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We study the production of sterile neutrinos in the region T �MW in an extension beyond the standard

model with the seesaw mass matrix originating in Yukawa couplings to Higgs-like scalars with masses and

vev’s of the order of the electroweak scale. Sterile neutrinos are produced by the decay of scalars and

standard model vector bosons. We obtain the index of refraction, dispersion relations, mixing angles in the

medium and production rates including those for right-handed sterile neutrinos, from the standard model

and beyond the standard model self-energies. For 1 & MW=T & 3 we find narrow MSW resonances with

k & T for both left- and right-handed neutrinos even in absence of a lepton asymmetry in the (active)

neutrino sector, as well as very low energy (k=T � j�j) narrow MSW resonances in the presence of a

lepton asymmetry consistent with the bounds from Wilkinson Microwave Anisotropy Probe and Big Bang

Nucleosynthesis. For small vacuum mixing angle, consistent with observational bounds, the absorptive

part of the self-energies lead to a strong damping regime very near the resonances resulting in the exact

degeneracy of the propagating modes with a concomitant breakdown of adiabaticity. We argue that

cosmological expansion sweeps through the resonances, resonant and nonresonant sterile neutrino

production results in a highly nonthermal distribution function enhanced at small momentum k < T,

with potentially important consequences for their free-streaming length and transfer function at small

scales.
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I. INTRODUCTION

In the concordance �CDM standard cosmological
model, the Universe today is composed approximately by
70% of a dark energy component responsible for the
acceleration, about 25% of dark matter (DM) and about
5% of ordinary matter (baryons). In this scenario the DM
component is cold and collisionless, and structure forma-
tion proceeds in a hierarchical ‘‘bottom-up’’ manner: small
scales become nonlinear and collapse first and their merger
and accretion lead to structures on larger scales [1]. This is
a consequence of the fact that cold dark matter (CDM)
particles feature negligible velocity dispersion leading to a
power spectrum that favors small scales. In this hierarch-
ical scenario dense clumps that survive the merger process
form satellite galaxies. Numerical simulations of structure
formation with CDM predict many orders of magnitude
more DM subhaloes than observed low luminosity dwarf
galaxies [2–7]. These simulations also yield a density
profile that increases monotonically towards the center
[3,7–11] �ðrÞ � r��, � ¼ 1 corresponds to the Navarro-
Frenk-White profile, but steeper profiles with �� 1:2 have
been found recently in numerical simulations [7]. These
density profiles accurately describe clusters of galaxies but

there has been recent observational evidence that seems to
indicate a shallow cored profile instead of cusps in dwarf
spheroidal galaxies which are deemed to be DM dominated
[12–17]. This core vs cusp controversy is still being de-
bated, and recent arguments suggest that the interpretation
of the data is subject to assumptions and modelling [18].
Recently yet another discrepancy between the predictions
of�CDM and observations has been revealed, the ‘‘empti-
ness of voids’’, possibly related to the overabundance
problem [19].
Warm dark matter particles (WDM) were invoked [20–

23] as possible solutions to the core vs cusps and the
overabundance problems in satellite galaxies. WDM par-
ticles feature a nonvanishing velocity dispersion with a
range in between CDM and hot dark matter leading to a
free-streaming scale that cuts off power at small scales
thereby smoothing out small scale structure. If the free-
streaming scale of the WDM particles is smaller than the
scale of galaxy clusters, the large scale structure properties
are indistinguishable from those of CDM, but may affect
structure at small scales [24], thereby providing an expla-
nation of the smoother inner profiles and the fewer satel-
lites. A small scale cutoff in the DM power spectrum may
also explain the apparent smallness of galaxies at z� 3
found in Ref. [25].
Although the interpretation of cores in dSphs may be

challenged by alternative explanations, and the missing
satellite problem could be resolved by astrophysical
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mechanisms such as complex ‘‘gastrophysics,’’ and recent
simulations suggest that the dynamics of subhalos is not
too different in WDM and CDM models [26], there is an
intrinsic interest in studying alternatives to the standard
CDM paradigm.

Any particle physics explanation of DM involves exten-
sions beyond the standard model (SM), allowing quite
generally, both CDM and WDM candidates.

Sterile neutrinos, namely, SUð2Þ singlets, with masses in
the�keV range may be suitable WDM candidates [27–35]
and may provide possible solutions to other astrophysical
problems [31]. The main property that is relevant for
structure formation of any DM candidate is its distribution
function after decoupling [34,36] which depends on the
production mechanism and the quantum kinetic evolution
from production to decoupling. Sterile neutrinos may be
produced by various different mechanisms [27–33], among
them nonresonant mixing, or Dodelson-Widrow (DW)
[27–29] has been invoked often. However, there seems to
be some tension between the x ray [37] and the Lyman-�
forest data [38,39] leading to the suggestion [40] that DW-
produced sterile neutrinos cannot be the dominant WDM
component.

A phenomenologically appealing extension of the SM
with only one scale has been recently proposed [30,35,41].
In this model sterile neutrinos may be produced by the
decay of a gauge-singlet scalar with a mass of the order of
the electroweak scale [31–33,42]. In this scenario sterile
neutrinos are produced and decouple at a temperature of
the order of the mass or the scalar [32,33,43].

Recently [43] the quantum kinetics of production and
decoupling of �keV sterile neutrinos in these models was
studied with the result that production via the decay of the
gauge-singlet scalar leads to a nonthermal distribution
function that favors small momentum. This result was
combined with an analytic method to obtain the transfer
function during matter domination recently introduced in
Ref. [44]. This method reveals the influence of the distri-
bution function of the decoupled particle upon the power
spectrum and free-streaming length [45]. The results of
Ref. [43] point out that sterile neutrinos produced via the
decay of gauge-singlet scalars in the model advocated in
Refs. [30–33,42,43] yield smaller free-streaming lengths
and an enhancement of power at small scales as compared
to those produced by the DW mechanism. Combining the
results for the distribution function of sterile neutrinos
produced via scalar decay with abundance and phase space
constraints from dwarf spheroidal galaxies [34] yields a
narrow window for the mass of sterile neutrinos [43]:
0:56 keV & Ms & 1:33 keV. The robustness of this bound
has been confirmed in Ref. [46], but there may be some
tension with recent analysis of the Lyman-� forest with
nonthermal populations [47], although the results in this
reference relate mainly to resonant production.

Recent observations of the x-ray spectra from the Ursa
Minor dwarf spheroidal galaxy with the Suzako satellite

[48] suggest that sterile neutrinos with masses in the keV
range with mixing angles �� 10�5 remain viable candi-
dates as main dark matter constituents, a result that seems
to be confirmed by those of Ref. [47].
Motivation and objectives: The clustering properties of

dark matter candidates depend on the free-streaming length
which determines the scale below which power is sup-
pressed. When the DM particle of mass Ms has become
nonrelativistic, the free-streaming length is approximately
given by

�fs ’ ½hp2i=M2
sG��1=2;

where � is the DM density and the average is with the
distribution function of the decoupled DM particle.
Distribution functions that favor small momenta lead to
smaller free-streaming lengths and more power a small
scales [43–45].
The study in Ref. [43] revealed that the nonresonant

mechanism of sterile neutrino production by scalar decay
advocated in Refs. [30,32,33,42] leads to a nonthermal
distribution function that favors small momenta with im-
portant consequences for structure formation and remark-
able differences with sterile neutrinos produced by the DW
mechanism [27], whose distribution function is that of a
thermal relic that decoupled while relativistic, but multi-
plied by an overall factor [27]. This overall factor in the
DW distribution function only affects the abundance, but
for a fixed DM density � the resulting free-streaming
length is that of a neutrino of mass Ms decoupled at the
sterile neutrino decoupling temperature. For a fixed mass
and relic density the nonthermal distribution function from
the production mechanism studied in Refs. [32,33,43]
yields a smaller �fs and more power at small scales than
in the DW mechanism without modifying the large scale
power spectrum.
In the extension beyond the standard model (bsm) advo-

cated in Refs. [30,32,33,42,43] sterile neutrinos mix with
active neutrinos via a Yukawa coupling to the standard
model Higgs [30] whose expectation value yields a seesaw
mass matrix. The diagonalization of this seesaw mass
matrix yields interaction vertices between vector bosons
and the sterilelike neutrino. This is important because the
distribution functions being a function of the energy, are
necessarily associated with mass or energy eigenstates, not
flavor eigenstates.
The study in Refs. [32,33,43] reveals that sterile neutri-

nos are produced and decouple at a temperature of the
order of the mass of the scalar, which in the model of
Refs. [30,32,33,42] is of the order of the Higgs mass.
At this temperature the charged and neutral vector bo-

sons are present in the medium with large abundance,
comparable to that of the scalar. Their decay into the
sterilelike neutrinos will therefore contribute to their total
abundance and distribution function. This is one of the
main observations in this article. The coupling of the
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charged and neutral vector bosons to the sterilelike neu-
trino is suppressed by the (small) mixing angle, but since
the standard model couplings are much larger than the
Yukawa couplings of the scalar to the sterile neutrino, the
question is whether the decay of vector bosons may lead to
a substantial contribution to the production rate of the
sterilelike neutrinos. For Ms � keV and the expectation
value of the Higgs-like scalar in the range �100 GeV the
Yukawa coupling Y � 10�8, the production rate via this
process / Y2, whereas the contribution from Z, W decay
would be expected to be / �wsin

2ð�Þ, with � the mixing
angle. For �� 10�5 [42,48] the production rate of sterile-
like neutrinos via vector boson decay can be of the same
order of or larger than that from scalar decay. This obser-
vation suggests that sterile neutrino production via the
decay of vector bosons in the medium may be competitive
with the production via scalar decay.

At high temperature and or density the mixing angle is
modified by medium effects [49–55], therefore the first
step towards understanding whether vector boson decay
contributes to the production of sterilelike neutrinos is to
obtain the in-medium correction to the mixing angles.

A more general aspect of sterile neutrino production via
vector boson decay at T �MW is that both the index of
refraction (real part of the self-energy) and the production
rate determined by the absorptive part (imaginary part of
the self-energy) are of OðGFÞ. This is in contrast to the
usual situation at temperatures much smaller than the
electroweak scale when the index of refraction is of
OðGFÞ, but the absorptive part is of OðG2

FÞ.
Although the finite temperature and density corrections

to the index of refraction have been obtained for T �
MW;Z [53–55], to the best of our knowledge the study of

the self-energy, the index of refraction (real part) and
absorptive part (width) at T ’ MW;Z has not been carried

out.
To be sure, upon the diagonalization of the mass matrix,

standard model interaction vertices with the sterilelike
neutrino lead to production processes via both charged
and neutral current interactions such as �ll ! ��1�2; �ff !
��1�2 with charged leptons (l) or quarks (f) and �1 � �a;
�2 � �s (active and sterile, respectively) for small mixing
angle. These processes are of Oð�2

wsin
2�Þ and while they

will eventually become important for T � MW;Z when the

population of vector bosons in the medium becomes �
�w, these are formally subleading in the weak coupling at
T �MW;Z.

Therefore at T �MW;Z vector boson decay is the lead-

ing production mechanism from weak interactions.
Our objective is to provide a comprehensive assessment

of sterile neutrinos as potential DM candidates implement-
ing the following program:

(i) Obtain the production rates and mixing angle in the
medium from the quantum field theory model at T �
MW , studying the possibility of MSW resonances to

determine whether sterile neutrinos are produced
resonantly or nonresonantly.

(ii) Obtain and solve the kinetic equations describing the
production and decoupling of sterile neutrinos using
the rates and mixing angles obtained from previous
step.

(iii) The asymptotic solution of the kinetic equation
yields the distribution function after freeze-out,
which determines the abundance and the free-
streaming length. This distribution function is input
in the program described in Refs. [43,44] to obtain
the transfer function and power spectrum.

In this article we carry out the first step of this program.
We implement methods of field theory at finite temperature
and density developed in Refs. [54,56–59] to obtain the
mixing angles in the medium and production rates both
from scalar and vector boson decay.
Results: We study a simple extension of the standard

model with one active and one sterile neutrino to extract
the robust features in a simpler setting. Both active and
sterile neutrinos are considered to be Dirac, this is to
include the possibility of a lepton asymmetry hidden in
the (active) neutrino sector (Majorana neutrinos cannot be
assigned a chemical potential), and to allow us to study the
production of left- and right-handed neutrinos.
We obtain the dispersion relations, index of refraction,

mixing angles, and production rates in the medium from
the self-energy contributions from standard model sm and
bsm interactions. The seesaw mass matrix that mixes them
emerges from the Yukawa couplings to Higgslike scalars
with masses of the order of MW;Z that acquire expectation

values also of this order. We focus on the temperature
region T �MW where vector and scalar bosons are present
in the medium with large thermal populations. The decay
of both the scalar and vector bosons contribute to the
production of sterile neutrinos. Our main results are:
(i) We find one MSW resonance even in the absence of

a lepton asymmetry. For 1 & MW=T & 3 this reso-
nance is in the low momentum region 0:2 & k=T &
1 and well within the regime of validity of the
perturbative expansion. Including a lepton asymme-
try in the active neutrino sector consistent with the
data from Wilkinson Microwave Anisotropy Probe
(WMAP) and Big Bang Nucleosynthesis (BBN)
[60], we find two low energy MSW resonances, the
lowest one is a consequence of the lepton asymmetry
that occurs at k=T � � with j�j being the lepton
asymmetry parameter. In the region of interest for
this study for small vacuum mixing angle consistent
with the observational bounds from x-ray data [48]
these resonances are very narrow. We find reso-
nances also for positive energy, positive helicity,
namely, nearly right-handed neutrinos.

