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Cosmological scaling solutions, which give rise to a scalar-field density proportional to a background

fluid density during radiation and matter eras, are attractive to alleviate the energy scale problem of dark

energy. In the presence of multiple scalar fields, the scaling solution can exit to the epoch of cosmic

acceleration through the so-called assisted inflation mechanism. We study cosmological dynamics of a

multifield system in details with a general Lagrangian density p ¼ P
n
i¼1 XigðXie

�i�i Þ, where Xi ¼
�ðr�iÞ2=2 is the kinetic energy of the ith field �i, �i is a constant, and g is an arbitrary function in

terms of Yi ¼ Xie
�i�i . This covers most of the scalar-field models of dark energy proposed in literature

that possess scaling solutions. Using the bound coming from big-bang nucleosynthesis and the condition

under which each field cannot drive inflation as a single component of the universe, we find the following

features: (i) a transient or eternal cosmic acceleration can be realized after the scaling matter era, (ii) a

thawing property of assisting scalar fields is crucial to determine the evolution of the field equation of state

w�, and (iii) the field equation of state today can be consistent with the observational bound w� <�0:8 in

the presence of multiple scalar fields.

DOI: 10.1103/PhysRevD.80.103513 PACS numbers: 98.80.Cq

I. INTRODUCTION

The constantly accumulating observational data con-
tinue to confirm the existence of dark energy responsible
for cosmic acceleration today [1]. The cosmological con-
stant, whose equation of state is w ¼ �1, has been favored
by the combined data analysis of supernovae Ia [2], cosmic
microwave background [3], and baryon acoustic oscilla-
tions [4]. Meanwhile, if the cosmological constant origi-
nates from a vacuum energy associated with particle
physics, its energy scale is enormously larger than the
observed value of dark energy (�DE � 10�47 GeV4).
Hence, it is important to pursue an alternative possibility
to construct dark energy models consistent with particle
physics.

Scalar-field models such as quintessence [5,6] and k-
essence [7] have been proposed to alleviate the above-
mentioned problem. In general, the energy density of a
scalar field� dynamically changes in time, so that its value
around the beginning of the radiation-dominated epoch can
be much larger than the dark energy density today. One
such model is quintessence with an exponential potential

Vð�Þ ¼ V0e
���� [8,9], where � is a constant and � ¼ffiffiffiffiffiffiffiffiffiffi

8�G
p

with G being gravitational constant (see Ref. [10]
for the classification of cosmological dynamics and also
Refs. [11] for early related papers). In fact, in higher-
dimensional gravitational theories such as superstring
and Kaluza-Klein theories, exponential potentials often
appear from the curvature of internal spaces associated
with the geometry of extra dimensions (so-called ‘‘modu-
lus’’ fields) [12]. Moreover, it is known that exponential
potentials can arise in gaugino condensation as a nonper-
turbative effect [13] and in the presence of supergravity
corrections to global supersymmetric theories [14].

The quintessence with an exponential potential Vð�Þ ¼
V0e

���� gives rise to two distinct fixed points in the flat
Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) back-
ground [9]: (a) the scaling solution, and (b) the scalar-
field-dominated solution. If the slope � of the potential

satisfies the condition � >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wfÞ

q
, where wf is the

equation of state of a background fluid, then the solutions
approach the scaling attractor characterized by a field
density parameter �� ¼ 3ð1þ wfÞ=�2. Even if the field

energy density �� is initially comparable to the back-

ground fluid density �f, the field eventually enters the

scaling regime in which �� is proportional to �f. This is

attractive to alleviate the fine-tuning problem of the
energy scale of dark energy. However, the scaling solution
needs to exit from the matter era to the epoch of a late-
time cosmic acceleration. The scalar-field-dominated so-

lution (�� ¼ 1) can be an accelerated attractor for � <ffiffiffi
2

p
, but this is incompatible with the condition � >ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1þ wfÞ
q

required for the existence of scaling solutions.

Hence, the scaling solution cannot be followed by the
scalar-field-dominated solution responsible for dark
energy.
There are a number of ways to allow a transition from

the scaling regime to the epoch of cosmic acceleration.
One of them is to introduce a single-field potential that
becomes shallow at late times, e.g., Vð�Þ ¼ c1e

���� þ
c2e

���� with � >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1þ wfÞ

q
and �<

ffiffiffi
2

p
[15] (see

Ref. [16] for the classification of dynamics and
Refs. [17] for related works). For this double exponential
potential the field equation of state w� of the final attractor

is given by w� ¼ �1þ�2=3. In order to satisfy the
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observational constraintw� & �0:8 [18] today, we require

that � is smaller than the order of 1. If the exponential
potential originates from particle physics models, then the
slope � is typically larger than 1, which is difficult to be
compatible with the condition for cosmic acceleration.

Another way is to consider multiple scalar fields with
exponential potentials, e.g., Vð�1; �2Þ ¼ c1e

��1��1 þ
c2e

��2��2 [19,20] (see also Refs. [21]). In fact such poten-
tials arise from the compactification of higher-dimensional
theories to four-dimensional space-time. It is known that
the phenomenon called assisted inflation [22] occurs for
the multifield exponential potential, even if the individual
field has too steep a potential to lead to cosmic acceleration
(see also Refs. [23]). For the sum of steep potentials

satisfying the condition �i >
ffiffiffi
2

p
(i ¼ 1; 2; . . . ; n), the mul-

tiple fields evolve to give dynamics matching a single-field

model with �eff ¼ ðPn
i¼1 1=�

2
i Þ�1=2 <

ffiffiffi
2

p
[22]. Since the

conditions �i >
ffiffiffi
2

p
are mostly satisfied for the models

motivated by particle physics, this cooperative accelerated
expansion is attractive for both inflation and dark energy. If
we apply this scenario to dark energy, the scaling radiation
and matter eras can be followed by the epoch of assisted
acceleration as more fields join the scalar-field-dominated
attractor with an effective equation of state w� ¼ �1þ
�2
eff=3 [20].

The scaling solution arises not only for quintessence
with an exponential potential but also for more general
scalar-field models with the Lagrangian density pð�;XÞ,
where X ¼ �g��@��@�� � �ðr�Þ2=2 is a kinetic term

of the field�. Here g�� is a metric tensor with the notation
ð�;þ;þ;þÞ. It was found in Refs. [24,25] that the exis-
tence of scaling solutions restricts the form of the
Lagrangian density to be pð�;XÞ ¼ XgðXe��Þ, where �
is a constant and g is an arbitrary function in terms of Y ¼
Xe�� (here we use the unit �2 ¼ 1). The quintessence with
an exponential potential (p ¼ X � ce���) corresponds to
the choice g ¼ 1� c=Y, whereas the choice g ¼ �1þ cY
gives rise to the dilatonic ghost condensate model: p ¼
�X þ ce��X2 [25] (which corresponds to the string-
theory motivated generalization of the ghost condensate
model proposed in Ref. [26]). The tachyon Lagrangian

density p ¼ �Vð�Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2X

p
with Vð�Þ / ��2 [27] also

follows from the above scaling Lagrangian by a suitable
field redefinition [28].

