor of a gauge theory
where all the renormalized masses vanish [11]:

��� ¼ �

2g
N½F��

a Fa���; (1)

where� denotes the beta function for the coupling g andN
stands for the normal product.
The basic assumption for the unparticle phase is that the

� function has a nontrivial IR fixed point at g ¼ g? � 0.
Modeling the unparticle sector by a gauge theory, we
assume that for low temperatures3

� ¼ aðg� g?Þ; a > 0; (2)

in which case the running coupling reads

gð�Þ ¼ g? þ u�a; �½gð�Þ� ¼ au�a; (3)

where u is an integration constant and � is the renormal-
ization scale.
We look for the lowest-order corrections to the confor-

mal limit (where �
�
� ¼ 0) when the system is in thermal

equilibrium at temperature T, is isotropic and homogene-
ous, and does not have any net conserved charge. Since �
vanishes in the conformal limit, in (1) we can take
hN½F��

a Fa���i equal to its conformal value (we denote

the thermal average by h� � �i); taking the renormalization
scale � ¼ T we then expect
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1A similar idea was also discussed in [3].

2The thermodynamics of conformal theories has been studied
extensively [10], but these results have been apparently ignored
where unparticles are concerned.

3The cases where � has a higher-order zero at g? can be
treated similarly.
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hN½F��
a Fa���i ¼ bT4þ�; (4)

where � is the anomalous dimension of the operator. Using
h���i ¼ �U � 3PU, where �U and PU denote the energy
density and pressure of the unparticle phase, together with
(3) and (4) then gives

�U � 3PU ¼ AT4þ�

�
A � aub

2g?
; � � aþ �

�
; (5)

where we took � ¼ T.
Combining (5) with the thermodynamic relation

dð�VÞ þ PdV ¼ TdðsVÞ (s is the entropy density), when
� and P are functions of T only,4 and integrating, we find

�U ¼ �T4 þ A

�
1þ 3

�

�
T4þ�;

PU ¼ 1

3
�T4 þ

�
A

�

�
T4þ�;

sU ¼ 4

3
�T3 þ A

�
1þ 4

�

�
T3þ�;

(6)

where � is an integration constant and we assumed � � 0.
It is worth noticing that the terms / A correspond to

deviations from the standard relativistic relation V / T�3.
The behavior at low temperatures depends on the sign of �,
and we will assume � > 0. Then

3PU ¼ �U½1� B��=4
U �; B ¼ A

�1þ�=4
(7)

exhibiting the lowest-order corrections to the often-used
expression P ¼ w�, w ¼ const. This effect might be of
interest in the discussion of the possible dark-energy ef-
fects contained in this model, but will not be discussed
here.

Elucidating the cosmological effects of the modified
equation of state (6) lies beyond the scope of the present
paper. We merely remark that the NP increases the coeffi-
cient of the T4 term in � and induces OðT�Þ corrections;
e.g. in the radiation-dominated era the scale parameter

behaves as ð1þ cT�Þ1=3=T (c ¼ const).
In general we expect A / ���

U since �U is the scale

associated with broken scale invariance; then the energy
density for the new sector in the unparticle phase equals

�U ¼ 3

	2
T4

�
gIR þ

�
T

�U

�
�
f

�
; T � �U; (8)

where we replaced � ¼ 3gIR=	
2 (hereafter we use the

normalization from Maxwell-Boltzmann statistics) and
gIR, the effective number of relativistic degrees of freedom
(RDF), will be estimated below.

In theBZ phase we assume the theory is asymptotically
free so that, up to logarithmic corrections,

�BZ ¼ 3

	2
gBZT

4; T � �U; (9)

where gBZ denotes the RDF in this phase.
For intermediate temperatures the explicit form of the

thermodynamic functions requires a complete nonpertur-
bative calculation and the choice of a specific model;
fortunately we will not need to consider the detailed be-
havior of the system. Given that � / T4 in both the IR and
UV regions, for our purposes it will be sufficient to use the
interpolation