(ii) At the resonances the propagating frequencies be-
come exactly degenerate in striking contrast with the
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quantum mechanics of neutrino mixing wherein
there is level repulsion at the resonance. This exact
degeneracy at the resonance entails the breakdown of
adiabaticity. It is a distinct consequence of the ab-
sorptive part of the self-energy and leads to a strong
damping regime.

(iii) The form of the standard model contribution to the
production rate is similar to that from scalar decay
found in Ref. [43]. We argue that cosmological
expansion will lead to a rapid crossing of the narrow
resonances resulting in both resonant and nonreso-
nant sterile neutrino production. In particular nearly
right-handed sterile neutrinos are produced by the
decay of Z0, W� vector bosons. Their distribution
functions after freeze-out will be highly nonthermal
with a distinct enhancement at small momentum k <
T and perturbatively small population. This low
momentum enhancement of the nonthermal distribu-
tion function is expected [43,44] to have important
consequences: a shortening of the free-streaming
length (smaller velocity dispersion) and an increase
of the transfer function and power spectrum at small
scales.

(iv) We find a consistent range of parameters for which
there is a resonance for positive helicity, positive
energy neutrinos, namely, nearly right-handed at
T �MW . The general field theory framework allows
a systematic study of the properties for both helicity
states, including the helicity dependence of mixing
angles and production rates.

II. THE MODEL

The extension of the standard model presented in
Refs. [32,33,42] generalizes the proposal of the � MSM
of Refs. [30,41] and is also a generalization of the model
presented in Ref. [61]. These models include three SUð2Þ
singlet (sterile) neutrinos which couple to the active neu-
trinos via a seesaw mass matrix. The generalization of
Refs. [32,33,42] gives a mass to the sterile neutrino via a
Yukawa coupling to a Higgslike scalar field which could be
the neutral Higgs component, or another scalar whose
expectation value is of the same order as that of the sm
Higgs boson, therefore this type of extension features only
one scale.

We study a simplified version of these models by con-
sidering only one sterile and one active neutrino. In the
usual seesaw mechanism an off-diagonal Dirac mass ma-
trix for the active species is considered along with a
diagonal Majorana mass for the sterile neutrino
[30,41,50–52]. However, instead of considering a
Majorana sterile neutrino, we allow for Dirac mass terms
for all species. This generalization allows to study simul-
taneously the possibility of a lepton asymmetry in the
(active) neutrino sector for which a Dirac field is required,
along with the possibility of a right-handed component

leading to potentially relevant degrees of freedom within
the same simple model.
Our goal is to extract generic and robust features of the

production rates and mixing angles in the medium along
with a reliable estimate of sterile production rates. The
generalization to three species can be done relatively
straightforwardly (but for the complications associated
with dealing with larger mixing matrices), and the case
of a Majorana neutrino is regained straightforwardly by
projection.
We consider a model with one active (�a) and one sterile

(�s) (an SUð2Þ singlet) Dirac neutrinos, described by the
Lagrangian density

L ¼ LSM þ ��si@6 �s � Y1 ��s
~Hyl� Y2 ��s��s

þL½�� þ H:c:; (2.1)

where

l ¼ �a

f

� �
; ~H ¼ H0

H�
� �

: (2.2)

f is the charged lepton associated with �a and H0, H� are
the components of the standard model Higgs doublet, and
� is a real scalar singlet field whose expectation value
gives a Dirac mass to the sterile neutrino. The Lagrangian
density L½�� describes the kinetic and potential terms of
�.
In unitary gauge we write

H0 ¼ hH0i þ �; � ¼ h�i þ ’ (2.3)

and consistently with the single scale assumption of the �
MSM: hH0i � h�i are of the same order of magnitude (the
weak scale) and that their masses are also of the same
scale. In fact our analysis is quite general, and this assump-
tion will only be invoked for a quantitative assessment. The
Lagrangian density (2.1) becomes

L ¼ LSM þ ��si@6 �s � ���M�	�	 � Y1 ��s��a

� Y2 ��s’�s þL½h�i þ ’� þ H:c:;

�;	 ¼ a; s; (2.4)

where

M ¼ 0 m
m Ms

� �
; m ¼ Y1hH0i; Ms ¼ Y2h�i:

(2.5)

Introducing the ‘‘flavor’’ doublet ð�a; �sÞ the diagonaliza-
tion of the mass term M is achieved by a unitary trans-
formation to the mass basis ð�1; �2Þ, namely,

�a

�s

� �
¼ Uð�Þ �1

�2

� �
; Uð�Þ ¼ cosð�Þ sinð�Þ

� sinð�Þ cosð�Þ
� �

;

(2.6)

where
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cosð2�Þ ¼ Ms

½M2
s þ 4m2�1=2 ;

sinð2�Þ ¼ 2m

½M2
s þ 4m2�1=2 :

(2.7)

In the mass basis

M m ¼ U�1ð�Þ; MUð�Þ ¼ M1 0
0 M2

� �
;

M1 ¼ 1

2
½Ms � ½M2

s þ 4m2�1=2�;

M2 ¼ 1

2
½Ms þ ½M2

s þ 4m2�1=2�:

(2.8)

We focus on a seesaw with Ms � keV � m therefore

M1 ’ �m2

Ms

; M2 ’ Ms;

sinð2�Þ ’ 2m

Ms

�
��������M1

M2

��������1=2� 1:

(2.9)

Taking hH0i � h�i the small mixing angle entails that
Y1 � Y2 which results in self-energy corrections from the
� exchange are subleading as compared to those from the
’ exchange. For example taking h�i � hH0i, and for a
�keV sterile neutrino it follows that

Y2 � 10�8 � Y1; sinð2�Þ � Y1=Y2: (2.10)

However, we can alternatively consider a predetermined
seesaw mass matrix and set Y1 ¼ Y2 ¼ 0 which corre-
sponding to a simpler extension of the standard model
that posits a mass matrix that originates beyond the stan-
dard model.

Our goal is to obtain the dynamical aspects of sterile
neutrinos in the medium, mixing angles, dispersion rela-
tions, and damping rates, which determine the production
rates. These are obtained directly from the solution of the
equations of motion including the self-energy corrections
in the medium. The one-loop self-energies require the
neutrino propagators in the medium in the mass basis,
since the mass eigenstates are the true propagating states.
For � � 1 the mass eigenstates �1 � �a; �2 � �s, and the
active neutrino reaches equilibrium at T * 1 MeV via the
weak interactions, whereas the sterile neutrinos are not
expected to equilibrate.

This argument, however, hinges on the smallness of the
vacuum mixing angle, but in a medium the mixing angle
can become very large, and if there are MSW resonances
the roles of the medium eigenstates may be reversed.
Whether there are MSW resonances and the medium mix-
ing angle becomes large can only be answered a posteriori.

Therefore we assume that the mass eigenstate �1 is
activelike, and features a Fermi-Dirac distribution func-
tion, whereas for �2 the propagators are the vacuum ones.
Furthermore, it is possible that if there is a large lepton
asymmetry it may be stored in the neutrino sector, whereas

the asymmetry in the charged leptons equals the baryon
asymmetry and can be neglected. Hence the Fermi-Dirac
distribution functions in the �1 propagator includes a
chemical potential.
In our study we explicitly separate the fermionic and

bosonic contributions to the self-energies to assess the
consistency of the assumption that the eigenstate ‘‘1’’ is
activelike.

III. EQUATIONS OF MOTION

The effective Dirac equation in the medium is derived
with the methods of nonequilibrium quantum field theory
described in [56,57,59]. We follow the approach presented
in Refs. [56,57] and introduce an external Grassmann-
valued source that couples linearly to the neutrino field
via the Lagrangian density

L S ¼ ���
� þ �
���; (3.1)

whence the total Lagrangian density is given by LþLS.
The external source induces an expectation value for the
neutrino field which obeys the effective equation of motion
with self-energy corrections from the medium [59].
The equation of motion is derived by shifting the field

��
� ¼ c � þ��

� , c � ¼ h��
� i imposing h��

� i ¼ 0 order by
order in the perturbation theory [56,57,59]. Since the self-
energy corrections to the equations of motion require the
neutrino propagators, we obtain the equation of motion in
the mass basis.
Implementing this program up to one-loop order, we find

the following equation of motion for the doublet in the
mass basis c T � ðc 1; c 2Þ, it is given by

ði@6 I�Mmþ�tad
smLÞc ð ~x; tÞþ

Z
d3x0dt0½�ret

smð ~x� ~x0; t� t0ÞL
þ�ret

bsmð ~x� ~x0; t� t0Þ�c ð ~x0; t0Þ ¼�
ð ~x; tÞ; (3.2)

where I is the identity matrix, Mm ¼ diagðM1;M2Þ is the
mass matrix in the mass basis, L ¼ ð1� �5Þ=2 is the left-
handed chiral projection operator, �tad

sm is the (local) tad-
pole contribution from the sm neutral current interaction
(see Fig. 1). �ret

smð ~x� ~x0; t� t0Þ and �ret
bsmð ~x� ~x0; t� t0Þ

are, respectively, the real-time retarded self-energies from
sm and bsm (scalar) interactions. Introducing the space-
time Fourier transform in a spatial volume V

c ð ~x; tÞ ¼ 1ffiffiffiffi
V

p X
~k

Z
dk0e

i ~k� ~xe�ik0t ~c ðk0; ~kÞ (3.3)

and similarly for the self-energy kernels and the source
term, the equation of motion in the mass basis becomes

½ð�0k0 � ~� � ~kÞI�Mm þ�tad
smLþ�smðk0; ~kÞL

þ�bsmðk0; ~kÞ� ~c ðk0; ~kÞ ¼ �~
ðk0; ~kÞ: (3.4)

The space-time Fourier transform of the retarded self-
energies (not the tadpole) feature a dispersive representa-
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tion

�ðk0; kÞ ¼ 1

�

Z 1

�1
d!

Im�ð!; ~kÞ
!� k0 � i0þ

: (3.5)

A. One-loop self-energy

We focus on the temperature region MZ;W;�;’ * T, in

which using the unperturbed thermal propagators for the
scalar and vector bosons is valid [62]. In Sec. VD we show
that perturbation theory is valid for k * �wT or MW;�;’ *

T, furthermore for k � MW our results reproduce those
found in the literature for T � MW [53,54], and the per-
turbative expansion is reliable for MW * 2T.

The sm charged and neutral current contributions to the
self-energy in the mass basis are depicted in Fig. 1. The
latin indices i, j, k ¼ 1, 2 refer to the mass basis fields and
the label f in the intermediate fermion propagator in the
charged current diagram in Fig. 1 refers to the charged
lepton associated with the active neutrino. The contribu-
tions from scalar exchange bsm in the mass basis are
depicted in Fig. 2.

SM neutral currents: The tadpole contribution in the
mass basis is given by

�tad
sm ¼ �tU�1ð�Þ 1 0

0 0

� �
Uð�Þ; (3.6)

where1

�t ¼ ��0 g2

4M2
W

Z d3q

ð2�Þ3 ðn� � �n�Þ

¼ ��0 g2T3

24M2
W

�

�
1þ �2

�2

�
;

� ¼ �

T
: (3.7)

In this expression n�, �n� are the Fermi-Dirac distribution
functions for neutrinos and antineutrinos, respectively, and
we have neglected the contribution from the asymmetry of
the charged lepton and quark sectors since these are pro-
portional to the (negligible) baryon asymmetry. We allow
for a lepton asymmetry stored in the neutrino sector. A
recent analysis [60] from the latest WMAP and BBN data
suggests that j�j & 10�2.
The neutral current diagrams that contribute to the one-

loop self-energy feature two different terms corresponding
to the intermediate neutrino line being either �1 or �2. As
argued above, for small mixing angles �1 � �a and weak
interactions equilibrate these mass eigenstates with the
medium, therefore their finite temperature propagator fea-
tures the Fermi-Dirac distribution function (with a chemi-
cal potential allowing for a lepton asymmetry). However,
�2 � �s will not equilibrate with the medium since their
coupling to the environmental degrees of freedom is sup-
pressed by at least two powers of the (small) mixing angle,
therefore �2 features a vacuum propagator. The one-loop
diagrams are shown in Fig. 3 where the superscripts (1) and
(2) are used to specify the intermediate neutrino propagator
�1 and �2 respectively.
In the mass basis we find for the neutral current contri-

butions shown in Fig. 3

�ncðk0; ~kÞ ¼ ½cos2ð�Þ�ð1Þ
nc ðk0; ~kÞ

þ sin2ð�Þ�ð2Þ
nc ðk0; ~kÞ�U�1ð�Þ 1 0

0 0

� �
Uð�Þ:
(3.8)

FIG. 2. Beyond the standard model contributions to the self-
energy �bsm. The indices i, k, j ¼ 1, 2 corresponding to mass
eigenstates. The dashed line is a scalar propagator either for � or
’.