For the multifield scaling Lagrangian density p ¼P
n
i¼1 XigðXie

�i�iÞ, it was shown in Ref. [29] that assisted

inflation occurs with the effective slope �eff ¼
ðPn

i¼1 1=�
2
i Þ�1=2, irrespective of the form of g. Hence,

one can expect that the scaling solution is followed by
the assisted acceleration phase for such a general
Lagrangian. If we consider loop or higher-order derivative
corrections to the tree-level action motivated from string
theory (such as e��X2), the constant � is typically of the
order of unity [30]. In the single-field case this is not
compatible with the condition for cosmic acceleration. It

is of interest to see how the presence of multiple fields
changes this situation.
In this paper we shall study cosmological dynamics of

multiple scalar fields with the Lagrangian density p ¼P
n
i¼1 XigðXie

�i�iÞ. We are interested in the case where
the scaling radiation and matter eras induced by a field
�1 are followed by the dark energy dominated epoch
assisted by other scalar fields. For the two-field quintes-
sence with exponential potentials, a similar analysis was
partially done in Ref. [20], but we shall carry out detailed
analysis by taking into account bounds coming from big-
bang nucleosynthesis (BBN) and supernovae observations.
In particular, the evolution of the field equation of state w�

will be clarified in the presence of two and more than two
fields. We also investigate cosmological dynamics for the
multifield dilatonic ghost condensate model as an example
of k-essence models.
This paper is organized as follows. In Sec. II we present

the dynamical equations for our general multifield
Lagrangian density without specifying any form of g. In
Sec. III we derive the fixed points that correspond to the
scaling radiation/matter solutions and the assisted field-
dominated attractor. In Secs. IV and V we study the multi-
field cosmological dynamics for quintessence with expo-
nential potentials and the dilatonic ghost condensate
model, respectively. Section VI is devoted to conclusions.

II. DYNAMICAL SYSTEM

Let us first briefly review single-field scaling models
with the Lagrangian density pð�;XÞ. The existence of
cosmological scaling solutions demands that the field en-
ergy density �� ¼ 2Xp;X � p, where p;X � @p=@X, is

proportional to the background fluid density �f. Under

this condition the Lagrangian density is restricted to take
the following form in the flat FLRW background [24,25]:

pð�;XÞ ¼ XgðXe��Þ; (1)

where � is a constant and g is an arbitrary function in terms
of Y � Xe��. The Lagrangian density (1) is valid even in
the presence of a constant coupling Q between the field �
and nonrelativistic matter and also in the presence of a
Gauss-Bonnet (GB) coupling between the field and the GB
term1 [32]. In the following we do not take into account
such couplings. Throughout this paper we use the unit
�2 ¼ 8�G ¼ 1.
The field density parameter for scaling solutions is given

by �� ¼ 3ð1þ wfÞp;X=�
2 [29,31], where wf is the fluid

equation of state. If the field enters the scaling regime
during the radiation era, the BBN places the bound

1It is also possible to obtain a generalized form of the scaling
Lagrangian density even when the coupling Q between � and
nonrelativistic matter is field dependent [31].
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�� < 0:045 at the 2� confidence level [33]. This then

gives the constraint �2=p;X > 88:9.
Besides scaling solutions, there is a scalar-field-

dominated point (�� ¼ 1) with the equation of statew� ¼
�1þ �2=ð3p;XÞ [29,31]. This can be used for dark energy

provided that w� <�1=3, i.e. �2=p;X < 2. Unfortunately,

this condition is incompatible with the constraint coming
from the BBN. Hence, the scaling solution does not exit to
the scalar-field-dominated solution in the single-field
scenario.

If we consider multiple scalar fields �i (i ¼ 1; 2; . . . ;
n) with the Lagrangian density

p ¼ Xn
i¼1

XigðYiÞ; Yi � Xie
�i�i ; (2)

the scaling solution can be followed by the accelerated
scalar-field-dominated point through the assisted inflation
mechanism. Even if the individual field does not satisfy the
condition for inflation, the multiple fields evolve coopera-
tively to give dynamics matching a single-field model with
[29]

1

�2
eff

¼ Xn
i¼1

1

�2
i

: (3)

Since �eff is reduced compared to the individual �i, this
allows a possibility to exit from the scaling matter era to
the regime of cosmic acceleration.

In addition to the n scalar fields with the Lagrangian
density (2) we take into account radiation (energy density
�r) and nonrelativistic matter (energy density �m). In the
flat FLRW space-time with a scale factor a, they obey the
usual continuity equations _�r þ 4H�r ¼ 0 and _�m þ
3H�m ¼ 0, respectively, where a dot represents a deriva-
tive with respect to cosmic time t and H � _a=a is the
Hubble parameter. The pressure p�i

and the energy density

��i
for the ith scalar field are given, respectively, by

p�i
¼ XigðYiÞ; (4)

��i
¼ 2Xip;Xi

� p�i
¼ Xi½gðYiÞ þ 2Yig

0ðYiÞ�; (5)

where a prime represents a derivative with respect to Yi.
These satisfy the continuity equation

_��i
þ 3Hð��i

þ p�i
Þ ¼ 0; (6)

which corresponds to

€�i þ 3HAðYiÞp;Xi
_�i

þ �iXif1� AðYiÞ½gðYiÞ þ 2Yig
0ðYiÞ�g ¼ 0; (7)

where

AðYiÞ � ½gðYiÞ þ 5Yig
0ðYiÞ þ 2Y2

i g
00ðYiÞ��1: (8)

The Friedmann equations are

3H2 ¼ Xn
i¼1

��i
þ �r þ �m; (9)

_H ¼ �Xn
i¼1

Xip;Xi
� 2

3
�r � 1

2
�m: (10)

In order to derive autonomous equations we define the
following quantities:

xi �
_�iffiffiffi
6

p
H
; yi � e��i�i=2ffiffiffi

3
p

H
; u �

ffiffiffiffiffi
�r

pffiffiffi
3

p
H
; (11)

where the quantity Yi defined in Eq. (2) can be expressed as

Yi ¼ x2i =y
2
i : (12)

We also introduce the field density parameters

��i
� ��i

3H2
¼ x2i ½gðYiÞ þ 2Yig

0ðYiÞ�; �� � Xn
i¼1

��i
:

(13)

From Eqs. (9) and (10) it follows that

�m � �m

3H2
¼ 1��� ��r; (14)