�NP � 3

	2
gNPT

4;

gNP ¼ gBZ�ðT ��UÞ þ gU�ð�U � TÞ;
(10)

where gU ¼ ½gIR þ ðT=�UÞ�f�, while NP stands for
‘‘new physics’’; gNP will be continuous at T ¼ �U when
f ¼ gBZ � gIR, which we now assume. It is worth noting
that a mass distribution of unparticles with the spectral

density / ð�2ÞðdU�2Þ [1] generates the term / f in (10)
with � ¼ 2ðdU � 1Þ, assuming that the contributions with
�> T decouple. We emphasize that (10) will be used only
as a rough but convenient approximation that reproduces
the expected behavior at low and high temperatures. In
cases of interest we expect gIR � gBZ � f so that the
terms / T� are subdominant.
Estimating gIR directly form the model Lagrangian is a

nontrivial exercise, due to the expected strong-coupling
nature of the theory in the infrared. Using, however, the
AdS-CFT correspondence [12], we find

gIR ¼ 	5

8
ðLMPlÞ2; (11)

where L denotes the AdS radius of curvature andMPl is the
Planck mass. Given that L is expected [12] to be signifi-
cantly smaller than 1=MPl, it is justified to expect that

gIR * Oð100Þ: (12)

In the following we will use this as our estimate for the
RDF in the unparticle phase.
In order to estimate gBZ one must specify the details of

the non-Abelian theory in the ultraviolet regime. For the
models considered in [4] we find

gBZ � 100: (13)

This result is based on a model for which the coupling
constant stays within the perturbative regime throughout its
evolution. There is also nonperturbative lattice evidence
[13] that gauge theories exhibiting an infrared fixed point
obey (15). In the following we will adopt this estimate.
The energy density �U was also discussed in [8], how-

ever the expression presented in this reference agrees with
(8) only when gIR ¼ 0 and therefore does not include the
leading low-temperature behavior of the theory.4A consequence of having assumed the absence of net charges.
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III. SM-NP INTERACTIONS AND EQUILIBRIUM

The presence of a NP sector of the type considered here
can have important cosmological consequences since, even
when weakly coupled to the SM, its energy density will
affect the expansion rate of the Universe; this can then be
used to obtain useful limits on the effective number of
degrees of freedom gNP. This calculation requires a deter-
mination of the relationship between the temperature of the
NP and SM sectors to which we now turn.

The interactions we will consider have the generic form

L int ¼ 
OSMONP; (14)

where the first term is a gauge invariant operator composed
of SM fields (possible Lorentz indices have been sup-
pressed), while the second operator is either composed of
BZ fields or is an unparticle operator, depending on the
relevant phase of the NP sector. The coupling 
 in general
has dimensions and is assumed to be small. For the specific
calculations presented below we will assume for simplicity
that OSM;NP are both scalar operators.

Leading interactions involve SM operators that can gen-
erate 2 particle states since states with higher particle
number will be phase space suppressed. From such inter-
actions we obtain theNP $ SM reaction rate �, which will
be precisely defined below. The two sectors will then be in
equilibrium whenever � * H, where H denotes the
Hubble parameter [14], and decouple at the transition
temperature Tf:

T ¼ Tf: � ’ H; H2 ¼ 8	

3M2
Pl

�tot; (15)

where

�tot ¼ �SM þ �NP ¼ 3

	2
ðgSMT4

SM þ gNPT
4
NPÞ: (16)

We denote by TSM and TNP the temperatures for the SM
and NP sectors which can be different when these sectors
are not in equilibrium.

The approach to equilibrium can be described using
either the Kubo formalism (Appendix A) or a suitable
extension of the Boltzmann equation formalism
(Appendix B). It follows from the expressions derived in
the Appendixes that the conditions near equilibrium are
determined by the equation

_# þ 4H# ¼ ��#; # ¼ TNP � TSM; (17)

where, using the Kubo formalism,

�¼ 	2

12T4

�
1

gSM
þ 1

gNP

�

2 Re

�Z �

0
ds

Z 1

0
dt

Z

� d3xhOSMð�is;xÞ _OSMðt;0ÞihONPð�is;xÞ _ONPðt;0Þi
�
:

(18)

The BE calculation also yields (17) with the rate given by

� ¼ 	2

12T3

�
1

gSM
þ 1

gNP

�
1

2T

X
X0;X

Z
d�NPd�SM

� �ðESM � E0
SMÞ2e��ESM jMj2ð2	Þ4�ðKSM � KNPÞ;

(19)

where M is the matrix element (with no spin averaging)
derived from the SM-NP interaction Lagrangian,5 ESM and
E0
SM denote the initial and final energies of the standard

model particles in the reaction, and KSM;NP the total 4-

momenta of each sector for the reaction. We have also
assumed the Boltzmann approximation (neglecting Pauli
blocking or Bose-Einstein enhancement) and denoted by
d�SM;NP the appropriate phase-space measures (without

any spin factors). In particular, for the unparticle phase we
use [1]

d�U ¼ AdU
ðq0Þ�ðq2Þðq2ÞdU�2 d4q

ð2	Þ4 ; (20)

where An ¼ ð4	Þ3�2n=½2�ðnÞ�ðn� 1Þ�. We show in
Appendix B that (18) and (19) are, in fact, equal.
The solution to (17) yields � / R�4 in the absence of the

collision term (proportional to �), as expected for a scale-
invariant theory. It is also important to note that, in contrast
to other authors [5–7], Eq. (19) contains an unparticle-
decay term (see Appendix B), as we find the arguments
(based on the deconstruction picture [15]) for neglecting
these contributions unjustified.6