FIG. 3. Neutral currents contribution to the one-loop retarded
self-energy �sm. The indices i, j ¼ 1, 2 and the indices 1, 2
denote the corresponding mass eigenstate in the intermediate
state.

FIG. 1. Standard model contributions to the self-energy �sm.
The indices i, k, j ¼ 1, 2 corresponding to mass eigenstates, the
index f for the intermediate fermion line in the charged-current
self-energy refers to the charged lepton associated with the
active neutrino.

1This expression corrects a typographic error in Ref. [56].
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sm charged currents: the charged current one-loop self-
energy is shown in Fig. 1, since the intermediate state is a
charged lepton we find in the mass basis

�ccðk0; ~kÞ ¼ �cc;smðk0; ~kÞU�1ð�Þ 1 0
0 0

� �
Uð�Þ; (3.9)

where �cc;smðk0; ~kÞ is the usual standard model one-loop

self-energy in thermal equilibrium.
BSM scalar exchange: The scalar exchange contribu-

tions to the self-energy are shown in Fig. 4. For sin2ð�Þ �
1 we find

�bsmðk0; ~kÞ ¼ ½cos2ð�Þ�ð1Þ
� ðk0; ~kÞ þ sin2ð�Þ�ð1Þ

’ ðk0; ~kÞ

þ cos2ð�Þ�ð2Þ
’ ðk0; ~kÞ�U�1ð�Þ 0 0

0 1

� �
Uð�Þ

þ cos2ð�Þ�ð2Þ
’ ðk0; ~kÞU�1ð�Þ 1 0

0 0

� �
Uð�Þ:
(3.10)

Summary of self-energies in the flavor basis: The struc-
ture of the self-energies [to leading order in sin2ð�Þ (3.6),
(3.7), (3.8), (3.9), and (3.10)] indicates that they are diago-
nal in the flavor basis. In this basis the total self-energy is
given by

�ðk0; ~kÞ ¼ �aaðk0; ~kÞ 0
0 �ssðk0; ~kÞ

 !
; (3.11)

where

�aaðk0; ~kÞ ¼ ½�t þ cos2ð�Þ�ð1Þ
nc ðk0; ~kÞ þ sin2ð�Þ�ð2Þ

nc ðk0; ~kÞ
þ �cc;smðk0; ~kÞ�Lþ cos2ð�Þ�ð2Þ

� ðk0; ~kÞ;
(3.12)

�ssðk0; kÞ ¼ cos2ð�Þ�ð1Þ
� ðk0; ~kÞ þ sin2ð�Þ�ð1Þ

’ ðk0; ~kÞ
þ cos2ð�Þ�ð2Þ

’ ðk0; ~kÞ: (3.13)

Since in the sm contributions we have explicitly factored
out the left-handed projector L, the remainder contribu-

tions to the sm self-energies �nc;cc are those of a vectorlike

theory. The bsm contributions feature both chiralities since
we have considered a Dirac mass term for the sterile
neutrino, a left-handed Majorana mass term can be ob-
tained by neglecting the right-handed contribution. We
consider the regime T � M1;2, mf and k0, k � M1;2, mf,

where mf stand for the charged lepton masses; therefore,

we can safely neglect the mass terms and consider the
propagators of massless fermionic fields.
In this regime the general form of the sm self-energies

with vector boson exchange, either charged or neutral
currents is written in dispersive form as in Eq. (3.5) with
[56,57]

Im�smð!; ~kÞ ¼ �g2sm
Z d3q

ð2�Þ3
Z

dp0dq0ð!� p0 � q0Þ
	 ½1� nFðp0Þ þ NBðq0Þ����Fðp0; ~pÞ
	 �Bðq0; ~qÞ��P��ðq0; ~qÞ; (3.14)

where F stands for the fermionic species in the intermedi-
ate state. For �1 and charged lepton nF is the Fermi-Dirac
distribution function, whereas for �2 it is nF ¼ 0 since the
‘‘sterile’’ neutrino does not thermalize with the medium.
For the bsm contributions, the general form for scalar
exchange is

Im�bsmð!; ~kÞ ¼ �Y2
Z d3q

ð2�Þ3
Z

dp0dq0ð!� p0 � q0Þ
	 ½1� nFðp0Þ þ NBðq0Þ�
	 �Fðp0; ~pÞ�Bðq0; ~qÞ (3.15)

where

gsm ¼
� gffiffi

2
p CC

g
2 cosð�wÞ NC

(3.16)

and Y ¼ Y1, Y2 for � and ’ exchange, respectively. The
spectral densities are, respectively, (for massless fermions)

�Fðp0; ~pÞ ¼ 1

2

�
�0 � ~� � ~p

p

�
ðp0 � pÞ

þ 1

2

�
�0 þ ~� � ~p

p

�
ðp0 þ pÞ; (3.17)

�Bðq0; ~qÞ ¼ 1

2Wq

½ðq0 �WqÞ � ðq0 þWqÞ�;

Wq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þM2

q
: (3.18)

The projection operator

P��ðq0; ~qÞ ¼ �
�
g�� �

q�q�

M2
Z;W

�
; q� ¼ ðq0; ~qÞ

(3.19)

and

FIG. 4. Scalar exchange contributions to the one-loop self-
energy �bsm. The indices i, j ¼ 1, 2 and the indices 1, 2 denote
the corresponding mass eigenstate in the intermediate state.
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nFðp0Þ ¼ 1

eðp0��Þ=T þ 1
;

�nFðp0Þ ¼ 1� n�ð�p0Þ;

NBðq0Þ ¼ 1

eq0=T � 1
:

(3.20)

We have allowed a chemical potential for the neutrinos
(only for �1 � �a) to include the possibility of a lepton
asymmetry in the (active) neutrino sector.

In the expressions above, the masses for the scalars or
vector bosons are M�;’, MZ;W as appropriate for each

contribution. All the self-energies share the general form

�ðk0; ~kÞ � �0Aðk0; kÞ � ~� � k̂Bðk0; kÞ; (3.21)

the detailed expressions for the imaginary parts of the sm
and BSM contributions are given in the appendices.

In particular, for the neutral current tadpole Bðk0; kÞ ¼ 0
and Aðk0; kÞ can be recognized from Eq. (3.7). Combining
(3.11) with this form we write the self-energy matrix in the
flavor basis as

�tad
smLþ�smðk0; ~kÞLþ �bsmðk0; ~kÞ

� ½�0ALðk0; kÞ � ~� � k̂BLðk0; kÞ�L
þ ½�0ARðk0; kÞ � ~�:k̂BRðk0; kÞ�R: (3.22)

In the flavor basis these matrices are of the form

A ðk0; kÞ ¼ Aaaðk0; kÞ 0
0 Assðk0; kÞ

� �
;

Bðk0; kÞ ¼ Baaðk0; kÞ 0
0 Bssðk0; kÞ

� �
;

(3.23)

where the matrix elements are obtained from the expres-
sions (3.12) and (3.13).

The equations of motion for the left-handed (L) and
right-handed (R) components are obtained by multiplying
the equation of motion (3.4) on the left by the projectors R
and L, respectively.

It proves convenient at this stage to separate the Dirac
spinors into the left-handed c L and right-handed c R com-
ponents and to expand them into helicity eigenstates [56],
namely,

c L ¼ X
h¼�1

vh 
 ’h; ’h ¼ ’h
a

’h
s

� �
; (3.24)

and

c R ¼ X
h¼�1

vh 
 �h; �h ¼ �ha
�hs

� �
; (3.25)

where the left-handed ’ and right-handed � doublets are
written in the flavor basis, and vh are eigenstates of the
helicity operator

ĥðk̂Þ ¼ �0 ~� � k̂�5 ¼ ~� � k̂ 1 0
0 1

� �
; (3.26)

namely,

~� � k̂vh ¼ hvh; h ¼ �1: (3.27)

To leading order in weak and Yukawa couplings, and
neglecting a commutator ½M;�� because it is higher order
in these couplings, we find in the flavor basis for both the
left- and right-handed component doublets�

ðk20 � k2ÞIþ ðk0 � hkÞðAL þ hBLÞ

þ ðk0 þ hkÞðAR � hBRÞ �M2

��
’h

�h

�
¼
�
IhL
IhR

�
;

(3.28)

where M is the mass matrix in the flavor basis and the
inhomogeneities in these equations are obtained by pro-
jection and using the corresponding equations, we need not
specify them as they are no longer used in our study.
In absence of interactions, for the left-handed compo-

nent a positive energy solution corresponds to h ¼ �1 and
a negative energy solution to h ¼ þ1 with the opposite
assignment for the right-handed component.
In the flavor basis

M 2 ¼ �M2Iþ M2

2
� cosð2�Þ sinð2�Þ
sinð2�Þ cosð2�Þ

� �
: (3.29)

where

�M 2 � 1
2ðM2

1 þM2
2Þ; M2 � M2

2 �M2
1; (3.30)

and M1;2 are given by Eq. (2.8).

It proves convenient to define the combinations

Shðk0; kÞ ¼ ðk0 þ hkÞ½AR � hBRÞaa þ ðAR � hBRÞss�
þ ðk0 � hkÞ½ðAL þ hBLÞaa þ ðAL þ hBLÞss�;

(3.31)

and

�hðk0; kÞ ¼ ðk0 þ hkÞ
M2

½ðAR � hBRÞaa � ðAR � hBRÞss�

þ ðk0 � hkÞ
M2

½ðAL þ hBLÞaa � ðAL þ hBLÞss�;
(3.32)

where we have suppressed the arguments. The equation of
motion (3.28) can now be written as

G�1
h ðk0; kÞ

�
’h

�h

�
¼
�
IhL
IhR

�
; (3.33)

where the inverse propagator is given by
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G�1
h ðk0; kÞ ¼

�
k20 � k2 þ 1

2
Shðk0; kÞ � �M2

�
I

� 1

2
M2�hðk0; kÞ

	 �Chðk0; kÞ Dhðk0; kÞ
Dhðk0; kÞ Chðk0; kÞ

� �
; (3.34)

where

�hðk0; kÞ ¼ ½ðcosð2�Þ þ �hðk0; kÞÞ2 þ sin2ð2�Þ�1=2
(3.35)

and

Chðk0; kÞ ¼ ðcosð2�Þ þ �hðk0; kÞÞ
�hðk0; kÞ ; (3.36)

Dhðk0; kÞ ¼ sinð2�Þ
�hðk0; kÞ : (3.37)

We note that if �hðk0; kÞ were real, then Chðk0; kÞ ¼
cosð2�hmðk0; kÞÞ and Dhðk0; kÞ ¼ sinð2�hmðk0; kÞÞ with
�hmðk0; kÞ the mixing angle in the medium for the different
helicity projections and as a function of frequency and
momentum.