_H

H2
¼ � 3

2
� 3

2

Xn
i¼1

x2i gðYiÞ � 1

2
u2; (15)

where �r ¼ u2 is the density parameter of radiation.
Using Eqs. (6) and (15), we obtain the autonomous

equations,

dxi
dN

¼ xi
2

�
3þ 3

Xn
i¼1

x2i gðYiÞ þ u2 � ffiffiffi
6

p
�ixi

�

þ
ffiffiffi
6

p
2

AðYiÞ½�i��i
� ffiffiffi

6
p fgðYiÞ þ Yig

0ðYiÞgxi�; (16)

dyi
dN

¼ yi
2

�
3þ 3

Xn
i¼1

x2i gðYiÞ þ u2 � ffiffiffi
6

p
�ixi

�
; (17)

du

dN
¼ u

2

�
�1þ 3

Xn
i¼1

x2i gðYiÞ þ u2
�
; (18)

where N ¼ lnðaÞ. The field equation of state w�i
of the ith

field, the total field equation of state w�, and the effective

equation of state weff of the system are given, respectively,
by

w�i
� p�i

��i

¼ gðYiÞ
gðYiÞ þ 2Yig

0ðYiÞ ; (19)

w� �
P

n
i¼1 p�iP
n
i¼1 ��i

¼
P

n
i¼1 x

2
i gðYiÞP

n
i¼1 x

2
i ½gðYiÞ þ 2Yig

0ðYiÞ�
; (20)
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weff � �1� 2

3

_H

H2
¼ Xn

i¼1

x2i gðYiÞ þ 1

3
u2: (21)

III. FIXED POINTS OF THE SYSTEM

Let us derive fixed points for the autonomous equations
(16)–(18). In particular, we are interested in the scaling
solution and the scalar-field-dominated solution. For these
solutions the variables yi do not vanish. Setting du=dN ¼
0 in Eq. (18), it follows that u2 ¼ 1� 3

P
n
i¼1 x

2
i gðYiÞ or

u ¼ 0. The former corresponds to the solution in the
presence of radiation, whereas the latter to the solution
without radiation. In the following we shall discuss these
cases separately.

A. Radiation-dominated scaling solution

Plugging u2 ¼ 1� 3
P

n
i¼1 x

2
i gðYiÞ into Eqs. (16) and

(17), the fixed point for the ith field (with yi � 0 and
AðYiÞ � 0) satisfies

�ixi ¼ 2
ffiffiffi
6

p
3

¼
ffiffiffi
6

p ½gðYiÞ þ Yig
0ðYiÞ�

gðYiÞ þ 2Yig
0ðYiÞ ; (22)

which gives

Yig
0ðYiÞ ¼ gðYiÞ: (23)

From Eq. (19) the field equation of state for the ith field is

w�i
¼ 1=3; (24)

which means that ��i
is proportional to �r. Using Eqs. (13)

and (22) together with p;Xi
¼ gðYiÞ þ Yig

0ðYiÞ, we have

��i
¼ 4p;Xi

�2
i

: (25)

If all n scalar fields are in the scaling regime, Yi are the
same for all i (Yi ¼ Y) from Eq. (23) and hence p;Xi

(i ¼
1; 2; . . . ; n) take a common value p;X ¼ gðYÞ þ Yg0ðYÞ
with an effective single-field Lagrangian density p ¼
XgðYÞ. Then the total field density is given by

�� ¼ 4p;X

�2
eff

; (26)

where �eff is defined in Eq. (3). We are interested in the
case where one of the fields, say �1, is in the scaling
regime in the deep radiation era, while the energy densities
of other fields are suppressed relative to that of �1. In
the BBN epoch we have the following constraint from
Eq. (25):

4p;X1

�2
1

& 0:045 ! �2
1

p;X1

> 88:9: (27)

For a given model, i.e. for a given form of g, the
variables x1 and y1 are determined by solving Eq. (22). If
the scalar fields with i � 1 join the scaling solution at the

late epoch of the radiation era, the total field density ��

tends to increase according to Eq. (26) with the decrease of
�eff . If the slope �2 of the second scalar field �2 that joins
the scaling solution is of the order of 1, the field density
(26) can be as large as�� ¼ 0:1–1. It is not preferable for

many fields with low �i to join the scaling solution during
the radiation era in order to avoid that �� exceeds 1. This

can be avoided if the field densities ��i
(i � 1) are much

smaller than the radiation density.

B. Matter-dominated scaling solution and assisted
scalar-field-dominated point

In the absence of radiation (u ¼ 0), the fixed points for
the ith field corresponding to yi � 0 and AðYiÞ � 0 obey
the following equations:

3þ 3
Xn
i¼1

x2i gðYiÞ ¼
ffiffiffi
6

p
�ixi; (28)

�i��i
¼ ffiffiffi

6
p ½gðYiÞ þ Yig

0ðYiÞ�xi: (29)

From Eqs. (13), (19), (28), and (29) it follows that

w�i
¼ Xn

i¼1

x2i gðYiÞ ¼ �1þ
ffiffiffi
6

p
3

�ixi: (30)

Since w�i
��i

¼ x2i gðYiÞ we have

w�i
¼ Xn

i¼1

w�i
��i

: (31)

In the case of a single field�i, this equation gives w�i
¼ 0

or��i
¼ 1. The former corresponds to the scaling solution

along which ��i
is proportional to the matter density �m,

whereas the latter is the scalar-field-dominated solution.
If all n scalar fields are on the fixed points characterized

by the condition (30), it follows that w�1
¼ � � � ¼ w�i

¼
� � � ¼ w�n

� w� and hence Y1 ¼ � � � ¼ Yi ¼ � � � ¼
Yn � Y from Eq. (19). In this case, one has either w� ¼
0 or�� ¼ 1 from Eq. (31). Equation (30), which holds for

the each scalar field, reduces to the single-field system

w� ¼ x2gðYÞ ¼ �1þ
ffiffiffi
6

p
3

�effx; (32)

where x ¼ �ixi=�eff . The effective single-field Lagrangian
density is given by p ¼ XgðYÞ with �� ¼ x2½gðYÞ þ
2Yg0ðYÞ�. We also note that Eqs. (28) and (29) reduce to
the following effective single-field forms:

3þ 3x2gðYÞ ¼ ffiffiffi
6

p
�effx; (33)

�eff�� ¼ ffiffiffi
6

p
p;Xx; (34)

where p;X ¼ gðYÞ þ Yg0ðYÞ.
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In the following we shall discuss the matter-dominated
scaling solution and the assisted field-dominated solution,
separately.

1. Matter-dominated scaling solution

If the ith scalar field is in the scaling regime during the
matter-dominated epoch, i.e. w�i

¼ 0, it follows from

Eqs. (19) and (30) that �ixi ¼
ffiffiffi
6

p
=2 and

gðYiÞ ¼ 0: (35)

From Eq. (13) we obtain

��i
¼ 3p;Xi

�2
i

: (36)

More generally, the field density parameter in the presence
of a perfect fluid with an equation of state wf is given by

��i
¼ 3ð1þ wfÞp;Xi

=�2
i [29].

If all n scalar fields are in the scaling regime, then they
can be described by an effective single-field system with
w� ¼ 0 and

�� ¼ 3p;X

�2
eff

: (37)

This scaling solution is stable for �2
eff > 3p;X [29].