The detailed calculation of � requires a specific form of
the interactionOSMONP (see above for a specific example).
However, for the purposes of the remaining calculations,
only the basic properties of � such as its dependence on T
and the relevant RDF will be needed. These properties can
be obtained using dimensional analysis: if the dimensions
of the operators are, respectively, dSM and dNP and if the
number of degrees of freedom involved in this interaction
are g0SM and g0NP, then, including a phase-space factor we

find

�� 
2�gtot
ð4	ÞnSMþnNP�1

T2dSMþ2dNP�7; � � g0SM
gSM

g0NP
gNP

;

(21)

5The SM-SM and NP-NP interactions are not included be-
cause of our assumption that each sector is in equilibrium: these
processes are much faster than the ones generated by (14) and
insure that each sector has a well-defined temperature at all
times.

6Equation (19) gives the same result within the unparticle
scenario or the deconstruction approach; in the latter case the
vanishingly small coupling constant of the deconstructed field is
compensated by the large number of particles of the same
invariant mass in the initial state. Unparticle decay was discussed
recently in [16].
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where nSM and nNP denote numbers of SM and NP fields in
the corresponding operators; in the unparticle phase we
take g0NP ¼ dU and nNP ¼ 2ðdU � 1Þ, where dU denotes
the dimension of OU.

The value of � depends on the details of the model.
Above the Higgs (�) mass m� (we assume m� � v �
h�i) the most important operator is OSM ¼ �y�; in this
case g0SM ¼ 4, so �� ð4=gSMÞ � ðg0NP=gNPÞ. Below m�

there are many dimension-4 SM operators relevant for

the SM-NP equilibration, e.g. �‘�e (containing an extra
suppression by the factor �v=MU; ‘, e denote a lepton
isodoublet and isosinglet, respectively), or B��B

�� (where

B is the hypercharge gauge field). In this case we expect
g0SM � gSM, so that �� g0NP=gNP.

A. The Banks-Zaks phase

We will assume that the BZ sector corresponds to an
SUðncÞ Yang-Mills theory with nf vectorlike massless

fermions in the fundamental representation (denoted by
qBZ). Assuming that �U > v, the leading SM $ NP in-
teraction is of the form

L ¼ 1

MU
ð�y�Þð �qBZqBZÞ; (22)

where we assume that all flavors in the BZ sector couple
with the same strength. In this case (
 ¼ 1=MU)

�BZ ’ �gtot
ð4	Þ3M2

U

T3: (23)

Denoting by TBZ-f the solution to (15) when � is given by

(23), and imposing also the consistency conditions MU >

TBZ-f >�U, we obtain (gtot is evaluated at TBZ-f)

1>
TBZ-f

MU
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8	Þ5gtot
p

�gtot

MU

MPl

>
�U

MU
: (24)

B. The unparticle phase

In this case we will consider only interactions of the
form [1] (k ¼ dSM þ dBZ � 4)

L ¼ �
dBZ�dU
U

Mk
U

OSMOU: (25)

Using (21) we obtain [here we use nNP ¼ 2ðdU � 1Þ]

�U � �gtot�U

ð4	ÞnSMþ2dU�3

�
�U

MU

�
2k
�
T

�U

�
2dSMþ2dU�7

: (26)

Denoting by TU-f the solution to (15) when � is given by

FIG. 1. Regions in the �U �MU plane corresponding to various freeze-out and thaw-in scenarios for dU ¼ 3=2, 2, 3, and 7=2.
Dark grey: SM-NP decoupling in the unparticle phase only; light grey: no SM-NP decoupling; in the white regions TU-f < v (�U,

MU are in TeV units). We assumed gSM ¼ gBZ ¼ gU ¼ 100, g0SM ¼ 4, g0BZ ¼ 50, and g0U ¼ dU. For the BZ phase: nSM ¼ nNP ¼
2, dSM ¼ 2, and dNP ¼ 3, while for the U phase: nSM ¼ 2, nNP ¼ 2ðdU � 1Þ, dSM ¼ 2, and dNP ¼ dU.
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(26), and imposing also the consistency condition �U >

TU-f, we obtain (here gtot is evaluated at TU-f)