B. Propagator: complex poles and propagating modes
in the medium

From (3.34) we read off the propagator projected onto
helicity eigenstates

G hðk0; kÞ ¼ Iþ Thðk0; kÞ
2ð�hðk0; kÞ � 	hðk0; kÞÞ
þ Iþ Thðk0; kÞ

2ð�hðk0; kÞ þ 	hðk0; kÞÞ ; (3.38)

where

T hðk0; kÞ ¼ �Chðk0; kÞ Dhðk0; kÞ
Dhðk0; kÞ Chðk0; kÞ

� �
; (3.39)

�hðk0; kÞ ¼ k20 � k2 þ 1
2Shðk0; kÞ � �M2; (3.40)

	hðk0; kÞ ¼ 1
2M

2�hðk0; kÞ: (3.41)

If �hðk0; kÞ given by Eq. (3.32) were real, the propagator
(3.38) would be diagonalized by the unitary transformation

Uhð�hmðk0; kÞÞ ¼ cosð�hmðk0; kÞÞ sinð�hmðk0; kÞÞ
� sinð�hmðk0; kÞÞ cosð�hmðk0; kÞÞ

� �
;

(3.42)

leading to

U�1ð�mÞGðk0; kÞUð�mÞ ¼
1

�ðk0;kÞþ	ðk0;kÞ 0

0 1
�ðk0;kÞ�	ðk0;kÞ

 !
;

(3.43)

where we have suppressed the helicity argument for sim-
plicity. However, because �hðk0; kÞ features an imaginary
part determined by the absorptive part of the self-energies,
there is no unitary transformation that diagonalizes the
propagator. However, since the imaginary part is perturba-
tively small the expression (3.43) clearly indicates that the
pole for � ¼ 	 corresponds to the mass eigenstate 2,
namely, a sterilelike neutrino state, and the pole for � ¼
�	 corresponds to the mass eigenstate 1, namely, an
activelike state.
We note that in absence of interactions, namely, Sh ¼ 0;

�h ¼ 0 it follows that

�þ 	 ¼ k20 � k2 �M2
1; (3.44)

�� 	 ¼ k20 � k2 �M2
2: (3.45)

The propagating eigenstates in the medium are determined
by the (complex) poles of the propagator (3.38), which
again correspond to �hðk0; kÞ ¼ �	hðk0; kÞ.
Before we analyze the complex poles, it proves conve-

nient to separate the real and imaginary parts of �, 	. For
this purpose and to simplify notation, we suppress the label
h and the arguments k0, k in these quantities, and we write

S ¼ SR þ iSI; � ¼ �R þ i�I; (3.46)

where the subscripts R, I stand for real and imaginary
parts, respectively. Furthermore, we define the mixing
angles in the medium solely in terms of the real parts of
the self-energy (index of refraction), namely,

cosð2�mÞ ¼ cosð2�Þ þ�R

�0

; sinð2�mÞ ¼ sinð2�Þ
�0

;

(3.47)

where

�0 ¼ ½ðcosð2�Þ þ�RÞ2 þ sin2ð2�Þ�1=2: (3.48)

An MSW resonance occurs whenever cosð2�mÞ ¼ 0
[49–52], namely, when

�R ¼ � cosð2�Þ: (3.49)

We emphasize that the mixing angle in the medium �m
and �0 depend on helicity, k0, k. In terms of these quantities
we find

	 ¼ M2

2
�0r½cosð�Þ þ i sinð�Þ� � 	R þ i	I; (3.50)

where

r ¼ ½ð1� ~�2Þ2 þ ð2~� cosð2�mÞÞ2�1=4; ~� ¼ �I

�0

;

(3.51)

and
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� ¼ signð~� cosð2�mÞÞ
�
1

2
arctg

��������2~� cosð2�mÞ
1� ~�2

���������ð1� ~�2Þ

þ
�
�

2
� 1

2
arctg

��������2~� cosð2�mÞ
1� ~�2

��������
�
�ð~�2 � 1Þ

�
:

(3.52)

This form is similar to that obtained in a model of oscil-
lations and damping with mixed neutrinos studied in
Ref. [63], and suggests two distinct situations: a weak
damping case for j~�j< 1 and a strong damping case for
j~�j> 1. These cases will be analyzed below.

Zeroes of �þ 	: We are concerned with the ultrarela-
tivistic limit k � M2

2 � M2
1. Just as in the usual case [50–

52] it is convenient to introduce the average or reference
frequency

�!ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ �M2

p
: (3.53)

The poles are near �!ðkÞ, therefore write
k0 ¼ �!ðkÞ þ ðk0 � �!ðkÞÞ; (3.54)

keeping only the linear term in ðk0 � �!ðkÞÞ we find
�þ 	� 2 �!ðkÞ½k0 ��1ðkÞ þ i	1ðkÞ� (3.55)

with

�1ðkÞ ¼ �!ðkÞ � 1

4 �!ðkÞ ½SR þ M2�0r cosð�Þ�k0¼ �!ðkÞ;

(3.56)

	1ðkÞ ¼ 1

4 �!ðkÞ ½SI þ M2�0r sinð�Þ�k0¼ �!ðkÞ: (3.57)

Zeroes of �� 	: Proceeding in the same manner, we
find

�� 	� 2 �!ðkÞ½k0 ��2ðkÞ þ i	2ðkÞ� (3.58)

with

�2ðkÞ ¼ �!ðkÞ � 1

4 �!ðkÞ ½SR � M2�0r cosð�Þ�k0¼ �!ðkÞ;

(3.59)

	2ðkÞ ¼ 1

4 �!ðkÞ ½SI � M2�0r sinð�Þ�k0¼ �!ðkÞ: (3.60)

From (3.55) and (3.58) it is clear that the propagator in the
medium features two Breit-Wigner complex poles corre-
sponding to the two propagating modes in the medium.

In the expressions above we have only focused on the
positive energy modes. The expressions for the negative
energy modes may be obtained from the following rela-
tions which are consequences of the imaginary parts of the
self-energies and the dispersive representation valid both
for scalar and vector boson exchange (3.5),

ImAð�k0; k;�Þ ¼ ImAðk0; k;��Þ;
ReAð�k0; k;�Þ ¼ �ReAðk0; k;��Þ; (3.61)

ImBð�k0; k;�Þ ¼ �ImBðk0; k;��Þ;
ReBð�k0; k;�Þ ¼ ReBðk0; k;��Þ: (3.62)

These properties can be read off the explicit expressions for
the imaginary parts of the self-energies given in the
Appendix Eqs. (A1)–(A3) for the standard model contri-
butions and Eqs. (B1)–(B3) for the scalar exchange con-
tributions. The matrices A are extracted from the

coefficient of �0 and B from the coefficients of ~� � k̂ in
the self-energies, respectively. The relations for the real
parts follow from the dispersive representation (3.5).
In what follows we use the ultrarelativistic approxima-

tion

�!ðkÞ ’ kþ �M2

2k
: (3.63)

In the limit of interest k=T & 1 with M1 � M2 �Ms �
O ðkeVÞ, the region k < T �Oð100 GeVÞ corresponds to
a wide window in which the ultrarelativistic approximation
is reliable.
We note that the difference in the real part of the pole

position in the ultrarelativistic limit becomes

�2ðkÞ ��1ðkÞ ’ M2

2k
�0r cosð�Þ: (3.64)

From the expression (3.52) for j~�j> 1 it follows that when
an MSW resonance occurs, namely, for �m ¼ �=4 result-
ing in cosð�Þ ¼ 0 and the real part of the poles become
degenerate. This is in striking contrast with the quantum
mechanical description of mixed neutrinos where no level
crossing (or complete degeneracy) can occur. Indeed the
degeneracy is a consequence of the fact that the self-energy
is complex and only occurs when damping is strong in the
sense that j~�j> 1.
The degeneracy near an MSW resonance for strong

damping will necessarily result in a breakdown of adiaba-
ticity during cosmological evolution. We analyze below
the conditions required for this phenomenon to occur.
Furthermore, as discussed in Refs. [32,43] decoupling

and freeze-out of sterile neutrinos of neutrinos produced
via scalar decay occurs near the electroweak scale, and it
will be seen consistently that vector boson decay yields a
production rate with a similar structure as for scalar decay
therefore a similar range of temperatures in which sterile
neutrino production by this mechanism is effective.
Perturbation theory is reliable when the change in the

dispersion relations (positions of the poles in the propaga-
tors) is small. In the relativistic limit the (bare) poles
correspond to k0 ¼ k (for positive energy particles), there-
fore perturbation theory is valid for k � ð�1;2 � kÞ; 	1;2,

namely, k � �ðk; kÞwhere� is any of the self-energies. In
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the next section we obtain explicitly the self-energies and
in Sec. VD we assess the regime of validity of the pertur-
bative expansion.

C. Helicity dependence: right-handed sterile neutrinos
and standard model interactions

We have purposely kept the general form of the self-
energies and propagators in terms of the helicity projec-
tions h ¼ �1. In the noninteracting massless case, positive
energy left-handed particles correspond to h ¼ �1 and
negative energy left-handed correspond to h ¼ 1, with
the opposite assignment for right-handed particles. For
the massive but ultrarelativistic case the mass term yields
corrections to the handedness-helicity assignment of
OðM2=k2Þ.

h ¼ �1: Neglecting subleading terms ofOð �M2=k2Þ that
multiply bsm right-handed contributions in the ultrarela-
tivistic limit, we obtain

SðkÞ ¼ 2k½ðAL � BLÞaa þ ðAL � BLÞss�; (3.65)

�ðkÞ ¼ 2k

M2
½ðAL � BLÞaa � ðAL � BLÞss�: (3.66)

h ¼ 1: In this case the corrections ofOð �M2=k2Þmultiply
sm left-handed contributions, which may be of the same
order of the bsm right-handed contributions. We find

SðkÞ ¼ 2k½ðAR � BRÞaa þ ðAR � BRÞss
þ �M2

4k2
ðAL þ BLÞaa�; (3.67)

�ðkÞ ¼ 2k

M2
½ðAR � BRÞaa � ðAR � BRÞss

þ �M2

4k2
ðAL þ BLÞaa�: (3.68)

The terms proportional to �M2=4k2 only receive contri-
bution from the standard model self-energies, whereas the
right-handed components only originate in the contribu-
tions beyond the standard model which are suppressed by
much smaller Yukawa couplings. However the last contri-
bution in (3.68) from sm interactions may be of the same
order as the bsm contributions for a relevant range of k. To
see this note thatAR,BR � Y2

2 � 10�16, whereasAL,BL �
g2 � 0:4 therefore with �M� KeV and k & 100 GeV, it is
clear that both contributions bsm and sm are of the same
order.

The point of maintaining the helicity dependence
throughout is that for the case of sterile neutrinos, namely,
the propagating modes ‘‘2’’ in the medium, the exchange
of standard model vector bosons yields a contribution to
the positive helicity and positive energy components,
namely, the right-handed component, which could be of
the same order of the bsm contributions for small k which
is a region of interest for sterile neutrino production.

IV. REAL PARTS: MIXING ANGLES AND MSW
RESONANCES

The dispersion relations (real parts of the poles) and the
mixing angles in the medium are determined by the real
parts of the self-energy, namely, the ‘‘index of refraction.’’
Whereas the neutral current tadpole contribution (3.7) is
real, the real part of the other contributions is obtained
from the dispersive form (3.5), namely,

Re�ðk0; kÞ ¼ 1

�

Z 1

�1
d!P

�
Im�ð!; ~kÞ
!� k0

�
: (4.1)

In general the real part must be obtained numerically and is
a function of three parameters k0, k, � which makes its
exploration a daunting numerical task. However, progress
can be made by focusing on the ‘‘on shell’’ contribution,
namely, setting k0 ’ k, and neglecting the dependence on
�, which is warranted in the whole region of k, T of
interest, but for k=T, j�j=T � M=T in which case we
provide below an accurate approximate form.
In obtaining the real parts we consider only the finite

temperature contribution, because the zero temperature
part is absorbed in the renormalization of the parameters
in the Lagrangian.
Scalars bsm: For the real part of the scalar bsm self-

energy we find for k0 ¼ k; � ¼ 0

Re�bsmðk; kÞ ¼ Y2T

16�2

�
�0

�
Af

�
k

T
;
M

T

�
þ Ab

�
k

T
;
M

T

��

� ~� � k̂
�
Bf

�
k

T
;
M

T

�
þ Bb

�
k

T
;
M

T

���
;

(4.2)

where Af; Bf and Ab; Bb are the fermionic and bosonic
contributions, respectively, and Y ¼ Y1;2 for �, ’ ex-

change. Figures 5 show Af; Bf and Ab; Bb for M=T ¼
1, 2, 3 as a function of k=T.