2. Assisted field-dominated point

Besides the matter scaling solution discussed above,
there is another fixed point that can be responsible for
the late-time acceleration. In the single-field case the so-
lutions do not exit to the accelerated field-dominated point
(��i

¼ 1) from the scaling matter era, because the scaling

solution is stable for ��i
¼ 3p;Xi

=�2
i < 1. However, the

presence of multiple scalar fields allows this transition.
Since�� ¼ 1 in Eq. (34) for the scalar-field-dominated

point with n multiple fields, it follows from Eq. (32) that

w� ¼ �1þ �2
eff

3p;X

: (38)

This fixed point can be responsible for the late-time accel-
eration (w� <�1=3) for �2

eff < 2p;X. Moreover, it is sta-

ble under the condition �2
eff < 3p;X [29] (which is opposite

to the stability of the scaling matter solution). Using the
relations w���i

¼ x2i gðYÞ and w� ¼ x2gðYÞ, we find

��i
¼ x2i

x2
¼ �2

eff

�2
i

: (39)

We shall study the case in which one of the fields has a
large slope �1 ( � 1) to satisfy the BBN bound (27) and
other fields with �i ¼ Oð1Þ join the scalar-field-dominated
attractor (38) at late times. Since the joining of such
multiple scalar fields reduces �eff , it should be possible
to give rise to sufficient cosmic acceleration through the

assisted inflation mechanism, even if the individual field
cannot be responsible for the acceleration.
For a given model, one can derive Y1 (for the field �1)

that corresponds to the scaling solution during radiation
and matter eras by solving Eqs. (23) and (35), respectively.
The field density parameters��1

in these epochs are given

by Eqs. (25) and (36), respectively. The assisted field-
dominated solution corresponds to

6½gðYÞ þ Yg0ðYÞ�2
gðYÞ þ 2Yg0ðYÞ ¼ �2

eff ; (40)

which comes from combining Eqs. (33) and (34) with
�� ¼ 1. By solving this equation for a given form of

gðYÞ, we obtain the field equation of state (38) and also x ¼
�eff=ð

ffiffiffi
6

p
p;XÞ from Eq. (34).

In subsequent sections we shall consider two models:
(i) quintessence with multiple exponential potentials, and
(ii) the multifield dilatonic ghost condensate model (one of
k-essence models). In our numerical simulations we iden-
tify the present epoch (the redshift z ¼ 0) to be�� ¼ 0:72

with the radiation density in the region 7:0� 10�5 <
�r < 1:0� 10�4.

IV. QUINTESSENCE WITH MULTIPLE
EXPONENTIAL POTENTIALS

The single-field quintessence with an exponential poten-
tial corresponds to the Lagrangian density p ¼
X� ce���, i.e. the choice gðYÞ ¼ 1� c=Y in Eq. (1). In
the following we shall consider the Lagrangian density (2)
of n scalar fields with the choice gðYiÞ ¼ 1� ci=Yi (i ¼
1; 2; . . . ; n).
Since p;Xi

¼ gðYiÞ þ Yig
0ðYiÞ ¼ 1 in this model the

scaling field density ��i
during the radiation and matter

eras is given by��i
¼ 4=�2

i and��i
¼ 3=�2

i , respectively

[see Eqs. (25) and (36)]. Below we discuss the case in
which one of the scalar fields, �1, is in the scaling regime
during most of the radiation and matter eras and other
fields eventually join the assisted scalar-field-dominated
attractor with w� given by Eq. (38). Then the BBN bound

(27) gives

�1 > 9:42: (41)

Under this condition, the scaling field density ��1
dur-

ing the matter-dominated epoch is constrained to be��1
<

0:034. If other fields join the scaling regime in the radiation
(matter) era, the field density increases from ��1

¼ 4=�2
1

(��1
¼ 3=�2

1) to �� ¼ 4=�2
eff (�� ¼ 3=�2

eff). This is

possible provided that the slopes of the joining scalar fields
satisfy the conditions �i � 1. Meanwhile, if �i are of the
order of 1, this leads to a large density parameter�� that is

comparable to unity. In what follows we focus on the case
in which the fields with slopes �i ¼ Oð1Þ (i � 2) enter the
regime of the assisted cosmic acceleration preceded by
scaling solutions induced by �1.
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It is convenient to introduce the following variable:

~y i � ffiffiffiffi
ci

p
yi: (42)

From Eq. (22) the radiation-dominated scaling solution for
the field �1 corresponds to

ðx1; ~y1Þ ¼
�
2

ffiffiffi
6

p
3�1

;
2

ffiffiffi
3

p
3�1

�
; Y1 ¼ 2c1: (43)

This is followed by the matter-dominated scaling solution,
satisfying

ðx1; ~y1Þ ¼
� ffiffiffi

6
p
2�1

;

ffiffiffi
6

p
2�1

�
; Y1 ¼ c1: (44)

The assisted field-dominated point corresponds to the
single-field potential Vð�Þ ¼ ce��eff�, i.e. gðYÞ ¼
1� c=Y with Y ¼ x2=y2. From Eqs. (34) and (40) this is
characterized by the fixed point (where we define ~y �ffiffiffi
c

p
y):

ðx; ~yÞ ¼
�
�effffiffiffi
6

p ;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

eff

6

s �
; Y ¼ �2

eff

6� �2
eff

c: (45)

For the ith field we have that xi ¼ ð�eff=�iÞx and yi ¼
xi=

ffiffiffiffi
Y

p
.

A. Two fields

First let us consider the case of two scalar fields �1 and
�2.

In Fig. 1 we plot the evolution of the background fluid
density �f ¼ �r þ �m and the field densities ��1

, ��2

versus the redshift z ¼ a0=a� 1 (a0 is the present value

of a) for �1 ¼ 10 and �2 ¼ 1:5. We choose three different
initial conditions for �1. The case (i) corresponds to the
exact scaling solution starting from the fixed point (43),
along which��1

¼ 4=�2
1 ¼ 0:04 and��1

¼ 3=�2
1 ¼ 0:03

during radiation and matter eras, respectively. Finally the
system enters the epoch in which the energy density ��2

of

the second field �2 dominates the dynamics. Figure 1
shows that the field �1 eventually joins the scaling regime
both for the initial conditions (ii) ��1

� �f and

(iii) ��1
	 �f. Thus the cosmological trajectories con-

verge to a common scaling solution for a wide range of
initial conditions.
In Fig. 1 we find that the second field density ��2

is

almost frozen after the initial transient period. In order to
understand this behavior we introduce the ratio ri between

the kinetic energy _�2
i =2 and the potential energy Við�iÞ ¼

cie
��i�i of the ith field:

ri �
_�2
i

2Vi

; (46)

which is related to the quantity Yi via ri ¼ Yi=ci. Taking
the derivative of ri with respect to N, it follows that [34]

d lnri
dN

¼ 6½�iðtÞ � 1�; �iðtÞ � �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��i

3ð1þ w�i
Þ

s
:

(47)