TU-f

�U
¼

�ð4	ÞnSMþ2dU�3

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	gtot=8

p �U

MPl

�
MU

�U

�
2k
�
1=ð2dSMþ2dU�9Þ

< 1: (27)

For dU < 4:5� dSM, �=H has the singular property of
increasing as T drops, whence SM and NP will equilibrate
for T < TU-f (thaw-in); due to the constraints7 on dU
(dU < 1 is excluded [17]), this can only happen forOSM ¼
�y�. The opposite occurs if dU > 4:5� dSM (freeze-out).
For dU ¼ 4:5� dSM, the approximations (16) and (21) are
insufficient and a detailed calculation is required to deter-
mine freeze-out and/or thaw-in conditions; we will not
consider this special case further.

There are various possible scenarios for decoupling of
the NP sector. The situation in the very early Universe (T >
MU) depends on the UV completion (including the me-
diator interactions) of the NP and will not be considered
here. If (24) holds then we have a standard freeze-out
scenario: the SM and NP sectors will be in equilibrium
down to T � TBZ-f and decouple below this value; there-

after the two sectors evolve keeping their entropies sepa-
rately conserved. Since no mass thresholds or phase
transitions are crossed,8 the SM and NP temperatures
remain equal down to T ��U.

The situation for �U * T is more complicated. If (27)
holds (which defines a region in the �U �MU plane),
decoupling occurs in the unparticle phase. For T > v the
most relevant operator is OSM ¼ �y�, and both thaw-in
(for dU < 2:5) and freeze-out (for dU > 2:5) may be
present. For v > T all the relevant SM operators have
dSM ¼ 4, and only freeze-out is possible; in this case
TU-f may be significantly smaller than v.

Other parameter values lead to more complicated sce-
narios, e.g. a double decoupling: freeze-out in the BZ,
thaw-in in the unparticle phase, and then freeze out below
v. In spite of the many possibilities, there is always a
temperature below which the SM and NP decouple.

In Fig. 1 we show regions in the ð�U;MUÞ space that
correspond to various freeze-out and thaw-in scenarios for
a reasonable parameter choice. For this calculation we
assumed that OSM ¼ �y� is responsible for maintaining
the equilibrium between the SM and NP (so dSM ¼ 2). For
consistency that choice implied an additional constraint
TU-f > v (below v other SM operators are relevant). For

interactions with the BZ phase an operator / ð�y�Þ�
ð �qBZqBZÞ was adopted (in which case dBZ ¼ 3).

IV. BIG-BANG NUCLEOSYNTHESIS

The light-element abundances resulting from BBN are
sensitive to the expansion rate that determines the tem-
perature of the Universe (see e.g. [18]), which can be used
to restrict possible additional RDF, or, in our case, gIR. We
express our results in terms of the number of extra neutrino
species, �N�, defined through

�NP ¼ 3

	2

7

4

�
4

11

�
4=3

�N�T
4
�; (28)

which is valid for T below the eþe� annihilation (T�

stands for the photon temperature). For �N� we adopt
the recent bounds obtained in [18]: �N� ¼ 0:0	
0:3statð2�Þ 	 0:3syst.

We first consider the case where SM and NP were in
equilibrium down to a temperature Tf > v, and decoupled

thereafter. Then the entropy conservation for the NP and
SM sectors implies

g?NPðTfÞðTfRfÞ3 ¼ g?NPðTNPÞðTNPRÞ3;
g?SMðTfÞðTfRfÞ3 ¼ g?SMðT�ÞðT�RÞ3;

(29)

where Rf is the scale factor at the decoupling, while R

corresponds to temperature of photons T� (TNP is the

corresponding NP temperature); g?NP and g?SM stand for

the NP and SM effective numbers of RDF conventionally
[14] adopted for the entropy density. After eþe� annihila-
tion neutrinos and photons generate the dominant SM
contribution, but their temperatures differ. Using standard
expressions [14] we find

g?SMðT�Þ ¼ g�
g� þ ge þ g�

g� þ ge
; (30)

where gi stands for the number of RDF corresponding to
the species i. Assuming that gNP is almost constant in the
temperature range we are interested in and neglecting
possible right-handed neutrino decoupling effects, the
two sectors had the same temperature down to the electro-
weak phase transition. Thereafter, the temperatures split as
the SM crossed its various mass thresholds and the entropy
was pumped into remaining species. Entropy conservation
(29) in both sectors then implies

TNP ¼ T�

�
g�

g� þ ge

gð�; e; �Þ
gSMðvÞ

�
1=3

; (31)

where gSMð�; e; �Þ � g� þ ge þ g�, while gSMðvÞ stands
for the total number of SM RDF active above T ¼ v. Note
that the above relation holds regardless if the decoupling
happened during the BZ or unparticle phase. Then com-
bining with (28) we obtain

gIR ¼ 7

4

�
gSMðvÞ

gSMð�; e; �Þ
�
4=3

�N�: (32)

Using the standard expressions for the SM quantities [14]

7The bounds on dU strictly hold in the conformal limit; we
expect deviations / gðTÞ � g
 � ðT=�UÞa which we neglect.