For �ð2Þ
�;’ the intermediate fermion line corresponds to a

sterilelike neutrino, therefore for these contributions we
must set Af ¼ 0; Bf ¼ 0, under the assumption that the
sterile neutrino population can be neglected and the propa-
gator for the internal line is the vacuum one. For the mixing
angle the relevant contribution is A� B. Figures 6 display
Af� Bf and Ab� Bb for M=T ¼ 1, 2, 3 as a function of
k=T.
We note that the fermionic and bosonic contributions

Af, Ab are qualitatively very similar and the same property
holds for Bf, Bb. Therefore neglecting the fermionic con-

tributions both for �ð1Þ does not affect the results and the
conclusions in a substantial manner.
This observation confirms that the general results pre-

sented below are robust even when the neutrinos ‘‘1’’ are
not thermalized and their propagators are the vacuum ones.
Although an analytic form for the full range of k0; k;� is

not available, we obtain an analytic expression for the
relevant case k0=T, k=T, �=T � M=T � 1. We find to
leading order in the small ratios k0=T; k=T; � ¼ �=T,
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Re�ð1Þ
� ðk0;kÞ¼Y2
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� ~� � k̂
�
�7�2

360

kT2

M2
�

½1þJ½M�=T��
��
; (4.3)

Re�ð1Þ
’ ðk0;kÞ¼Y2
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’
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��
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Re�ð2Þ
� ðk0; kÞ ¼ Y2

1T
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�
�0

�
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k0T
2

M2
�

F½M�=T�
�

� ~� � k̂
�
� 7�2

360

kT2

M2
�

J½M�=T�
��
; (4.5)

Re�ð2Þ
’ ðk0; kÞ ¼ Y2

2T
2

M2
’

�
�0

�
7�2

120

k0T
2

M2
’

F½M’=T�
�

� ~� � k̂
�
� 7�2

360

kT2

M2
’

J½M’=T�
��
; (4.6)

where

FIG. 5 (color online). The functions Afðk=T;M=TÞ; Abðk=T;M=TÞ; Bfðk=T;M=TÞ; Bbðk=T;M=TÞ as a function of k=T forM=T ¼
1, 2, 3.

FIG. 6 (color online). The functions Afðk=T;M=TÞ � Bfðk=T;M=TÞ; Abðk=T;M=TÞ � Bbðk=T;M=TÞ as a function of k=T for
M=T ¼ 1, 2, 3.
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JðmÞ ¼ 120

7�4

Z 1

0
dq

q2

Wq

NBðWqÞ
�
W2

q þm2

2

�
;

FðmÞ ¼ 120

7�4

Z 1

0
dq

q2

Wq

NBðWqÞ
�
W2

q �m2

2

�
:

(4.7)

These functions are displayed in Fig. 9, they are Oð1Þ in
the region of interest M�;’ � T.

A comprehensive numerical study of Af, Ab, Bf, Bb
confirms the validity of the above approximations for k0 ¼
k, � ¼ 0 for k=T � 1.

Vector bosons sm: Similarly, for the real part of the sm
self-energy we find for k0 ¼ k; � ¼ 0

Re�smðk; kÞ ¼ g2smT

16�2

�
�0

�
Af

�
k

T
;
M

T

�
þ Ab

�
k

T
;
M

T

��

� ~� � k̂
�
Bf

�
k

T
;
M

T

�
þ Bb

�
k

T
;
M

T

��
; (4.8)

where we use the same definition, namely, Af; Bf and Ab;
Bb are the fermionic and bosonic contributions, respec-
tively. Figures 7 show Af; Bf and Ab; Bb and Fig. 8 shows
Afðk=T;M=TÞ � Bfðk=T;M=TÞ; Abðk=T;M=TÞ �
Bfðk=T;M=TÞ for M=T ¼ 1, 2, 3 as a function of k=T.

Just as in the bsm case analyzed above, we note that the
fermionic and bosonic contributions Af; Ab are qualita-
tively similar and the same holds for Bf; Bb. Again this
observation confirms that our results are robust, indepen-
dently of whether any of the neutrino modes are
thermalized.

We also obtain the analytic forms for Re�smðk0; kÞ for
k0=T, k=T,�=T � MW;Z=T � 1. To leading order in these
small ratios we find

Re�ð1Þ
nc ðk0; kÞ ¼ g2T2

4M2
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�
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�
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�
� 7�2
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kT2
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½1þG½MZ=T��
��
;

(4.9)

Re�ð2Þ
nc ðk0; kÞ ¼ g2T2

4M2
W
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Z
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� ~� � k̂
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G½MZ=T�
��
; (4.10)

Re�cc;smðk0; kÞ ¼ g2T2

2M2
W

�
�0

�
7�2

60

k0T
2

M2
W

½1þG½MW=T��
�

� ~� � k̂
�
� 7�2

180

kT2

M2
W

½1þG½MW=T��
��
:

(4.11)

In the charged current contribution we have neglected
the asymmetry of the charged lepton because it is of the
order of the baryon asymmetry. In the above expressions

FIG. 7 (color online). The functions Afðk=T;M=TÞ; Abðk=T;M=TÞ; Bfðk=T;M=TÞ; Bbðk=T;M=TÞ as a function of k=T forM=T ¼
1, 2, 3.
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G½m� ¼ 120

7�4

Z 1

0
dq

q2

Wq

NBðWqÞ
�
W2

q �m2

4

�
;

NBðWqÞ ¼ 1

eWq � 1
; Wq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 þm2

q
:

(4.12)

This function is depicted in Fig. 9, it is Oð1Þ in the region
of interest T �MZ;W .

The validity of these approximations for k0 ¼ k, � ¼ 0
is confirmed by the numerical analysis of Af, Ab, Bf, Bb
for k=T � 1.

It is remarkable that the leading order in k0=T, k=T but
for MW;Z�T reproduce the results of Refs. [53,54] which

were obtained in the low energy limit T, ��MW;Z. The

numerical analysis carried out for k0 ¼ k; � ¼ 0 con-
firms that for M=T � 1 the range of validity of the lowest
order approximation in k=T increases and merges with the
results given above in Eqs. (4.3), (4.4), (4.5), (4.6), (4.7),
(4.8), (4.9), (4.10), and (4.11) up to k=T�1.

A. Mixing angles and MSW resonances:

As shown in detail in the previous sections, the mixing
angle in the medium �m determined by the relations (3.47)
depends on k0, k, and the helicity h. On the mass shell of
the propagating modes in the medium we can replace k0 ’
k in the expressions for the real part of the matrices ReA;
ReB for �R, namely, the real part of Eqs. (3.66) and (3.68),
for h ¼ �1, respectively. For � ¼ 0; k0 ¼ k and general
k, M the fermionic and bosonic contributions to the real
parts of the bsm self-energies are given by Eq. (4.2) where
the fermionic ðAf; BfÞ and bosonic ðAb; BbÞ contributions
are depicted in Figs. 5 and 6. The real parts of the sm self-
energies are given by Eq. (4.8) and the fermionic and
bosonic contributions depicted in Figs. 7 and 8.
These figures distinctly show that the contributions Af,

Ab and Bf, Bb for bsm and sm self-energies are qualita-
tively the same, with only a quantitative difference in the
amplitudes. A remarkable result is that these functions
change sign. In particular the combinations Af� Bf,
Ab� Bb which enter in �R change sign at a value of
k=T that depends on the ratio M=T. For M=T � 1 these
differences vanish at k=T ’ 0:2. A numerical exploration
reveals that the sign change persists until M=T ’ 3 but
occurs at monotonically larger values of k=T. This behav-
ior is shown in the figures above. We find that forM=T * 3
the change in sign occurs for k � T or does not occur at
all. On the mass shell k0 � k and for � ¼ 0 this study
reveals that �R is negative in a wide region of momentum
for M=T & 1. This fact entails that there are MSW reso-
nances near the momentum regions where the coefficient
functions change sign, even in the absence of a lepton
asymmetry. To understand this important point more
clearly let us study the case h ¼ �1 separately.
h ¼ �1: In this case � is given by Eq. (3.66), further-

more from Eq. (3.13) it follows that ðAL � BLÞss is deter-
mined by the bsm contributions which are suppressed by
small Yukawa couplings Y & 10�8 as compared to the
sm contributions. Therefore the bsm contribution can
be neglected and �R is determined by the sm contributions
given by Eqs. (4.8), furthermore approximating cosð�Þ�1;

FIG. 8 (color online). The functions Afðk=T;M=TÞ � Bfðk=T;M=TÞ; Abðk=T;M=TÞ � Bbðk=T;M=TÞ as a function of k=T for
M=T ¼ 1, 2, 3.

FIG. 9 (color online). The functions FðmÞ; JðmÞ; GðmÞ vs.
m ¼ M=T.
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sinð�Þ � 0 in Eq. (3.12) and M2 ’ M2
s , we find (for � ¼

0; h ¼ �1)

�RðkÞ ’ g2
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�
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���
: (4.13)

Taking as representative T � 100 GeV; Ms � keV it
follows that

g2

16�2

�
T

Ms

�
2 ’ 2:7	 1013: (4.14)

Figures. 8 show that for MW;Z=T & 3 there is a region in

k=T in which the bracket in (4.13) is negative and there is a
value ðk=TÞc that increases withM=T at which the bracket
vanishes, for example, from the Fig. 8 we find ðk=TÞc �
0:2; 0.45; 1 for M=T � 1, 2, 3, respectively. For k=T <
ðk=TÞc the bracket is positive (for � ¼ 0) whereas for
k=T > ðk=TÞc it is negative, therefore there is a value of
k=T at which the resonance condition (3.49) is fulfilled.
Since the coefficient of the bracket is � 1013 [Eq. (4.14)]
and the terms inside the bracket are of Oð1Þ for k=T & 1,
and cosð�Þ � 1 it follows that the MSW resonance occurs
for a value of k=T such that the bracket �10�13, namely,
for k=T � ðk=TÞc. The large coefficient (4.14) results in a
very narrow MSW resonance as can be seen as follows,
expanding �R near ðk=TÞc as

�RðkÞ ’ ��

��
k

T

�
�
�
k

T

�
c

�
þ � � � ; � > 0; (4.15)

where � * 1013 for MW;Z=T & 3 (see Fig. 8) and approx-

imating cosð2�Þ � 1 we find

sin2ð2�mÞ ’ �2

½ððkTÞ � ðkTÞc � 1
�Þ2 þ �2� ;

� ¼ sinð2�Þ=�: (4.16)

For example taking sinð2�Þ � 10�5 [48] it follows that � &
10�18 which makes the resonance very narrow. During
cosmological expansion the ratio M=TðtÞ increases with
the scale factor, while the ratio k=T (with k the physical
momentum) is fixed. Therefore, for a fixed value of k=T <
1 as M=T increases the resonance is crossed very sharply.

h ¼ 1: To assess the possibility of MSW resonances for
h ¼ 1we need the real part of (3.68). From (3.12) and (4.2)
it follows that ðAR � BRÞaa / Y2

1 ; ðAR � BRÞss / Y2
2 , since

Y2 � Y1 we can neglect the first term (corresponding to �
exchange). Similarly in the term ðAR � BRÞss we neglect
the contribution from � exchange and approximate

cosð�Þ � 1; sinð�Þ � 0 in (3.13), hence only �ð2Þ
’ contrib-

utes to �ss. Furthermore, approximating M2 � �M2 �M2
s

we finally find for h ¼ 1; � ¼ 0,
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�

Y2Tffiffiffi
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where in the first line the Ab; Bb are bsm displayed in
Figs. 5.
We note that with T � 100 GeV,Ms � KeV the value of

the Y2 [see Eq. (2.10)] is such that Y2T=Ms �Oð1Þ, there-
fore Fig. 6 (right panel) suggests that the bsm contribution
may yield an MSW resonance in the region k=T & 0:15;
M’ � T, where the bsm contribution Ab� Bb is positive

and large. Since g2=128�2 � 3:4	 10�4 and Afþ Bf;
Abþ Bb�Oð1Þ for k=T & 1 it follows that the sm con-
tribution to �R is subleading for k=T & 1 and the bsm
contribution may lead to an MSW resonance in this region
depending on the parameters of the extension bsm.
� � 0; k=T � M=T � 1:
The above results are valid for � ¼ 0, for � � 0 a full

numerical evaluation of the real parts of the kernel is not
available, however, the bounds on the lepton asymmetry
from Ref. [60] suggest that j�=Tj & 0:02 � 1 and we can
obtain a reliable understanding of the influence of the
lepton asymmetry (in the neutrino sector) by focusing on
the region of k=T � 1, in which we can use the results
(4.3), (4.4), (4.5), and (4.6) for bsm and (3.7) along with
(4.9), (4.10), and (4.11) for sm and approximate cosð�Þ �
1; sinð�Þ � 0 in (3.12) and (3.13), and M2 �M2

s .
For h ¼ �1 again we neglect the bsm contributions to

�RðkÞ in (3.66), and for �=T; k=T � 1 we obtain,

�RðkÞ ’ g2T3k
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: (4.18)

We note that for T �MW ; Ms � KeV the prefactor

g2T3k

M2
WM

2
s

� 1016
�
k

T

�
(4.19)

and the resonance condition (3.49) can be fulfilled for � >
0 when the bracket in (4.18) approximately vanishes,
namely, for �

k

T

�
� 25�

56�2
) k� 0:05�; (4.20)
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where we have used GðMW;Z=TÞ � 1 for T �MW , a result

that can be gleaned from Fig. 9. For � > 0 this MSW
resonance occurs for antineutrinos (namely, k0 ¼ �k), a
result that follows from the relations (3.61) and (3.62).