For the scaling field �1, one has w�1
¼ wf and ��1

¼
3ð1þ wfÞ=�2

1 [9], where wf is the equation of state of the

background fluid. This means that �1ðtÞ ¼ 1, so that the
ratio r1 ¼ Y1=c1 remains constant. In fact, from Eqs. (43)
and (44), one has r1 ¼ 2 and r1 ¼ 1 during the radiation
and matter eras, respectively. This reflects the fact that the
scaling field has a kinetic energy with the same order as its
potential energy.
The field �2 joining the assisted attractor at late times

satisfies �2 ¼ Oð1Þ 	 �1 and ��2
	 ��1

at the early

stage of the radiation era, so that �2ðtÞ 	 1 initially (un-
less w�i

is unnaturally close to �1). At this stage the ratio

r2 decreases rapidly as / e�6N according to Eq. (47), see
Fig. 2. In the region r2 	 1 the field �2 is almost frozen
with nearly constant ��2

. As r2 decreases, ��2
grows and

w�2
approaches �1. This leads to the growth of �2ðtÞ. As

we see in Fig. 2 the ratio r2 starts to increase after �2ðtÞ
becomes larger than 1. When r2 grows to the order of 1, the
field�2 begins to evolve to join the assisted attractor given
by Eq. (45).
The mass squared for the ith scalar field is given by

m2
i � d2Við�iÞ=d�2

i ¼ �2
i Við�iÞ. The energy density of

�2 starts to dominate around the present epoch, so that

3H2
0 � V2ð�ð0Þ

2 Þ (the subscript ‘‘0’’ represents present val-
ues). Then the mass of �2 can be estimated as

m2ð�ð0Þ
2 Þ � �2H0: (48)
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FIG. 1. Evolution of the energy densities �f ¼ �r þ �m, ��1
,

and ��2
versus the redshift z for �1 ¼ 10 and �2 ¼ 1:5 in the

two-field quintessence with exponential potentials. We choose
three different initial conditions for �1: (i) x1 ¼ 2

ffiffiffi
6

p
=ð3�1Þ,

~y1 ¼ 2
ffiffiffi
3

p
=ð3�1Þ, (ii) x1 ¼ 0:99, ~y1 ¼ 0:12, and (iii) x1 ¼

1� 10�3, ~y1 ¼ 1� 10�5, while other initial conditions are fixed
to be x2 ¼ 1� 10�21, ~y2 ¼ 2� 10�24, and�m ¼ 4� 10�10. In
case (i) the field �1 is in the scaling regime from the beginning.
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Recall that �2 needs to be of the order of 1 to realize a
stable assisted attractor satisfying the condition �2

eff < 3.
Hence, the mass m2 is as small as H0 today. In the numeri-
cal simulations of Figs. 1 and 2 the field �2 is almost
frozen with the mass (48) for the redshift 1 & z & 1012

(during which the condition r2 	 1 is fulfilled).
Even if the field �2 is rapidly rolling at the initial stage

of the radiation era such that r2 � 1, it enters the regime in
which �2 is nearly frozen (w�2

’ �1) prior to the matter-

dominated epoch. In Fig. 3 the evolution of ��2
is plotted

for three different initial conditions of x2 with ~y2 fixed. The
dominance of the field kinetic energy relative to its poten-
tial energy corresponds to r2 � 1 and w�2

’ 1, which

results in the rapid decrease of ��2
to reach the regime

�2ðtÞ 	 1. Even if r2 � 1 initially, the decrease of r2 in
the regime �2ðtÞ 	 1 is so fast ( / e�6N) that the field �2

eventually enters the frozen regimewithw�2
’ �1. For the

initial conditions satisfying r2 	 1, the field �2 is almost
frozen from the beginning, so that ��2

is nearly constant

until recently.
If we change the initial conditions of ~y2 associated with

the field potential, this leads to the modification of the
epoch at which the field �2 dominates at late times. This
comes from the fact that the density ��2

during which�2 is

nearly frozen is sensitive to the choice of its initial poten-
tial energy. Thus the evolution of the field �2 depends on
its initial potential energy but not on its initial kinetic
energy.
Figure 4 illustrates the variation of w�, w�1

, w�2
, and

weff for �1 ¼ 10 and �2 ¼ 1:5 with the same initial con-
dition as in the case (i) of Fig. 1. The equations of state w�

and w�1
are similar to the effective equation of state weff

during radiation and matter eras, but the deviation appears
at low redshifts. The field �2 is almost frozen around
w�2

¼ �1 after the initial transient period, but it begins

to evolve for z & Oð1Þ.
From the definition of w� in Eq. (20) we have

w� ¼ 1

��

ðw�1
��1

þ w�2
��2

Þ: (49)

Note that w�1
� 0 and w�2

� �1 around the end of the

matter-dominated epoch. After ��2
gets larger than ��1

,
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FIG. 2. Evolution of r2 and �2 � 1 for �1 ¼ 10 and �2 ¼ 1:5
in the two-field quintessence with exponential potentials. The
same initial conditions are chosen as in case (i) of Fig. 1. Initially
the quantity r2 decreases as r2 / e�6N because �2 � 0. The
ratio r2 starts to increase after �2 becomes larger than 1.
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FIG. 3. Evolution of �f, ��1
, and ��2

for �1 ¼ 10 and �2 ¼
1:5 in the two-field quintessence with exponential potentials with
three different initial conditions for the kinetic energy of �2:
(i) x2 ¼ 1� 10�21, (ii) x2 ¼ 1� 10�14, and (iii) x2 ¼ 0:05.
Other initial conditions are chosen to be ~y2 ¼ 2� 10�24, x1 ¼
2

ffiffiffi
6

p
=ð3�1Þ, ~y1 ¼ 2

ffiffiffi
3

p
=ð3�1Þ, and �m ¼ 4� 10�10. The field

�2 enters the regime with a nearly constant ��2
independent of

its initial kinetic energy.
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FIG. 4. Evolution of the field equations of state w�, w�1
, w�2

,
and the effective equation of state weff for �1 ¼ 10 and �2 ¼ 1:5
in the two-field quintessence with exponential potentials. The
initial conditions are chosen to be x1 ¼ 2

ffiffiffi
6

p
=ð3�1Þ, ~y1 ¼

2
ffiffiffi
3

p
=ð3�1Þ, x2 ¼ 1� 10�21, ~y2 ¼ 2� 10�24, and �m ¼

4� 10�10.
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w� begins to be mainly determined by the field �2, i.e.

w� � w�2
��2

=��. As we see in Fig. 4, w� takes a

minimum before reaching the present epoch (z ¼ 0),
which is followed by its increase toward the attractor value
w� ¼ �1þ �2

eff=3. For the model parameters used in the

numerical simulation of Fig. 4 we have �eff ¼ 1:483,
which gives w� ¼ �0:267 at the scalar-field-dominated

attractor. This corresponds to the decelerated expansion of
the universe. Meanwhile, one has w�ðz ¼ 0Þ ¼ �0:62 and

weffðz ¼ 0Þ ¼ �0:45, which means that the transient ac-
celeration occurs at the present epoch. Interestingly, even
without the assisted accelerated attractor, such a temporal
acceleration can be realized by the presence of the thawing
field �2.