8We neglect the possibility of right-handed neutrino
decoupling.
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the BBN constraint on �N� then implies gIR & 20 at 95%
C.L. It is worth mentioning here that � measures the decay
rate of unparticles into SM states. After decoupling, when
�<H these decays become very rare (the NP ! SM life-
time becomes larger than the age of the Universe �1=H).

More severe constraints could be obtained if NP and SM
remained in equilibrium down to the BBN temperature.
That occurs for �U,MU � TeV, and dU � 1, the relevant
operator being B��B

��OU. Then, since temperatures of

the NP and SM sectors are the same, one obtains

gIR ¼ 7

4

�
g�

g� þ ge

�
4=3

�N�; (33)

which leads to gIR & 0:25 at 95% C.L.
When decoupling occurs between v and TBBN the bound

on gIR lies between 0.25 and 20. When the SM and NP are
never in equilibrium, the BBN constraints can be used to
bound �NP, but not gIR, since TNP is then not known. These
bounds should be compared to gIR * 100 typical of spe-
cific models [4], e.g., for an SUð3Þ gauge theory with 16
fundamental fermion multiplets, and expected from AdS/
CFT correspondence [12]. We conclude that many unpar-
ticle models will have difficulties accounting for the ob-
served light-element abundances.

V. SUMMARY

Using the trace anomaly we argue for a form of the
equation of state for unparticles that contains powerlike
corrections to the expression for relativistic matter; this
allows us to determine temperature dependence of the
energy and entropy density for unparticles. We then derive
the Boltzmann equation for the BZ phase and postulate a
plausible form for this equation for unparticles; using this
we determine the conditions for NP-SM equilibrium.
Finally we derive useful constrains on the NP effective
number of degrees of freedom imposed by the BBN.
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APPENDIX A: DERIVATION OF THE REACTION
RATE USING THE KUBO FORMALISM

In this Appendix we closely follow the arguments pre-
sented in [19]. We consider a thermodynamic system, not
necessarily in equilibrium, with macroscopic observables
fig associated with operators faig. We assume the ther-
modynamics of the system is described by a density matrix
�

� ¼ exp

�
�

�
��H þX

i

�iai

��
; (A1)

where the �i and � are parameters, and� ¼ �ð�;�Þ is a
function chosen such that Tr� ¼ 1, that is,

e��� ¼ Tre
��ðH�P

i

�iaiÞ
: (A2)

The �i are determined by the condition

i ¼ Tr�ai ¼ �
�
@�

@�i

�
: (A3)

It is important to note that � differs from the usual
grand-canonical density operator in that the ai are not
assumed to be conserved, so the i will not be constant:

iðtÞ ¼ Trf�aiðtÞg ¼ Trf�ðtÞaig; aiðtÞ ¼ eiHtaie
�iHt;

�ðtÞ ¼ e�iHt�eiHt: (A4)

iðtÞ denotes the average of ai at time t for a distribution
for which the average of ai at t ¼ 0 is i ¼ ið0Þ.
We now assume the �i are small, and then a straightfor-

ward calculation yields

� ¼ �0 �
X
i

�ihaii þ � � � ; (A5)

where, for any operator �,

h�i ¼ Tr�0�; �0 ¼ e�ð�0�HÞ; e���0 ¼ Tre��H:

(A6)

Now let

0
iðtÞ ¼ Tr�a0iðtÞ ¼ Trf�eiHta0ie�iHtg; a0i ¼ ai � haii;

(A7)

so that, to first order in �,

0
iðtÞ ¼

X
j

Z �

0
dsha0jð�isÞa0iðtÞi�j: (A8)

Using now the cyclic property of the trace, h�ðzÞ�ðz0Þi ¼
h�ðz� z0Þ�i ¼ h��ðz0 � zÞi for any operators �, � and
any complex times z, z0. From this it follows that

d2

dt2
ha0ið�isÞa0jðtÞi ¼ �h _a0ið�isÞ _a0jðtÞi; (A9)

hence
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Z �

0
dt

�
1� t

�

�
h _a0ið�isÞ _a0jðtÞi ¼ ha0ið�isÞ _a0jð0Þi

� 1

�
½ha0ið�isÞa0jð�Þi

� ha0ið�isÞa0ji�: (A10)