Similarly, for h ¼ 1 and �=T, k=T � 1, we obtain
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Obviously, there is a competition between sm and bsm
contributions in Eq. (4.21). When T �MW;Z;’, Jð1Þ,
Fð1Þ, Gð1Þ � 1, and ðY2

2T
2Þ=M2

s � 1. Therefore, the bsm
contribution to �RðkÞ is

�ðbsmÞ
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�
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; (4.22)

and the sm contribution to �RðkÞ reads

�ðsmÞ
R � 0:1
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�
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�: (4.23)

The resonance happens for �RðkÞ � �1, namely,

3	 10�3

�
T

k

�
�� 1:029: (4.24)

Obviously, one is always able to find a value of k=T to
satisfy Eq. (4.24) for any given positive lepton asymmetry
�. For j�j � 10�2 consistent with the WMAP and BBN
data [60], we obtain

k

T
� 3	 10�3�� 3	 10�5: (4.25)

Note that the asymmetry term from sm contribution domi-
nates over the bsm contribution, which is different from
� ¼ 0 case where bsm contribution would dominate as
shown in (4.17). This analysis leads us to conclude that for
a lepton asymmetry hidden in the neutrino sector compat-
ible with the bounds from Ref. [60] there is the possibility
of two MSW resonances.

V. IMAGINARY PARTS: WIDTHS FROM VECTOR
AND SCALAR BOSON DECAY

The quasiparticle widths 	1;2ðkÞ are given by Eqs. (3.57)
and (3.60). Analyzing the explicit expressions for the
imaginary parts of the sm and bsm contributions given in
the appendix, Eqs. (A1)–(A3) and (B1)–(B3), respectively,
the ‘‘on shell’’ contributions are obtained from those whose
 function constraints can be satisfied for !� k. It is
straightforward to find that only the terms with ð!þ p�

W~pþ ~kÞ have nonvanishing support for ! ’ k. These terms

are given in the last lines of (A2) and (A3) for sm and the
last lines of (B2) and (B3) for bsm contributions.
These contributions to the quasiparticle widths in the

medium arise from the decay of the intermediate boson,
either the vector bosons in the sm contributions or the
scalars in the bsm contributions. This is depicted in
Fig. 10, the Cutkosky cut through the intermediate boson
(vector or scalar) yields the imaginary part. The process
that contributes on shell ! ’ k is the decay of the boson
into the fermions (neutrinos and or charged leptons) de-
picted in this figure.
The fact that the decay of a heavy intermediate state

leads to a width was recognized in Ref. [58].
The analysis of the different cases is simplified by

introducing

	aaðk0; kÞ ¼ Im

�ðk0 þ hkÞ
2k

ðAR � hBRÞaa

þ ðk0 � hkÞ
2k

ðAL þ hBLÞaa
�
; (5.1)

	ssðk0; kÞ ¼ Im

�ðk0 þ hkÞ
2k

ðAR � hBRÞss

þ ðk0 � hkÞ
2k

ðAL þ hBLÞss
�
; (5.2)

in terms of which [see Eq. (3.32)]

SI ¼ 2k½	aaðk0; kÞ þ 	ssðk0; kÞ�;
�Iðk0; kÞ ¼ 2k

M2
½	aaðk0; kÞ � 	ssðk0; kÞ�: (5.3)

We need these quantities evaluated on the ‘‘mass shell’’,
namely, for positive energy k0 ¼ �!ðkÞ � kþ �M2=2k. We
find:
h ¼ �1:

	aaðkÞ ’ ImðAL � BLÞaa; 	ssðkÞ ’ ImðAL � BLÞss:
(5.4)

h ¼ 1:

	aaðkÞ ’ Im

�
ðAR � BRÞaa þ

�M2

4k2
ðAL þ BLÞaa

�
;

	ssðkÞ ’ ImðAR � BRÞss:
(5.5)

In the above expressions we have used Y1;2 � g and
�M2=4k2 � 1 and neglected terms accordingly, we have
suppressed the arguments on A, B, however, these matrix
elements depend on k. The term with AL þ BL in (5.5) is
noteworthy: the leading contribution to this term is from
sm interactions, even setting the Yukawa couplings in the
bsm sector to zero a nearly right-handed sterile neutrino is
produced via the decay of the vector bosons.
The expression for the imaginary parts (3.57) and (3.60)

simplify in two relevant limits [63]:
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(a) weak damping: j~�j � 1: in this limit we find

r sinð�Þ ’ ~� cos2�m (5.6)

leading to the following results for the poles with
positive energy:

	1ðkÞ ¼ 	aaðkÞcos2�m þ sin2�m	ssðkÞ; (5.7)

	2ðkÞ ¼ 	aaðkÞsin2�m þ cos2�m	ssðkÞ: (5.8)

Furthermore the difference in the dispersion rela-
tions becomes

��wd � �2ðkÞ ��1ðkÞ ’ M2

2k
�0; (5.9)

which is the usual result for neutrino mixing.
(b) Strong damping: j~�j � 1, in this limit we find

r sinð�Þ ’ ~�signðcosð2�mÞÞ
�
1� sin2ð2�mÞ

2~�2

�
(5.10)

leading to the following results:

	1ðkÞ ¼ 1

2
ð	aaðkÞ þ 	ssðkÞÞ þ 1

2
ð	aaðkÞ � 	ssðkÞÞ

	
�
signðcosð2�mÞÞ � sin2ð2�mÞ

2~�2

�
; (5.11)

	2ðkÞ ¼ 1

2
ð	aaðkÞ þ 	ssðkÞÞ � 1

2
ð	aaðkÞ � 	ssðkÞÞ

	
�
signðcosð2�mÞÞ � sin2ð2�mÞ

2~�2

�
: (5.12)

In this case the frequency difference between the
propagating states becomes

��sd � �2ðkÞ ��1ðkÞ ’ M2

2k
�0j cosð2�mÞj

¼ M2

2k
j cosð2�Þ þ�RðkÞj: (5.13)

This is a remarkable result, the frequency difference
vanishes at an MSW resonance in striking contrast
with the usual quantum mechanics description of
neutrino mixing and oscillations wherein there is a
‘‘level repulsion’’ at an MSW resonance that pre-
vents level crossing.

In all the expressions above 	aaðkÞ; 	ssðkÞ are given by
(5.4) and (5.5) in the respective cases h ¼ �1, and the
mixing angle �m is obtained from Eqs. (3.47) evaluating
�R at k0 ¼ k.

The widths for negative energy and h ¼ �1 are obtained
from the expressions above by the replacement � ! ��,
this is a consequence of the relations (3.61) and (3.62) and
the fact that the chemical potential is CP-odd, therefore the

particle and antiparticle widths only differ because of the
chemical potential.
We emphasize that the results (5.7), (5.8), (5.11), and

(5.12) are general, and hold to all orders in perturbation
theory as they follow from the general form of the self-
energies. In particular these relations are valid beyond the
one-loop order studied here and hold for any processes that
contributes to the absorptive parts of the self-energy at one-
loop or higher order.

A. Widths from scalar and vector boson decay:

As discussed above, the imaginary parts of the self-
energy are given in the Appendix, both for sm and bsm
contributions. Inspection of the different delta functions
shows that the only contribution ‘‘on shell’’, namely,! ’ k
arises from the terms with ð!þ p�W~pþ ~kÞ in the ex-

pressions for the imaginary parts (B2) and (B3).
This delta function corresponds to a Cutkosky cut that

describes the process of a scalar (in bsm) or a vector (in sm)
boson decay into a neutrino and another lepton, displayed
in Fig. 10.
Scalars bsm: For scalars the (R) and (L) components are

the same. We find for Y ¼ Y1;2; M ¼ M�;’ for �, ’

exchange, respectively,

Im ðAR � BRÞ ¼ ImðAL � BLÞ

¼ Y2T

32�

M2

k2
ln

�
1þ C1e

�x��

1� e�x�y

�
; (5.14)

where

x ¼ M2

4kT
; � ¼ �

T
; y ¼ k

T
; (5.15)

and

C1 ¼
�
1 for �ð1Þ

�;’;

0 for �ð2Þ
�;’:

(5.16)

In the relevant region k <M�;’ � T we can safely

neglect the contribution from the leptonic chemical poten-
tial in (5.14) and set � ¼ 0, since the bounds from Ref. [60]
suggest that j�j & 0:02. The result (5.14) agrees with that

FIG. 10. The Cutkosky cut for imaginary part of the sm and
bsm contributions, and the contribution on the mass shell ! ’ k.
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found in Ref. [43] for the decay of the scalar boson into
sterile neutrinos (2) (C1 ¼ 0) for vanishing chemical
potential.

For k=T � M=T � 1 we can approximate

Im ðAR � BRÞ ¼ ImðAL � BLÞ

¼ Y2T

32�

M2

k2
e�x ðC1 þ e�yÞ: (5.17)

Vector bosons sm: For sm vector boson exchange (only
L), the imaginary parts ‘‘on shell’’ are obtained from the
terms with ð!þ p�W~pþ ~kÞ in the imaginary parts (A2)

and (A3) setting ! ’ k. We find

Im ðAL � BLÞ ¼ g2smT

16�

M2

k2
ln

�
1þ C2e

�x��

1� e�x�y

�
; (5.18)

where gsm is given by Eq. (3.16), M ¼ MZ;W for neutral

and charged current contributions, respectively, and

C2 ¼
�
1 for �ð1Þ

nc ;�cc

0 for �ð2Þ
nc

: (5.19)

For positive energy, and positive helicity (right-handed),
we also need [see Eq. (5.5)]

Im ðAL þ BLÞ ¼ g2smT

8�

�
ln

�
1þ C2e

�x

1� e�x�y

�
þ 2T

k

	
�
Li2ðe�x�yÞ � C2 Li2ð�e�x Þ

��
;

(5.20)

where Li2 is the dilogarithm or Spence’s function and we
have set � ¼ 0. This expression simplifies in the limit
k=T � M=T � 1 with the result

Im ðAL þ BLÞ ’ g2smT
2

4�k
e�x ðC2 þ e�yÞ: (5.21)

In the above results for vector bosons M ¼ MW;Z,

respectively.
We can now gather all the results needed for 	aaðkÞ;

	ssðkÞ (5.4) and (5.5) and the quasiparticle widths 	1;2ðkÞ
obtained from them. Approximating cosð�Þ � 1; sinð�Þ �
0 we find,

Im ðAR � BRÞaa ¼ Y2
1T

32�

�
M2

�

k2

�
ln

�
1

1� e�x�e�y

�
; (5.22)

ImðAR � BRÞss ¼ ImðAL � BLÞss
¼ Y2

1T

32�

�
M2

�

k2

�
ln

�
1þ e�x�

1� e�x�e�y

�

þ Y2
2T

32�

�
M2

’

k2

�
ln

�
1

1� e�x’e�y

�
; (5.23)

ImðAL � BLÞaa ¼ g2T

32�

�
1

2cos2ð�wÞ
�
M2

Z

k2

�

	 ln

�
1þ e�xZ

1� e�xZe�y

�

þ
�
M2

W

k2

�
ln

�
1þ e�xW

1� e�xWe�y

��

þ Y2
1T

32�

�
M2

�

k2

�
ln

�
1

1� e�x�e�y

�
; (5.24)

ImðALþBLÞaa¼ g2T

16�

�
1

2cos2ð�wÞ
�
ln

�
1þe�xZ

1�e�xZe�y

�

þ2T

k
½Li2ðe�xZe�yÞ�Li2ð�e�xZÞ�

�

þ ln

�
1þe�xW

1�e�xWe�y

�
þ2T

k
½Li2ðe�xWe�yÞ

�Li2ð�e�xW Þ�
�
þY2

1T

16�

�
2T

k

�
Li2ðe�x�e�yÞ:

(5.25)

In the expressions above we have defined

x� ¼ M2
�

4kT
; � ¼ �;’; Z;W: (5.26)

For small values of the arguments Li2ðzÞ � zwhich may be
used appropriately whenever x� > 1, a situation which
describes the relevant range M� � T; k < T.
Equations. (5.22), (5.23), (5.24), and (5.25) combined

with (5.4) and (5.5) yield the complete expressions for the
quasiparticle widths 	1;2 in all cases, and as per the dis-

cussion below, the production rates.