Under the BBN bound (41) and the condition �2 >
ffiffiffi
2

p
(i.e. the field �2 cannot be responsible for the accelerated
expansion as a single component of the universe), the
equation of state w� for the late-time assisted attractor is

not very different from�1=3. Meanwhile the present value
ofw� is smaller than its asymptotic value. For the marginal

case with �1 ¼ 9:43 and �2 ¼ 1:415 we find that w�ðz ¼
0Þ ¼ �0:66 numerically. For increasing �2 we obtain
larger values of w�ðz ¼ 0Þ and weffðz ¼ 0Þ, as we see in

Fig. 5. If we do not impose the condition �2 >
ffiffiffi
2

p
, then

w�ðz ¼ 0Þ can be smaller than �0:66. Note that, when

�2 > 1:76 and �1 ¼ 9:43, the scalar-field-dominated point

ceases to be the late-time attractor. We have also carried
out numerical simulations for different values of �1 sat-
isfying the condition �1 > 9:42 and found that w�ðz ¼ 0Þ
and weffðz ¼ 0Þ are insensitive to the change of �1.

B. More than two fields

For three scalar fields the total field equation of state is
given by w� ¼ ðw�1

��1
þ w�2

��2
þ w�3

��3
Þ=��. If

the two fields �2 and �3 with slopes �2, �3 ¼ Oð1Þ join
the assisted attractor for z & Oð1Þ, it is possible to obtain
smaller values of w�ðz ¼ 0Þ and weffðz ¼ 0Þ relative to the
two-field case.
In Fig. 6 we plot the evolution ofw�, w�i

(i ¼ 1; 2; 3) as

well as weff for �1 ¼ 9:5, �2 ¼ 1:42, and �3 ¼ 2:0. The
field �1 is in the scaling regime during the radiation and
matter eras, which is followed by the epoch of cosmic
acceleration once the energy densities of �2 and �3 are
dominant. The fields �2 and �3 have been nearly frozen
(except for the initial transient period) by the time they
start to evolve for z & Oð1Þ. In the numerical simulation of
Fig. 6 the energy densities ��2

and ��3
are the same order

when they begin to dominate over the background fluid
density. In the numerical simulation of Fig. 6, the field
equation of state today is found to be w�ðz ¼ 0Þ ¼ �0:76,

which is smaller than the minimum value w�ðz ¼ 0Þ ¼
�0:66 in the two-field case. This comes from the fact that
the third field with w�3

close to�1 leads to smaller values

of w�ðz ¼ 0Þ.
For the marginal model parameters �1 ¼ 9:43, �2 ¼

�3 ¼ 1:415, which satisfy the conditions �1 > 9:42 and

�2; �3 >
ffiffiffi
2

p
, we find that w�ðz ¼ 0Þ ¼ �0:83, provided

the fields �2 and �3 exit from the frozen regime almost at

FIG. 5. The field equation of statew� today versus �2 for �1 ¼
9:43 (solid curve) in the two-field quintessence with exponential
potentials. If �2 < 1:76 the scalar-field-dominated point is the
final attractor. The condition for cosmic acceleration (weffðz ¼
0Þ<�1=3) is satisfied even for �2 >

ffiffiffi
2

p
. The two lines (a) and

(b) in the figure correspond to �2 ¼ 1:76 and �2 ¼
ffiffiffi
2

p
, respec-

tively.
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FIG. 6. Evolution of w�, w�1
, w�2

, w�3
, and weff for �1 ¼ 9:5,

�2 ¼ 1:42, and �3 ¼ 2:0 in the three-field quintessence with
exponential potentials. The initial conditions are chosen to be
x1 ¼ 2

ffiffiffi
6

p
=ð3�1Þ, ~y1 ¼ 2

ffiffiffi
3

p
=ð3�1Þ, x2 ¼ 1� 10�19, ~y2 ¼

2� 10�24, x3 ¼ 1� 10�21, ~y3 ¼ 2� 10�24, and �m ¼
5� 10�10.
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the same time. If either �2 or �3 begins to evolve much
later than another, then w�ðz ¼ 0Þ tends to be larger. This

case is not much different from the two-field scenario for
estimating the value of w�ðz ¼ 0Þ, although the scalar-

field-dominated attractor is different. In the three-field
scenario the equation of state w� for the attractor can be

as small as w� 
�0:6 for �2; �3 ¼ Oð1Þ so that cosmic

acceleration today is not transient.
In Fig. 7 we show w�ðz ¼ 0Þ versus �i (i � 2) for �1 ¼

9:43 in the presence of multiple scalar fields. Under the

condition �i >
ffiffiffi
2

p
the observational bound, w�ðz ¼ 0Þ<

�0:8, can be satisfied for three fields. In the case of four
fields it is possible to satisfy the same bound for �i < 2
(i ¼ 2; 3; 4). As we add more fields, we obtain smaller
values of w�ðz ¼ 0Þ and weffðz ¼ 0Þ.

V. MULTIFIELD DILATONIC GHOST
CONDENSATE MODEL

Let us next proceed to the dilatonic ghost condensate
model with n scalar fields, where the Lagrangian density is
given by (2) with the choice gðYiÞ ¼ �1þ ciYi (i ¼
1; 2; . . . ; n), i.e. p ¼ P

n
i¼1ð�Xi þ cie

�i�iX2
i Þ. The coeffi-

cients ci are positive so that the quantum instability prob-
lem of the negative kinetic energy (� Xi) can be avoided
by the presence of the higher-order derivative term
cie

�i�iX2
i [24].

In this model we have p;Xi
¼ 2 ~Yi � 1 and

w�i
¼ ~Yi � 1

3 ~Yi � 1
; ��i

¼ x2i ð3 ~Yi � 1Þ; (50)

where

~Y i � ciYi: (51)

When ~Yi ¼ 1=2 the equation of state w�i
is equivalent to

�1. The quantum stability of the scalar field is ensured for
~Yi � 1=2 (i.e. w�i

� �1), whereas in the region ~Yi < 1=2

the vacuum is unstable against the catastrophic particle
production of ghost and normal fields [24]. In the following
we shall focus on the case ~Yi � 1=2.
From Eqs. (16) and (17) we obtain the following equa-

tions for ~Yi:

d ~Yi

dN
¼ ~Yi

3 ~Yið
ffiffiffi
6

p
�ixi � 4Þ þ 6� ffiffiffi

6
p

�ixi
6 ~Yi � 1

; (52)

which hold for i ¼ 1; 2; . . . ; n. We will solve Eqs. (16),
(18), and (52) in our numerical simulations.
For this model the solution to Eq. (23) does not exist,

whereas the solution to Eq. (35) is given by ~Yi ¼ 1. This
means that the scaling solution is absent during the radia-
tion era, while it is present during the matter era. More
precisely, for the background fluid with an equation of state
wf, the presence of the scaling solution corresponds to the

condition ð1� wfÞgðYiÞ ¼ 2wfYig
0ðYiÞ [29]. Solving this

equation for the present model, we obtain

~Y i ¼
1� wf

1� 3wf

: (53)