Next, using the definition

_�ðtÞ ¼ i½H; �ðtÞ�; (A11)

and the cyclic property of the trace,

Z �

0
dsha0ið�isÞ _a0ji ¼ �ih½a0i; a0j�i ¼ �ih½ai; aj�i: (A12)

Collecting all results and using _a0i ¼ _ai,

0
ið�Þ � 0

ið0Þ
�

¼ �X
j

Gð�Þij�j;

Gð�Þij ¼
Z �

0
ds

Z �

0
dt

�
1� t

�

�
h _ajð�isÞ _aiðtÞi

þ ih½ai; aj�i; (A13)

which is the celebrated Kubo equation. It is important to
note that the � ! 0 limit is subtle [19].

Suppose that the system is composed of two subsystems,
labeled ‘‘1’’ and ‘‘2’’ with a Hamiltonian

H ¼ H1 þH2 þ 
H0; ½H1; H2� ¼ 0; 
 � 1;

(A14)

and take a1 ¼ H1, a2 ¼ H2; in this case � describes two
systems at different temperatures that weakly interact
through 
H0. Then

i ¼ hHii ¼ V�i; (A15)

where �i denotes the energy density and V the space
volume of the system. We imagine that each subsystem
has a well-defined temperature Ti but that these change
slowly due to the presence of H0; we also require the
systems to be close to equilibrium with each other so that
jT � Tij � T. In this case the left-hand side of (A13)
corresponds to _0

i, while on the right-hand side we can
take the � ! 1 limit since the integrand is damped at
times larger than the characteristic times of systems 1
and 2; see Ref. [19] for details. In this case

_� i ¼ ci _�Ti; �Ti ¼ Ti � T; (A16)

where ci denote the heat capacities per unit volume at
temperature T.

When 
 ¼ 0, the density matrix (A1) becomes

�j
¼0 ¼ e����ð1��1ÞH1��ð1��2ÞH2 ; (A17)

which corresponds to noninteracting subsystems at tem-
peratures Ti ¼ T=ð1��iÞ, whence

�i ¼ 1

T
�Ti; T ¼ 1

�
; ð
 ¼ 0Þ: (A18)

Then (A13) gives

Vci _�Ti ¼ � 1

T

X
j

Gij�Tj;

Gij ¼
Z �

0
ds

Z 1

0
dth _Hjð�isÞ _HiðtÞi; (A19)

where

_Hi ¼ i½H;Hi� ¼ i
½H0; Hi� ) _HiðzÞ
¼ eizH _Hie

�izH ¼ Oð
Þ; (A20)

so that G is of order 
2; since we work to the lowest
nontrivial order in H0, this also justifies the use of (A18).
Now we need to evaluate G. Following (14), we assume

H0 ¼ �
Z

d3xO1O2; (A21)

then

i½H0; H1�
¼0 ¼
Z

d3xi½H1;O1�O2 ¼
Z

d3x _O1O2;

(A22)

and, similarly, i½H;H2� ¼
R
d3x _O2O1. From this

�
1


2
h _H1ð�isÞ _H1ðtÞi

�

¼0

¼
Z

d3xd3yh _O1ð�is;xÞ _O1ðt; yÞi
� hO2ð�is;xÞO2ðt; yÞi;�

1


2
h _H1ð�isÞ _H2ðtÞi

�

¼0

¼
Z

d3xd3yh _O1ð�is;xÞO1ðt; yÞi

� hO2ð�is;xÞ _O2ðt; yÞi;�
1


2
h _H2ð�isÞ _H1ðtÞi

�

¼0

¼
Z

d3xd3yhO1ð�is;xÞ _O1ðt; yÞi

� h _O2ð�is;xÞO2ðt; yÞi;�
1


2
h _H2ð�isÞ _H2ðtÞi

�

¼0

¼
Z

d3xd3yhO1ð�is;xÞO1ðt; yÞi

� h _O2ð�is;xÞ _O2ðt; yÞi; (A23)

where the h� � �i separates into a product because when 
 ¼
0 averages separate into averages over systems 1 and 2
which are independent. For the case where the Oi are
scalars and even under time reversal all the above correla-
tors are equal up to a sign, so that

G ¼ 
2GV
1 �1
�1 1

� �
; (A24)

where V denotes the volume of space and
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G ¼
Z �

0
ds

Z 1

0
dt

Z
d3xhO1ð�is;xÞ _O1ðt; 0Þi

� hO2ð�is;xÞ _O2ðt; 0Þi: (A25)