B. Imaginary parts: from the width to the production
rates

The connection between the quasiparticle widths
(imaginary part of the self-energy ‘‘on shell’’) and the
production rate is established via the Boltzmann equation
for the production of a given species, in this case that of a
‘‘sterile’’ neutrino. Consider as an example the scalar
vertex Y1 ��s��a, the analysis is similar for the other, in-
cluding sm vertices. The Boltzmann equation is of the form
ðgainÞ � ðlossÞ (see, for example, the appendix in
Ref. [43]). The gain term corresponds to the decay process
� ! ��a þ �s and is of the form [43]

dnsðkÞ
dt

��������gain
¼
Z d3p

ð2�Þ3 jMfij2ðW~pþ ~k � p� kÞ

	 NBðW~pþ ~kÞð1� �nFðpÞÞð1� nsðkÞÞ;
(5.27)

where NB, nF are the bosonic and fermionic distribution
functions, respectively. The loss term describes the inverse
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process, namely, the recombination ��a þ �s ! ’ with

dnsðkÞ
dt

��������loss
¼
Z d3p

ð2�Þ3 jMfij2ðW~pþ ~k � p� kÞ
	 ½1þ NBðW~pþ ~kÞ� �nFðpÞnsðkÞ: (5.28)

Therefore the Boltzmann equation is of the form

dnsðkÞ
dt

¼
Z d3p

ð2�Þ3 jMfij2ðW~pþ ~k � p� kÞ
	 fNBðW~pþ ~kÞð1� �nFðpÞÞð1� nsðkÞÞ
� ½1þ NBðW~pþ ~kÞ� �nFðpÞnsðkÞg: (5.29)

If the distribution function of the particle in question is
slightly perturbed off equilibrium, the relaxation rate of the
distribution function towards equilibrium is obtained by
writing nsðkÞ ¼ neqs ðkÞ þ nsðkÞ and linearizing the
Boltzmann equation in nsðkÞ [59]. The linearized
Boltzmann equation reads

dnsðkÞ
dt

¼ �	relnsðkÞ; (5.30)

where

	rel ¼
Z d3p

ð2�Þ3 jMfij2ðW~pþ ~k � p� kÞ
	 ½ �nFðpÞ þ NBðW~pþ ~kÞ�: (5.31)

As discussed in Ref. [59], the relaxation rate 	rel is twice
the quasiparticle width [59] since the distribution function
is bilinear in the fields. The relation between 	rel and the
on-shell width becomes evident comparing the expression
(5.31) with the ‘‘on-shell’’ imaginary parts, namely, the last
lines in Eqs. (A2), (A3), (B2), and (B3) with ! ’ k. The
production rate of the sterile species is obtained by neglect-
ing the inverse process and neglecting the sterile popula-
tion buildup in the Boltzmann Eq. (5.29), namely,

dnsðkÞ
dt

��������prod
¼
Z d3p

ð2�Þ3 jMfij2ðW~pþ ~k � p� kÞ

	 NBðW~pþ ~kÞð1� �nFðpÞÞ: (5.32)

Therefore by obtaining the bosonic and fermionic contri-
butions to the quasiparticle widths as in the previous sec-
tion, we can obtain the production rate. Although the term
with the product NB �nF is not included in the width, such
term is smaller than the term with NB only, since p2 �nFðpÞ
features a maximum at p=T � 2:3 for which �nFðpÞ � 0:09
(for �=T � 1). Therefore in the region of importance in
the integral p * T, the production and relaxation rates
only differ by a few percent, and the results for the relaxa-
tion rates yield a reliable approximation to the production
rate.

An important bonus of obtaining the production rate
from the quasiparticle decay width as carried out here is

the correct dependence on the mixing angle in the medium,
which would be missed by a naive perturbative calculation.
Therefore the quasiparticle width yields an excellent

approximation to the production rate, in particular, it de-
scribes correctly the dependence on the mixing angles in
the medium, its magnitude, and k-dependence.
In particular, the result (5.23) confirms the result of

Ref. [43] for Y1 ¼ 0. For the scalar contribution bsm the
right- and left-handed yield the same result [multiplying
(5.23) by a factor 2 in the total rate] and as discussed above
the production rate is twice the width, which restores the
factor 4 between (5.23) and the result in Ref. [43] which
corresponds to the case Y1 ¼ 0.
Thus we conclude that the results of Eqs. (5.4), (5.5),

(5.7), (5.8), (5.11), and (5.12) along with the explicit forms
(5.22), (5.23), (5.24), and (5.25) provide a complete and
reliable assessment of the production rates ready to be
input in the kinetic equations that include the cosmological
expansion [43].

C. Weak or strong damping?

We have now all the ingredients to assess under which
circumstances the weak (j~�j � 1) or strong (j~�j � 1)
damping conditions are fulfilled. In terms of the widths
and real parts it follows that

~� ’ 2k

M2
s

½	aaðkÞ � 	ssðkÞ�
½ðcosð2�Þ þ�RðkÞÞ2 þ sin2ð2�Þ�1=2 : (5.33)

For h ¼ �1, 	aa � 	ss, and �R are dominated by the
sm contributions, therefore from Eqs. (4.13) and (5.24) we
find

�RðkÞ � g2

16�2

kT

M2
s

AðkÞ; (5.34)

�IðkÞ � g2

32�

kT

M2
s

�
MZ

k

�
2
BðkÞ; (5.35)

whereAðkÞ, BðkÞ can be read off (4.13) and (5.24). In the
region of parameters where �RðkÞ � cosð2�Þ � 1, it fol-
lows that ~� ’ �IðkÞ=�RðkÞ; furthermore, for k < T �
MZ;W the functionBðkÞ � e�xZ � 1, leading to �I=�R �
1 corresponding to the weak damping case in which the
widths (production rates) are given by (5.7) and (5.8).
Far away from the MSW resonances but in the region

where cosð2�Þ � 1 � �RðkÞ it also follows that �I=�R �
1, corresponding again to the weak damping regime.
Therefore the parameter region far away from MSW reso-
nances (either above or below) corresponds to the weak
damping regime.
Very near MSW resonances cosð2�Þ þ �R � 0 and ~��

�I=j sinð2�Þj, in the region of relevance for our analysis
T �MZ;W with Ms � KeV it follows that
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�IðkÞ
j sinð2�Þj �

4	 1013

j sinð2�Þj
�
k

T

��
MZ

k

�
2
BðkÞ; (5.36)

therefore, since the resonance occurs at k=T < 1 for
MZ;W � T we conclude that the strong damping condition

~� � 1 is fulfilled near MSW resonances. Because the
MSW resonance(s) are very narrow for T ’ MZ;W as dis-

cussed above [see the discussion leading to Eq. (4.16)], we
conclude that in most of the regime of temperatures and
momenta the weak damping results (5.7) and (5.8) are valid
and only in a very narrow region near MSW resonances the
strong damping results (5.11) and (5.12) are valid.

An identical analysis confirms a similar conclusion for
the case h ¼ 1, namely, the weak damping condition holds
in most of the relevant range ofM=T; k=T but for a narrow
region near the MSW resonances in which the strong
damping condition holds.

An alternative interpretation of the weak and strong
damping regime is obtained using Eq. (5.9) to write

~� ’ 	aa � 	ss

��wd

: (5.37)

Since ��sd � ��wd the denominator gives an upper
bound to the oscillation frequency between the active and
sterile neutrinos. The weak damping regime j~�j � 1 de-
scribes the case in which there are many oscillations before
the overlap amplitude is suppressed, whereas the strong
damping regime describes the case in which damping
occurs before oscillations take place. For a similar discus-
sion see the second reference in [56].

D. Regime of validity of perturbation theory

In the relativistic approximation the validity of the per-
turbative expansion requires that k � �bsm;�sm. Since the
weak interaction coupling constant gsm is much larger than
Y1;2 we focus on the standard model contributions.

From the expression (4.8) and the results displayed in
Fig. 7 we see that for MW=T * 1, it follows that Re�sm /
�wT since the coefficient functions A, B & 12. Therefore
perturbation theory is valid for k � T=30, hence for
MW=T * 1 the resonances in absence of lepton asymmetry
at 0:2 & k=T & 1 for 1 & MW=T & 3 are comfortably
within the regime of validity of the perturbative expansion.
The lepton-asymmetry induced resonance for k=T �
MW=T is the usual resonance and for T � MW the ex-
pressions (4.9), (4.10), and (4.11) reduce to the results
available in the literature [53,54]. In the regime k � T <
MW the on-shell self-energies are linear in k. We see that,
for g2 � 0:4, the terms proportional to k are� 1 forMW *
2T, hence perturbation theory is reliable within the regime
of interest in this article. The imaginary parts are always
perturbatively small because of the exponential suppres-

sion factors e�M2=kT .
Perturbation theory breaks down for M & T for the

small k=T region and requires a hard thermal loop resum-

mation program [62] akin to the one presented in Ref. [57]
in the standard model without mixing. This is well known
in gauge theories where the gauge bosons are nearly mass-
less on the scale T [62]. Such a program is well beyond the
realm of this study, however, for M=T * 1–3 our results
are reliable for k=T � �w as analyzed above. For example
for the caseM=T � 1 although the peak in the coefficients
A, B in the self-energy occur for k=T � 0:07 which is not
too large compared to �w � 0:03, the position of the
resonance at k=T � 0:2 is well within the regime of valid-
ity of the perturbative expansion. The validity of perturba-
tion theory improves dramatically forM=T > 1 even in the
low momentum region as discussed above. Therefore, we
conclude that for M=T > 1 the perturbative results are
reliable for k=T > �w, in particular, the new resonances
are well within the regime of validity of the perturbative
expansion. The results for the production rates are always
perturbatively small and reliable because of the exponen-
tial suppression factor.

VI. DISCUSSION

Our goal is to study the production of sterile neutrinos in
cosmology near the electroweak scale when the universe is
radiation dominated. To include the effects of cosmologi-
cal expansion in the production rates and mixing angles,
one must first replace the momentum k ! kpðtÞ ¼ k=aðtÞ
and temperature T ! TðtÞ ¼ Tiai=aðtÞ where k is the co-
moving momentum, aðtÞ the scale factor, and Ti; ai corre-
spond to the initial temperature and scale factor at which
the kinetic equations are initialized. Whereas the ratio
kpðtÞ=TðtÞ ¼ k=ðTiaiÞ is constant M=TðtÞ ¼ MaðtÞ=ðTiaiÞ
grows during the expansion. Consider setting initial con-
ditions at Ti & MW , so that M=Ti � 1, the analysis of
Sec. IV shows that there exists at least one very narrow
MSW resonance even for nearly right-handed sterile neu-
trinos (two if a lepton asymmetry in the neutrino sector is
included) at a value ðkpðtÞ=TðtÞÞc < 1. For ðkpðtÞ=TðtÞÞ<
ðkpðtÞ=TðtÞÞc the analysis shows that �R � 1 and

�m � �

�R

� �; (6.1)

therefore for ðkpðtÞ=TðtÞÞ< ðkpðtÞ=TðtÞÞc we find

	1 � 	aa; 	2 � 	ss þ
�
�

�R

�
2
	aa: (6.2)

For these values of kpðtÞ=TðtÞ the mode ‘‘1’’ is activelike

and it is produced with a weak interaction rate, whereas the
mode ‘‘2’’ is sterilelike and is produced with the rate
similar to that of Ref. [43] plus small corrections from
standard model interaction rates suppressed by the mixing
angle in the medium ��=�R. On the other hand for
ðkpðtÞ=TðtÞÞ> ðkpðtÞ=TðtÞÞc we found above that �R �
�1 leading to �m � �=2, namely, the mode ‘‘1’’ is sterile-
like and the mode ‘‘2’’ is activelike, with the production
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rates

	1 �
�

�

2�R

�
2
	aa þ 	ss; 	2 � 	aa: (6.3)

As the cosmological expansion proceeds eventually
M=TðtÞ � 1 and the resonances disappear (in absence of
lepton asymmetry the MSW resonances for kpðtÞ=TðtÞ< 1

disappear for M=TðtÞ * 3), �R remains large but positive
and the mixing angle in the medium is given by (6.1) and
the production rates are given by (6.2) for all values of
kpðtÞ=TðtÞ, namely, the mode ‘‘1’’ remains the activelike

and the mode ‘‘2’’ the sterilelike.
We note that (see Sec. VA)

	ss; 	aa /
�
M2

k2

�
ln

�
1

1� e�xe�y

�
; (6.4)

this is precisely the form of the production rate that leads to
a distribution function after freeze-out that is enhanced at
small momentum, a feature that leads to a larger free-
streaming length and transfer function at small scales [43].