For the radiation fluid (wf ¼ 1=3) we require that ~Yi !
1 for the existence of the scaling solution. If the field�1 is
in a nearly scaling regime during the radiation era, it
follows that ��1

’ ð4=�2
1Þð2 ~Y1 � 1Þ. The BBN bound

��1
< 0:045 amounts to

�1 * 9:42
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ~Y1 � 1

q
: (54)

This shows that, under the condition ~Y1 ! 1, �1 needs to
be infinitely large. However, as long as we do not demand
the exact scaling radiation solution, the variable Y1 can be
of the order of unity (as wewill see later). In such a case the
constraint on �1 is not so restrictive.
The radiation-dominated epoch can be followed by the

scaling matter era characterized by the fixed point

ðx1; ~Y1Þ ¼ ð ffiffiffi
6

p
=ð2�1Þ; 1Þ with ��1

¼ 3=�2
1. The solutions

finally approach the assisted field-dominated point satisfy-
ing Eq. (40), i.e.,

~Y � cY ¼ 1

2
þ �2

eff

16

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16

3�2
eff

s �
; (55)

where c is the coefficient of the effective single-field

FIG. 7. The equation of state w� today versus �i (i � 1) for
�1 ¼ 9:43 in the multifield quintessence with exponential po-
tentials. The slopes �i for the ith (i � 2) fields are chosen to be
the same. In this simulation the fields �i (i � 2) enter the regime
of the assisted field-dominated attractor almost at the same time.
Under the condition �i >

ffiffiffi
2

p
(which is shown as a thin dotted

line in the figure), we have that w� <�0:8 for more than two

fields.
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Lagrangian density: p ¼ �1þ cX. In deriving Eq. (55)
we have taken the solution with ~Y � 1=2. From Eq. (38)
the field equation of state is given by

w� ¼ �1þ �eff

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
eff þ

16

3

s
� �eff

�
; (56)

which shows that the late-time cosmic acceleration occurs

for �eff <
ffiffiffi
6

p
=3. The stability of this solution is ensured for

�2
eff < 3ð2 ~Y � 1Þ, i.e. �eff <

ffiffiffi
3

p
.

A. Two fields

We first study cosmological dynamics of the two-field
ghost condensate model.

Let us consider the case in which the field �1 initially

exists around x1 ’ 2
ffiffiffi
6

p
=ð3�1Þ with a finite value of ~Y1

satisfying the condition ~Y1 � 1=2 [see Eq. (22)]. From
Eq. (52) it follows that d ~Y1=dN > 0, as long as x1 does

not depart significantly from 2
ffiffiffi
6

p
=ð3�1Þ. This means that

the quantity ~Y1 tends to grow during most of the radiation
era, which also leads to the increase of the density parame-
ter ��1

¼ x21ð3 ~Y1 � 1Þ. This growth of ~Y1 is associated

with the fact that the radiation scaling solution exists only
in the limit ~Y1 ! 1.

In Fig. 8 we plot one example about the evolution of
density parameters for �1 ¼ 40 and �2 ¼ 1. This shows
that ��1

in fact increases during the radiation-dominated

epoch. In this case we have ��1
¼ 0:036 around the BBN

epoch (z � 1010), so that the bound ��1
< 0:045 is satis-

fied. The growth of ��1
ceases around the end of the

radiation era, because ~Y1 begins to decrease toward the
scaling matter fixed point at ~Y1 ¼ 1. In order to satisfy the

BBN bound (54) we have numerically found that �1 is
required to be at least larger than 30. This is related to the
fact that, even for the initial conditions of ~Y1 close to 1=2
around the beginning of the radiation era, ~Y1 grows to be
larger than 5 at the BBN epoch.
In Fig. 8 we find that the scaling matter era in which��1

is nearly constant is very short, unlike the multifield quin-
tessence with exponential potentials. This can be under-
stood as follows. Around the end of the radiation-
dominated epoch, the quantity ~Y1 has already increased
to a value larger than the order of unity. It takes some time
for the solutions to reach the scaling matter fixed point at
~Y1 ¼ 1. In the numerical simulation of Fig. 8 this happens
for the redshift at 6.2. Since the solutions enter the dark
energy dominated epoch for z & Oð1Þ, the period of the
scaling matter era is short.
Figure 9 illustrates the evolution of w�, w�1

, w�2
, and

weff for the same model parameters and initial conditions
as given in Fig. 8. Initially w�1

is smaller than weff , but it

grows to the value close to weff ¼ 1=3 during the radiation
era with the increase of Y1. The evolution of w�1

in Fig. 9

clearly shows that the field �1 does not soon enter the
scaling matter regime just after the radiation-dominated
epoch. The field �2 approaches the phase with w�2

’ �1

after the initial transient period. This corresponds to ~Y2 ’
1=2 and ��2

’ x22=2 in Eq. (50). Numerically we find that

the late-time cosmological evolution is practically inde-
pendent of the initial conditions of Y2, but it is sensitive to
the initial values of x2 because the quantity x2 is associated
with the dark energy density.
The epoch at which the field �2 starts to exit from the

regime w�2
¼ �1 depends on the parameter �2. For de-

creasing �2 the redshift zc at which this thawing occurs
gets smaller, which leads to smaller values of w� and weff

today. In Fig. 10 we plot w�ðz ¼ 0Þ and weffðz ¼ 0Þ versus
�2 for �1 ¼ 40. In this case the stability of the assisted
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versus the redshift
z for �1 ¼ 40 and �2 ¼ 1 in the two-field dilatonic ghost
condensate model. The initial conditions are chosen to be x1 ¼
2

ffiffiffi
6

p
=ð3�1Þ, ~Y1 ¼ 5:0, x2 ¼ 1:6� 10�20, ~Y2 ¼ 10:0, and �m ¼

8� 10�9. While the BBN bound��1
< 0:045 is satisfied at z �

1010, the growth of ��1
continues by the redshift at z ¼ 7:2�

104 with the maximum value ��1
¼ 0:071.
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, w�2

, and weff for �1 ¼ 40 and
�2 ¼ 1 in the two-field dilatonic ghost condensate model. The
initial conditions are the same as in Fig. 8.
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field-dominated point is ensured for �2 < 1:734. If �2 >ffiffiffi
6

p
=3 the field �2 cannot drive cosmic acceleration as a

single component of the universe. Under these bounds we
find that the condition weffðz ¼ 0Þ<�1=3 for the accel-
eration today is not satisfied in the two-field case. This is
intimately associated with the fact that the thawing of the

field �2 occurs quite early [zc >Oð10Þ] for �2 >
ffiffiffi
6

p
=3,

see Fig. 9. This property is different from two-field quin-
tessence with exponential potentials in which �2 begins to
evolve at smaller redshifts for the same values of �2. We
also note that the present values of w� and weff are in-

sensitive to the choice of �1, as long as the condition (54) is
satisfied.