Substituting (A24) in (A19) gives c1 _�T1 ¼ �c2 _�T2 ¼
�ð
2G=TÞð�T1 � �T2Þ, then

@tð�T1 � �T2Þ ¼ ��ð�T1 � �T2Þ;

� ¼
�
1

c1
þ 1

c2

� ð
2GÞ
T

:
(A26)

The quantityG can be evaluated using the tools of finite-
temperature field theory. To facilitate this let

J0 ¼ �iO1@
$
tO2; (A27)

then, setting 
 ¼ 0 and using invariance under space trans-
lations,

G ¼ � 1

4

Z �

0
ds

Z 1

0
dt

Z
d3xhJ0ð�is;xÞJ0ðt; 0Þi

¼ � 1

4
Re

�
lim

!;k!0

Z �

0
ds

Z
d3xdte�ið!t�k�xÞ�ðtÞ

� hJ0ð�is; 0ÞJ0ðt;xÞi
�
: (A28)

In this formG can be evaluated in terms of the correlator of
two J0 currents. We took the real part, which is the one that
yields the relevant width, and introduced k as a regulating
4-momentum. The limit !, k ! 0 requires care; for the
present case one should first set k ¼ 0 and then take ! to
zero [20].

In order to compare this result to the one derived using
the Boltzmann equation it proves convenient to do a
Lehmann expansion of G, which involves matrix elements
of the form hnjJ0jmi. In terms of Feynman graphs, such
matrix elements will include pieces that are not connected
to J0; these disconnected pieces factorize and cancel the
factor expð��0Þ [20] that appears in the definition of the
average (A6). We then find

G ¼ 1

8

X
e�ð�0�EnÞ�jhnjJ0jmiconj2ð2	Þ4�ð4Þðpn � pmÞ:

(A29)

Up to now we have assumed that the volume of the
system is kept fixed, but this can be easily relaxed. The
calculation involves obtaining the thermodynamic poten-
tial to order �2 and will not be presented here. The final
result is the expected one: the time evolution equation
becomes _�i þ 4H�i ¼ �P

Gij�Tj=T, where _V=V ¼
�3H.

APPENDIX B: THE BOLTZMANN EQUATION

We again imagine two sectors, labeled 1 and 2. Within
each the interactions are strong enough to maintain equi-

librium at temperatures T1;2; the sectors interact only

though (14). We denote by �aðiÞ the distributions of parti-
cles a in sector i; the corresponding Boltzmann equation is
[21]

p

�
@�aðiÞ

@x

�
� �

��p
�p�

�
@�aðiÞ

@p

�
¼ C½�aðiÞ �; (B1)

where the right-hand side denotes the collision term.
We consider first a process of the form X1 þ X2 ! X0

1 þ
X0
2, where Xi, X

0
iði ¼ 1; 2Þ denote states in system i. If a

particle labeled by að1Þ is in X1, then the corresponding
collision term C½�að1Þ � is given by

CX;X0 ½�að1Þ � ¼ �
Z

d�0
X;X0

1

2
jMðX ! X0Þj2ð2	Þ4

� �ðK1 þ K2 � K0
1 � K0

2ÞN X;X0 ;

N X;X0 ¼
� Y
bð1Þ2X0

1

ð1	 �bð1Þ Þ
Y

cð2Þ2X0
2

ð1	 �cð2Þ Þ
Y

dð1Þ2X1

�dð1Þ

� Y
eð2Þ2X2

�eð1Þ

�
�

� Y
bð1Þ2X1

ð1	 �bð1Þ Þ

� Y
cð2Þ2X2

ð1	 �cð2Þ Þ
Y

dð1Þ2X0
1

�dð1Þ
Y

eð2Þ2X0
2

�eð1Þ

�
;

Ki ¼ ðEi;KiÞ; Ei ¼
X

aðiÞ2Xi

EaðiÞ ; Ki ¼
X

aðiÞ2Xi

kaðiÞ ;

K0
i ¼ ðE0

i;K
0
iÞ; E0

i ¼
X

aðiÞ2X0
i

EaðiÞ ; K0
i ¼

X
aðiÞ2X0

i

kaðiÞ ;

(B2)

where d�0
X;X0 denotes the corresponding invariant phase-

space measure for all particles except að1Þ (as indicated by
the prime),M is the Lorentz-invariant matrix element, and
Ea, ka denote the energy and momentum of particle a. The
upper sign corresponds to bosons, the lower to fermions.
We will assume spatial homogeneity, so that the � will

depend only on time and energy, and also assume kinetic
equilibrium, so that the density functions take the usual
Fermi-Dirac or Bose-Einstein form, but with time depen-
dent temperature and, possibly, chemical potential. Then