During the time when M=TðtÞ � 1 the MSW resonance
for kpðtÞ=TðtÞ< 1 leads to a nonthermal population of

neutrinos: for ðkpðtÞ=TðtÞÞ< ðkpðtÞ=TðtÞÞc there is a large

production of mode ‘‘1’’ leading to large populations and a
small production of ‘‘2’’ (sterilelike) leading to small
populations, whereas for ðkpðtÞ=TðtÞÞ> ðkpðtÞ=TðtÞÞc there
is a ‘‘population inversion’’ in the sense that mode ‘‘1’’ is
slightly populated whereas mode ‘‘2’’ will be substantially
populated, however, without the small momentum en-
hancement. Consider a fixed value of kpðtÞ=TðtÞ< 1 dur-

ing the cosmological expansion the ratio M=TðtÞ / aðtÞ
increases sweeping through the MSW resonance, when
this happens the mixing angle in the medium vanishes
very rapidly because the resonance is very narrow and
the mode ‘‘2’’ becomes sterilelike. As the expansion con-
tinues the MSW resonances (in absence of lepton asym-
metry) disappear altogether and the mixing angles and
production rates are given by (6.1) and (6.2), respectively,
for all values of kpðtÞ=TðtÞ. The population of the active-

like neutrino (mode ‘‘1’’) continues to build up via weak
interaction processes, including those that become domi-
nant at T � MW and eventually thermalizes, whereas the
population of the sterilelike neutrino will be frozen out as
the production rate 	2 shuts off as 	ss vanishes rapidly for
M=TðtÞ � 1 (see Ref. [43]) and �m ! 0 as M=TðtÞ � 1
even when 	aa (weak interaction rates) remain large down
to the decoupling temperature of weak interactions
�1 MeV.

This analysis indicates that sterile neutrino production
via the decay of scalar or vector bosons will be effective
only in a region for MW=TðtÞ � 1 and the distribution
function at freeze-out will be strongly nonthermal with
very small population but with an enhancement at small
momentum as found in Ref. [43]. However, the weak
interaction contribution will freeze out much later, depend-

ing on the temperature dependence of the mixing angle in
the medium and will eventually merge with the nonreso-
nant DW production mechanism [27] at T � 150 MeV.
However the nonthermal distribution built up during the

stage when scalar and vector boson decay dominate the
production will remain.
At this stage it is important to understand the self-

consistency of the analysis. In obtaining the self-energies
we had assumed that the eigenstate ‘‘1’’ is activelike with a
thermal distribution function. We have learned, however,
that there are resonances and the eigenstates ‘‘1’’ and ‘‘2’’
are either activelike or sterilelike depending on k, namely,
on which side of the MSW resonance the wave vector lies.
This finding calls into question the thermal nature of the
neutrino propagator in the intermediate state (of course
there is no such ambiguity in the charged lepton propagator
that enters in the charged current self-energy). This issue
notwithstanding, we have found that the fermionic and
bosonic contributions to the real parts of the self-energies
are qualitatively the same with a rather small quantitative
difference, both for sm and bsm contributions. Therefore
replacing the thermal fermion propagator for a vacuum one
leads to a minor quantitative modification of our argu-
ments. However because of the enormous prefactors the
conclusions about the sharpness of the resonance and the
resonance positions do not change and the general analysis
remains the same. Therefore, we conclude that the results
obtained above are very robust not depending on whether
the intermediate fermion line features a thermal or vacuum
propagator or nonthermal propagator interpolating be-
tween these two cases.

VII. CONCLUSIONS AND COSMOLOGICAL
CONSEQUENCES

A comprehensive program to assess the viability of any
potential DM candidate begins with the microphysics of
the production and freeze-out process of the particle phys-
ics candidate. This initial step determines the distribution
function at freeze-out which in turn determines, along with
the mass, its abundance, free-streaming length, phase space
density at decoupling, and the transfer function and power
spectrum in the linear regime. Our objective is to carry out
this program for sterile neutrinos with mass in the KeV
range which seems to be the range favored not only as a
DM candidate but also provide potential solutions to a host
of astrophysical problems [31].
In this article we focus on the first step of the program

and study the production of sterile neutrinos in a tempera-
ture regime near the electroweak scale in an extension
beyond the standard model in which the seesaw mass
matrix emerges from expectation values of Higgslike sca-
lars with masses of the order of the electroweak scale. This
simple and compelling extension which features only one
scale yields rich phenomenology [30–32]. The main ob-
servation in this article is that in this temperature range
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sterile neutrinos are produced by the decay not only of the
Higgslike scalar as explored in Refs. [32,43] but also of the
charged and neutral vector bosons of the standard model.
We consider active and sterile species to be Dirac fermions
to allow the possibility to include a lepton asymmetry
hidden in the (active) neutrino sector consistent with recent
bounds from WMAP and BBN [60].

The assessment of the contribution from standard model
vertices to sterile neutrino production requires an analysis
of the mixing angles in the medium and production rates.
We obtain both from the study of the full equation of
motion of the active and sterile neutrinos that input the
self-energies in the medium. The real part of the self-
energy (index of refraction) determines the dispersion
relations and mixing angles in the medium, and the imagi-
nary (absorptive) part determines the production rates.

We provide a detailed analysis of the contributions from
‘‘beyond the standard model’’ and standard model inter-
actions to the mixing angles, dispersion relations, and
production rates, thereby facilitating the analysis of differ-
ent situations. The study of the ‘‘index of refraction’’ in the
temperature regime near the electroweak scale has not
been performed before and yields a wealth of remarkable
phenomena.

Our study reveals the presence of narrow MSW reso-
nances even in the absence of a lepton asymmetry, in the
temperature regime T * MW for k=T & 1. For vanishing
lepton asymmetry the resonance occurs at a value ðk=TÞc
that depends on the ratio MW=T with 0:15 & ðk=TÞc & 1
for 1 & ðMW=TÞ & 3. The position of the resonance
ðk=TÞc increases with MW=T, the resonance eventually
disappears for MW � T recovering the result valid in the
Fermi limit of the weak interactions [53,54].

Including the possibility of a (small) lepton asymmetry
in the neutrino sector with a value compatible with the
bounds from WMAP and BBN [60] yields two narrow
MSW resonances in these regions, with the resonance
associated with the lepton asymmetry occurring at k <
� � T where � is the chemical potential for the active
species that determines the lepton asymmetry.

A remarkable aspect of these results is that near these
resonances the contribution of the imaginary part of the
self-energies leads to a strong damping regime, and the
difference in the propagating frequencies vanishes exactly
at the position of the resonance, with a concomitant break-
down of adiabaticity. For MW � T the MSW resonances
that are independent of the lepton asymmetry disappear
leaving only the low energy resonances associated with the
lepton asymmetry.

Furthermore, we have found that it is quite possible that
the region of parameters of the extension bsm allow for
MSW resonance for positive energy, positive helicity,
namely, nearly right-handed states both with and without
lepton asymmetry. We also find that the decay of the Z0,
W� vector bosons leads to the production of nearly right-
handed sterilelike neutrinos.

Because the resonances are very narrow, we obtain a
simple expression for the production rates (see Sec. VI)
that is valid in a wide range of temperatures and clearly

displays the contribution from standard model and beyond
standard model interactions.
We have argued that in the early universe the cosmo-

logical expansion leads to a highly nonthermal distribution
function for sterile neutrinos with an enhancement of the
low momentum region k < T both as a consequence of the
MSW resonances and the vanishing of the mixing angle
and production rates as the temperature falls well below the

electroweak scale. Furthermore, we expect that because the
MSW resonances are very narrow, the cosmological ex-
pansion will lead to sterile neutrino production resulting in
a highly nonthermal distribution with low momentum en-
hancement. The form of the production rates via scalar and
vector boson decay are similar to that in Ref. [43], which
leads us to conjecture that the distribution function after
freeze-out will be enhanced in the low momentum region,

leading to a smaller free-streaming length and larger power
spectrum at small scales as compared to the DW mecha-
nism [27,43].
The next step of the program will input these results into

the kinetic equations that describe the production and
freeze-out of the sterile species from which the distribution
function at decoupling is obtained. We expect to report on
these studies in a forthcoming article.
An important remaining question is the extrapolation of

these results to T � MW;Z. At temperatures above the

electroweak symmetry breaking scale the SUð2Þ 	Uð1Þ
symmetry is restored and the vector bosons become mass-
less at tree level, therefore the production channel de-
scribed here shuts off. However, vector bosons acquire
electric screening masses of order gT [62] and scalar
bosons may also acquire thermal mass corrections of
OðY1;2TÞ.
Furthermore the seesaw mass matrix also vanishes at

tree level if all the mass terms arise from the expectation
value of the Higgslike scalar field. This high temperature
regime requires a deeper understanding of radiative cor-
rections to the propagators of the vector bosons, in particu-
lar, the hard-thermal loop corrections [62].
Understanding the possibility of sterile neutrino produc-

tion in this high temperature regime entails a nonperturba-
tive resummation program also for neutrinos, akin to the
study in Ref. [57]. This program although clearly interest-
ing in its own right is far beyond the realm of our goals here
and deserves a deeper study.
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APPENDIX A: VECTOR BOSON EXCHANGE SM

The SM self-energy contributions with the exchange of a
vector boson are given by the spectral representation (3.5)
with the imaginary part given by Eq. (3.14) which is of the
form

Im�smð!; ~kÞ ¼ �g2sm
4

Z d3p

ð2�Þ3pW~pþ ~k

½�0
0
smð!; ~p; ~kÞ

� ~� � k̂
1
smð!; ~p; ~kÞ�: (A1)

Neglecting the mass of the neutrinos and charged leptons
we find


0
smð!; ~p; ~kÞ ¼ ½1� nFðpÞ þ NBðW~pþ ~kÞ�

�
p

�
1þ

2W2
~pþ ~k

M2

�
þ 2W~pþ ~k

M2
ðp2 þ ~k � ~pÞ�ð!� p�W~pþ ~kÞ

þ ½1� �nFðpÞ þ NBðW~pþ ~kÞ�
�
p

�
1þ

2W2
~pþ ~k

M2

�
þ 2W~pþ ~k

M2
ðp2 þ ~k � ~pÞ

�
ð!þ pþW~pþ ~kÞ

þ ½nFðpÞ þ NBðW~pþ ~kÞ�
�
p

�
1þ

2W2
~pþ ~k

M2

�
� 2W~pþ ~k

M2
ðp2 þ ~k � ~pÞ

�
ð!� pþW~pþ ~kÞ

þ ½ �nFðpÞ þ NBðW~pþ ~kÞ�
�
p

�
1þ

2W2
~pþ ~k

M2

�
� 2W~pþ ~k

M2
ðp2 þ ~k � ~pÞ

�
ð!þ p�W~pþ ~kÞ (A2)

and


1
smð!; ~p; ~kÞ ¼ ½1� nFðpÞ þ NBðW~pþ ~kÞ�

�
�k̂ � ~pþ 2ðkþ k̂ � ~pÞ

M2
ðpW~pþ ~k þ p2 þ ~k � ~pÞ

�
ð!� p�W~pþ ~kÞ

� ½1� �nFðpÞ þ NBðW~pþ ~kÞ�
�
�k̂ � ~pþ 2ðkþ k̂ � ~pÞ

M2
ðpW~pþ ~k þ p2 þ ~k � ~pÞ

�
ð!þ pþW~pþ ~kÞ

þ ½nFðpÞ þ NBðW~pþ ~kÞ�
�
�k̂ � ~pþ 2ðkþ k̂ � ~pÞ

M2
ð�pW~pþ ~k þ p2 þ ~k � ~pÞ

�
ð!� pþW~pþ ~kÞ

� ½ �nFðpÞ þ NBðW~pþ ~kÞ�
�
�k̂ � ~pþ 2ðkþ k̂ � ~pÞ

M2
ð�pW~pþ ~k þ p2 þ ~k � ~pÞ

�
ð!þ p�W~pþ ~kÞ: (A3)

APPENDIX B: SCALAR EXCHANGE BSM

For scalar boson exchange we find

Im�bsmð!; ~kÞ ¼ �Y2

4

Z d3p

ð2�Þ3W~pþ ~k

½�0
0
bsmð!; ~p; ~kÞ � ~� � k̂ðk̂ � p̂Þ
1

bsmð!; ~p; ~kÞ�; (B1)

where


0
bsmð!; ~p; ~kÞ ¼ ½1� nFðpÞ þ NBðW~pþ ~kÞ�ð!� p�W~pþ ~kÞ þ ½1� �nFðpÞ þ NBðW~pþ ~kÞ�ð!þ pþW~pþ ~kÞ

þ ½nFðpÞ þ NBðW~pþ ~kÞ�ð!� pþW~pþ ~kÞ þ ½ �nFðpÞ þ NBðW~pþ ~kÞ�ð!þ p�W~pþ ~kÞ; (B2)


1
bsmð!; ~p; ~kÞ ¼ ½1� nFðpÞ þ NBðW~pþ ~kÞ�ð!� p�W~pþ ~kÞ � ½1� �nFðpÞ þ NBðW~pþ ~kÞ�ð!þ pþW~pþ ~kÞ

þ ½nFðpÞ þ NBðW~pþ ~kÞ�ð!� pþW~pþ ~kÞ � ½ �nFðpÞ þ NBðW~pþ ~kÞ�ð!þ p�W~pþ ~kÞ: (B3)
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