B. More than two fields

In the presence of more than two scalar fields it is
possible to obtain smaller values of w� and weff today

relative to the two-field scenario discussed above. In
Fig. 11 we plot w�ðz ¼ 0Þ versus �i (i � 2) for �1 ¼ 40.

The initial conditions for�i (i � 2) are chosen so that they
join the assisted attractor almost at the same time. For the
three-field scenario with �2 ¼ �3 ¼ 0:817 (slightly larger

than
ffiffiffi
6

p
=3) one has w�ðz ¼ 0Þ ¼ �0:60 and weffðz ¼

0Þ ¼ �0:43, so that cosmic acceleration is realized today.
However, this case is difficult to be compatible with the
observational bound w�ðz ¼ 0Þ<�0:8. Even for the five-

field case with �i ¼ 0:817 (i ¼ 2; 3; 4; 5) we find that
w�ðz ¼ 0Þ ¼ �0:70, which is still larger than �0:8.

In Fig. 12 we plot w�ðz ¼ 0Þ, weffðz ¼ 0Þ, and w� at the

late-time attractor for �1 ¼ 40 and �i ¼ 0:817 (i � 2).

FIG. 10. The equations of state w� and weff today versus �2

for �1 ¼ 40 in the two-field dilatonic ghost condensate model. If
�2 < 1:734 the scalar-field-dominated point is the final attractor.
If �2 >

ffiffiffi
6

p
=3 the field �2 cannot be responsible for cosmic

acceleration as a single component of the universe. The two lines
(a) and (b) in the figure correspond to �2 ¼ 1:734 and �2 ¼ffiffiffi
6

p
=3, respectively.

FIG. 11. The equation of state w� today versus �i (i � 1) for
�1 ¼ 40 in the multifield dilatonic ghost condensate model (up
to five fields with the same slopes �i, i � 2). In this simulation
the fields �i (i � 2) enter the regime of the assisted attractor
almost at the same time. Under the condition �i >

ffiffiffi
6

p
=3 (which

is shown as a thin dotted line in the figure), it is difficult to
realize w�ðz ¼ 0Þ<�0:8 even in the presence of five scalar

fields.
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multifield dilatonic ghost condensate model. In this simulation
the fields �i (i � 2) enter the regime of the assisted attractor
almost at the same time.
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This shows that we require at least ten scalar fields to
realize the condition w�ðz ¼ 0Þ<�0:8. Equation (56)

leads to larger w� at the assisted attractor relative to the

case of the multifield quintessence with exponential poten-
tials for the same values of �eff . In addition to the early
thawing of assisting scalar fields, this is another reason
why a large number of fields are required to realize small
w�ðz ¼ 0Þ close to �1. In Fig. 12 we find that w�ðz ¼ 0Þ
is almost proportional to w�ðattractorÞ for n � 3. Unless

we have many fields such that n � 10, w�ðz ¼ 0Þ as well
as w�ðattractorÞ are not reduced sufficiently to satisfy the

observational bound. Of course, if we do not demand the

condition �i >
ffiffiffi
6

p
=3 (i � 2), it is possible to realize

w�ðz ¼ 0Þ<�0:8 without introducing many fields.

VI. CONCLUSIONS

In this paper we have studied cosmological dynamics of
assisted dark energy for the Lagrangian density (2) that
possesses scaling solutions. This scaling Lagrangian den-
sity involves many models such as quintessence with ex-
ponential potentials, dilatonic ghost condensates, and
tachyon fields with inverse power-law potentials. As long
as the energy density of a field �1 (with �2

1 � p;X1
)

dominates over those of other fields, the density parameter
��1

remains constant during the radiation and matter eras

(��1
¼ 4p;X1

=�2
1 and ��1

¼ 3p;X1
=�2

1, respectively).

This property is attractive because the solutions enter the
scaling regime even if the field energy density is initially
comparable to the background fluid density.

In the presence of multiple scalar fields, the scaling
matter era can be followed by the phase of a late-time
cosmic acceleration as long as more than one field join the
assisted attractor. The field equation of state for the assisted
attractor takes an effective single-field value w� ¼ �1þ
�2
eff=ð3p;XÞ, with �eff given by Eq. (3). Since �eff is smaller

than the slope �i of the each field, the presence of multiple
scalar fields can give rise to cosmic acceleration even if
none is able to do so individually. This is a nice feature
from the viewpoint of particle physics because there are in
general many scalar fields (dilaton, modulus, etc.) with the
slopes �i larger than the order of unity.

While the above property of cosmological dynamics is
generic for the scaling models with the Lagrangian density
(2), the evolution of w� as well as�� is different depend-

ing on the forms of the Lagrangian density p. In order to
see this we have focused on two models: (i) canonical
fields with exponential potentials, and (ii) multiple dila-
tonic ghost condensates. These correspond to representa-
tive examples of quintessence and k-essence, respectively.

For the multifield quintessence with exponential poten-
tials, the slope �1 for the scaling field is constrained to be

�1 > 9:42 from the BBN bound. We have numerically
found that the transient cosmic acceleration today with a
nonaccelerated attractor can be realized after the scaling
matter era. This comes from the thawing property of
assisting scalar fields that start to evolve only recently
from a nearly frozen regime characterized by the equation
of state w�i

’ �1 (i � 2). Even for the initial conditions

where the kinetic energies of �i (i � 2) are much larger
than their potential energies, we have confirmed that the
fields �i enter the frozen regime by the end of the
radiation-dominated epoch. In the presence of three scalar
fields we have found that the total field equation of statew�

today can be smaller than�0:8, even if each field is unable
to be responsible for the accelerated expansion as a single
component of the universe.
The multifield dilatonic ghost condensate model does

not possess an exact scaling radiation era, although the
scaling matter era is present. In this model the slope �1 of
the field �1 is more severely constrained from the BBN
bound relative to the multifield quintessence with expo-
nential potentials. The fields �i (i � 2) enter the regime
characterized byw�i

’ �1 during the radiation-dominated

epoch. However, the exit from this regime occurs earlier
than the multifield quintessence with exponential poten-
tials for the same values of �i, which generally leads to a
larger field equation of state w� today. In the two-field

scenario we have found that cosmic acceleration does not
occur at the present epoch if the fields are unable to give
rise to inflation individually. While the acceleration today
is possible in the presence of more than two fields, we
require at least ten fields to satisfy the observational bound

w�ðz ¼ 0Þ<�0:8 under the condition �i >
ffiffiffi
6

p
=3 (i � 2).

In single-field scaling models with an exit to the late-
time acceleration (such as the model in Ref. [15]), the field
equation of state w� changes from zero to negative during

the transition from the matter era to the accelerated epoch.
Meanwhile the multifield dark energy models we have
discussed in this paper exhibit a rather peculiar behavior
of w�: it first reaches a minimum and then starts to grow

toward the assisted attractor (see Figs. 4 and 9). It will be of
interest to see whether future high-precision observations
will detect some signatures for such dynamics.
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