N X;X0 ¼ ðe�E1=T1�E2=T2 � e�E0
1
=T1�E0

2
=T2Þ�X;X0 ;

�X;X0 ¼ Y
bð2Þ2X2;X

0
2

ð1	 �bð2Þ Þ
Y

cð1Þ2X1;X
0
1

ð1	 �cð1Þ Þ: (B3)

Using this we can derive the time dependence of the
energy density; for simplicity we will carry out the calcu-
lation in flat space. The energy density associated with the

að1Þ is

�að1Þ ¼
Z d3p

ð2	Þ3 Eað1Þ�að1Þ ¼ 2
Z

d�að1ÞE
2
að1Þ�að1Þ : (B4)

Integrating (B1) over p we find
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@t�að1Þ jX;X0 ¼ �
Z

d�X;X0Eað1Þ jMðX ! X0Þj2ð2	Þ4

� �ðK1 þ K2 � K0
1 � K0

2ÞN X;X0 ;

d�X;X0 ¼ d�0
X;X0d�að1Þ ; (B5)

where the notation on the left-hand side indicates that this
corresponds to the change in �að1Þ generated by this par-
ticular X ! X0 reaction. The total time derivative is ob-
tained by summing over all states X, X0 such that

að1Þ 2 X1:

_�að1Þ ¼ � X
X;X0;ðað1Þ2X1Þ

Z
d�X;X0Eað1Þ jMðX ! X0Þj2

� ð2	Þ4�ðK1 þ K2 � K0
1 � K0

2ÞN X;X0 : (B6)

The time derivative of the total energy density for each

sector is then obtained by now summing over all að1Þ:

_�1 ¼ �X
X;X0

Z
d�X;X0E1jMðX ! X0Þj2ð2	Þ4�ðK1 þ K2

� K0
1 � K0

2ÞN X;X0 : (B7)

To make this look more symmetric consider the contri-
bution with X and X0 exchanged. Since jMj2 is the same
but N changes sign we can write

_�1 ¼ � 1

2

X
X;X0

Z
d�X;X0 ðE1 � E0

1ÞjMðX ! X0Þj2ð2	Þ4

� �ðK1 þ K2 � K0
1 � K0

2ÞN X;X0 : (B8)

The corresponding expression for _�2 is obtained by switch-
ing the 1 and 2 subscripts.

We are interested in cases where the Maxwell-
Boltzmann statistics are adequate, so �X;X0 ’ 1, and when

the temperatures are similar: Ti ¼ T þ �Ti. Using the
energy conservation condition E1 þ E2 ¼ E0

1 þ E0
2, we

find

N X;X0 ’ �e�ðE1þE2Þ=T E1 � E0
1

T2
ð�T1 � �T2Þ: (B9)

Also, ignoring nonrelativistic contributions to the energy
density

_� i ¼ ci _�Ti; (B10)

where ci is the heat capacity per unit volume. Collecting all
expressions gives

@tð�T1 � �T2Þ ¼ ��ð�T1 � �T2Þ;
� ¼

�
1

c1
þ 1

c2

�
1

2T

X
X0;X

Z
d�X;X0�ðE1 � E0

1Þ2

� e��EX jMðX ! X0Þj2ð2	Þ4
� �ðKX � KX0 Þ: (B11)

In order to compare this with the Kubo formula we use

M ðX ! X0Þ ¼ hX0jLintjXi ¼ 
hX0jO1O2jXi; (B12)

where we work to lowest nontrivial order in the interaction.
Using J0, defined in (A27), we find

hX0jJ0jXi
¼0 ¼ 2ðE1 � E0
1ÞhX0jO1O2jXi
¼0; (B13)

where we took 
 ¼ 0 since we are interested only in the
leading contributions to �. Then

� ¼
�
1

c1
þ 1

c2

�
�2
2

8

X
X0;X

Z
d�X;X0e��EX jhX0jJ0jXij2ð2	Þ4

� �ðKX � KX0 Þ: (B14)

Using then the Lehmann expansion (A29) we find

� ¼
�
1

c1
þ 1

c2

�

2jGj
T

(B15)

exactly as in the Kubo formalism.9

Despite its intuitive appeal the Boltzmann approach
contains conceptual difficulties for the case of strongly
interacting theories, for which concepts such as the particle
densities �a are ill defined. In this case the definition of �
(A26) obtained through the Kubo equation is preferable
where the relevant matrix elements can, at least in princi-
ple, be obtained numerically.
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